

DEPARTAMENTO DE ENERGÍA Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA: INGENIERÍA CONCEPTUAL, BÁSICA Y DE DETALLE Y SIMULACIÓN DE LA LÍNEA DE PRODUCCIÓN DE CAL CON UNA CAPACIDAD DE 40 t/día PARA LA EMPRESA ANDEC S.A.

AUTOR: LÓPEZ LARA, LUIS RAÚL

DIRECTOR: ING. DÍAZ, JUAN

CODIRECTOR: ING. VILLAVICENCIO, ÁNGELO

SANGOLQUÍ 2015

UNIVERSIDAD DE LAS FUERZAS ARMADAS – ESPE

INGENIERÍA MECÁNICA

CERTIFICACIÓN

Ing. Juan Díaz
Ing. Ángelo Villavicencio

CERTIFICAN

Que el trabajo titulado "INGENIERÍA CONCEPTUAL, BÁSICA Y DE DETALLE Y SIMULACIÓN DE LA LÍNEA DE PRODUCCIÓN DE CAL CON UNA CAPACIDAD DE 40 t/día PARA LA EMPRESA ANDEC S.A.", realizado por López Lara Luis Raúl, ha sido guiado y revisado periódicamente y cumple normas estatutarias establecidas por la ESPE, en el Reglamente de Estudiantes de la Universidad de las Fuerzas Armadas – ESPE.

Debido a que se trata de un trabajo de investigación recomiendan su publicación.

El mencionado trabajo consta de un documento empastado y un disco compacto, el cual contiene los archivos en formato portátil de Acrobat (pdf). Autorizan a López Lara Luis Raúl que lo entregue al Ingeniero José Pérez, en su calidad de Director de la Carrera.

Sangolquí, mayo de 2015.

Ing. Juan Díaz DIRECTOR Ing. Ángelo Villavicencio CODIRECTOR

UNIVERSIDAD DE LAS FUERZAS ARMADAS – ESPE INGENIERÍA MECÁNICA

DECLARACIÓN DE RESPONSABILIDAD

Yo, LUIS RAÚL LÓPEZ LARA

DECLARO QUE:

El proyecto de grado denominado "INGENIERÍA CONCEPTUAL, BÁSICA Y DE DETALLE Y SIMULACIÓN DE LA LÍNEA DE PRODUCCIÓN DE CAL CON UNA CAPACIDAD DE 40 t/día PARA LA EMPRESA ANDEC S.A.", ha sido desarrollado en base a una investigación exhaustiva, respetando derechos intelectuales de terceros, conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía.

Consecuentemente este trabajo es de mi autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico del proyecto de grado en mención.

Sangolquí, mayo de 2015.

Sr. Luis Raul López Lara

UNIVERSIDAD DE LAS FUERZAS ARMADAS – ESPE INGENIERÍA MECÁNICA

AUTORIZACIÓN

Yo, LUIS RAÚL LÓPEZ LARA

Autorizo a la Universidad de las Fuerzas Armadas — ESPE la publicación, en la biblioteca virtual de la Institución el trabajo "INGENIERÍA CONCEPTUAL, BÁSICA Y DE DETALLE Y SIMULACIÓN DE LA LÍNEA DE PRODUCCIÓN DE CAL CON UNA CAPACIDAD DE 40 t/día PARA LA EMPRESA ANDEC S.A.", cuyo contenido, ideas y criterios son de mi exhaustiva responsabilidad y autoría.

Sangolquí, mayo de 2015.

Sr. Luis Raul López Lara

DEDICATORIA

A mis padres, que fueron la fuerza en todos los momentos para decirme el sí se puede ya falta poco, cuando parecía que todo no tenía sentido.

A mis hermanos Esteban Y Gabriel, por ser el ejemplo a seguir y brindarme ese apoyo a todo momento a pesar de la distancia y los momentos duros que se pasaron lejos.

A Amelia Caisapanta por su aguante, sus consejos, su apoyo incondicional, sus palabras para no dejar todo a un lado y seguir en el camino para obtener lo que ahora se está logrando.

A mis tíos Pituca y Lucho por la gran ayuda que me brindaron para que este objetivo se cumpla, solo les puedo decir lo logramos.

A todos los compañeros que en cada instancia de esta vida estudiantil estaban para ayudarnos ya sea para estudiar juntos o reírnos, todos fuimos para el mismo camino.

AGRADECIMIENTO

A Dios y mi Santísima Virgen, por darme la fuerza, la paciencia, las ganas de seguir cuando ya estaba a punto de dejar todo.

A mis padres por su apoyo en todo sentido, solo me queda por decirles un eterno

Dios les Pague!!!

Mis hermanos por la paciencia y aguante a cada instante, Muchas Gracias.

A Amelia, por su gran ayuda para concluir esta gran etapa de manera indicada, gracias por tus conocimientos y tiempo, disculpa las malas noches, pero se logró mi AVC.

A mis directores Ingenieros Juan Díaz y Ángelo Villavicencio, por sus consejos y orientación que me dieron durante la ejecución de este trabajo y por todo lo que me compartieron a lo largo de mi vida estudiantil.

A mis grandes amigos de la Familia ANDEC S.A., los ingenieros: Nelson Perugachi, Ángel Sánchez, Henry Núñez, Daniel silva..

Mis grandes compañeros y amigos que se convirtieron en la familia en nuestro tiempo en Guayaquil como son: Pato, Osama, Negro, Pichón, por los buenos y malos momentos que se vivieron juntos, el apoyo que siempre encontramos a pesar de estar a la distancia, entre nosotros era nuestra pequeña Zona Fría.

A toda mi familia y compañeros que cada uno de ellos a su momento me supieron dar esa mano para avanzar o extenderme su hombro para meditar, quedo eternamente agradecido con todos y solo me queda decirles gracias y VAMOS POR MAS!!!!!!

ÍNDICE DE CONTENIDOS

CERTI	FICACIÓN	ii
DECLA	RACIÓN DE RESPONSABILIDAD	iii
AUTOR	RIZACIÓN	iv
DEDIC	ATORIA	v
AGRAI	DECIMIENTO	vi
ÍNDICE	E DE CONTENIDOS	vii
ÍNDICE	E DE FIGURAS	X
	E DE TABLAS	
	E DE ANEXOS	
	IEN	
	ACT	
	RIO	
	ULO I	
	ERALIDADES	
I. GEN		
1.1.	Antecedentes	
1.2.	Definición del Problema	
1.3.	Objetivos	4
1.3.1.	Objetivo General	
1.3.2.	Objetivos Específicos	4
1.4.	Justificación	
1.5.	Alcance	5
CAPÍTI	U LO II	7
2. MAR	CO TEÓRICO	7
2.1.	Proceso de Fabricación de la Palanquilla	7
2.1.1.	Introducción	7
2.1.2.	Proceso en el Horno Eléctrico	8
2.1.3.	Proceso de Afino	9
2.1.4.	Proceso de Colada Continua	10
2.2.	Materiales Utilizados para la Elaboración de la Colada	12
2.2.1.	Introducción	12
2.2.2.	Chatarra	13
2.2.2.1.	Tipo A – Chatarra Pesada	13
2.2.2.2.	Tipo B — Chatarra Semipesada	
2.2.2.3.	Tipo C – Chatarra Liviana o de Poca Densidad	14
2.2.2.4.	Tipo D – Chatarra Naval	15
2.2.3.	Cal	16

2.2.3.1.	Cal Viva	16
2.2.3.2.	Cal Hidratada	17
2.2.4.	Arrabio	17
2.2.5.	Antracita	18
2.2.6.	Fundentes	19
2.3.	Requerimientos para el Correcto Funcionamiento del Horno	20
2.4.	Proceso de la Elaboración de la Cal Viva	2 3
2.5.	Plantas Procesadoras de Cal Viva	24
2.5.1.	Procesos de Trituración y Cribado	26
2.5.2.	Proceso de Calcinación y Transporte	27
<i>2.5.3.</i>	Desechos en la Producción de Cal	29
2.6.	Método de Muther	29
CAPÍTU	J LO III	32
3. INGI	ENIERÍA CONCEPTUAL	32
3.1.	Necesidades de Producción	32
<i>3.2.</i>	Materia Prima	<i>33</i>
<i>3.3.</i>	Mercado	35
<i>3.4.</i>	Mano de Obra	35
3.5.	Suministro de Agua Potable y Energía Eléctrica	35
3.6.	Vías de Comunicación	35
<i>3.7.</i>	Matriz de Selección de Maquinaria	36
3.7.1.	Matriz de Factores Ponderados	36
<i>3.7.2.</i>	Matriz de Selección de Maquinaria	36
3.8.	Maquinaria	37
3.9.	Disponibilidad Local	42
3.10.	Importaciones	42
3.11.	Áreas Requeridas	43
CAPÍTU	J LO IV	45
4. INGI	ENIERÍA BÁSICA	45
4.1.	Esquemas de Funcionamiento	45
4.1.1.	Proceso de Trituración	45
4.1.2.	Proceso de Calcinación	46
4.2.	Distribución de la Planta	46
4.3.	Requerimientos de la Maquinaria	50
4.3.1.	Cálculo y Diseño del Recipiente de Diésel	50
4.3.2.	Selección del Transformador	60
4.4.	Estudio de la Red Eléctrica	
4.5.	Dimensionamiento Obra Civil	64
4.6.	Definición y Especificación de Equipos	66
4.6.1.	Maquinaria de Trituración	66
4.6.2.	Maquinaria Calcinación	68
4.6.3.	Equipos Auxiliares	69

CAPÍT	ULO V	70
5. ING	ENIERÍA DE DETALLE	70
5.1.	Especificaciones Técnicas de Equipos y Materiales	70
5.1.1.	Proceso de Trituración	
5.1.2.	Proceso de Calcinación	71
5.1.3.	Materia Prima	71
5.1.4.	Transporte	71
<i>5.2.</i>	Especificaciones Funcionales	72
5.3.	Equipos de Apoyo	<i>7</i> 3
5.3.1.	Red de Aire Comprimido	
<i>5.3.2.</i>	Alimentación de Combustible	77
5.3.3.	Agua Potable	78
5.4.	Listado de Equipos, Instrumentación, Accesorios y Material	80
5.4.1.	Maquinaria	80
5.4.2.	Equipos Auxiliares	80
5.4.3.	Materia Prima	81
5.5.	Manuales de Mantenimiento	
5.5.1.	Trituración	
5.5.2.	Calcinación	
5.6.	Organización Administrativa	
<i>5.7.</i>	Seguridad	
5.8.	Normas y Regulaciones	
5.9.	Control de Calidad	93
CAPÍT	ULO VI	94
6. SIM	ULACIÓN	94
6.1.	Trituración	94
6.2.	Calcinación	96
CAPÍT	ULO VII	98
7. ANÁ	LISIS ECONÓMICO FINANCIERO	98
7.1.	Inversión	98
7.2.	Tasa Interna de Retorno y Valor Actual Neto	105
7.3.		
CAPÍT	ULO VIII	107
	NCLUSIONES Y RECOMENDACIONES	
8.1.	Conclusiones	107
8.2.	Recomendaciones	
BIBLIC	OGRAFÍA	110
ANEX	os	112

ÍNDICE DE FIGURAS

Figura 1. Proceso de fabricación de la palanquilla	3
Figura 2. Horno EAF	
Figura 3. Cuchara con acero	9
Figura 4. Horno LRF	
Figura 5. Colada Continua	11
Figura 6. Proceso de elaboración de la palanquilla	11
Figura 7. Diagrama Hierro-Carbono	12
Figura 8. Chatarra Tipo A	
Figura 9. Chatarra Tipo B	14
Figura 10. Chatarra Tipo C	
Figura 11. Chatarra Tipo D	
Figura 12. Alto horno	18
Figura 13. Panel de refrigeración	22
Figura 14. Refractarios	
Figura 15. Big Bags	24
Figura 16. Horno vertical	25
Figura 17. Horno rotatorio horizontal	25
Figura 18. Proceso de trituración	
Figura 19. Proceso de calcinación	28
Figura 20. Subsistemas del método de Muther	30
Figura 21. Histórico de consumo de cal en ANDEC S.A. para el año 2014	
Figura 22. Proceso de flujo de producción de cal viva	34
Figura 23. Trituradora de mandíbula	38
Figura 24. Criba vibratoria	39
Figura 25. Elevadores de cangilones	39
Figura 26. Colector de polvos	40
Figura 27. Horno rotatorio	40
Figura 28. Enfriador rotatorio	
Figura 29. Bandas transportadoras	41
Figura 30. Tolvas	41
Figura 31. Layout proyectado	44
Figura 32. Proceso de flujo de trituración	45
Figura 33. Proceso de flujo de calcinación	46
Figura 34. Relación entre las áreas de la planta de cal viva	47
Figura 35. Línea de distribución de la planta de cal viva	48
Figura 36. Layout de la planta de cal viva	
Figura 37. Alimentador vibratorio	66
Figura 38. Trituradora de mandíbula	
Figura 39. Trituradora de impacto	67
Figura 40. Criba vibratoria	68
Figura 41. Proceso de producción de la cal viva	
Figura 42. Características técnicas de los equipos de trituración	70

Figura 43. Características técnicas de los equipos de calcinación	71
Figura 44. Proceso de flujo de trituración	94
Figura 45. Vista superior del proceso de trituración	94
Figura 46. Vista posterior del proceso de trituración	
Figura 47. Vista lateral del proceso de trituración	
Figura 48. Proceso de flujo de calcinación	96
Figura 49. Vista superior del proceso de calcinación	96
Figura 50. Vista posterior del proceso de Calcinación	
Figura 51. Vista lateral del proceso de Calcinación	

ÍNDICE DE TABLAS

Tabla 1. Producción de acero y consumo de cal viva mensual	2
Tabla 2. Minutos de parada por línea de cal	
Tabla 3. Kilogramos de cal viva y cal hidratada para una tonelada de acero	
Tabla 4. Porcentajes de óxido de calcio según proveedor	
Tabla 5. Propiedades de la cal viva	
Tabla 6. Fundentes para la colada	
Tabla 7. Especiaciones químicas de la cal viva	20
Tabla 8. Etapas de contaminación por desechos	
Tabla 9. Matriz de factores ponderados	
Tabla 10. Matriz de selección	37
Tabla 11. Maquinaria para la obtención de cal viva	38
Tabla 12. Áreas tentativas de la planta	
Tabla 13. Ponderaciones del método de Muther	
Tabla 14. Códigos de líneas del método de Muther	47
Tabla 15. Áreas de la planta de cal viva	
Tabla 16. Espesores comerciales de las planchas de acero	
Tabla 17. Peso del cuerpo y la cabeza	
Tabla 18. Peso de la columna de agua	
Tabla 19. Orejas de Izaje	
Tabla 20. Coeficientes de temperatura	
Tabla 21. Coeficientes de temperatura	
Tabla 22. Calculo de kVA	
Tabla 23. Características del transformador.	
Tabla 24. Capacidades del transformador	62
Tabla 25. Calibre de Cables según Amperaje	
Tabla 26. Calibres usados	
Tabla 27. Dimensionamiento de obra civil	66
Tabla 28. Longitud equivalente de accesorios	
Tabla 29. Longitud equivalente de la red aire comprimido	
Tabla 30. Consumo de aire comprimido	
Tabla 31. Longitud equivalente de la red aire comprimido	
Tabla 32. Características del compresor	
Tabla 33. Diámetro comercial de las tuberías	
Tabla 34. Características de la bomba de combustible	78
Tabla 35. Distancia de la red de agua potable	
Tabla 36. Bomba de agua	
Tabla 37. Descripción de la maquinaria	
Tabla 38. Descripción del transformador	
Tabla 39. Características de la bomba	
Tabla 40. Características del compresor	
Tabla 41. Características de la bomba de agua	
Tabla 42. Cantidad de materia prima y producto terminado	
Tabla 43. Mantenimiento de trituradoras	83
Tabla 44. Mantenimiento de cribas vibratorias.	
Tabla 45. Mantenimiento de bandas transportadoras	
Tabla 46. Mantenimiento de elevador de cangilones	

Tabla 47. Mantenimiento del horno rotatorio	89
Tabla 48. Mantenimiento del enfriador rotatorio	91
Tabla 49. Personal necesario en la planta	92
Tabla 50. Proyección de fabricación de acero en toneladas	98
Tabla 51. Toneladas de cal viva requerida en el proceso	
Tabla 52. Maquinaria necesaria para la producción	
Tabla 53. Días laborables 2015	
Tabla 54. Costo dela piedra caliza	100
Tabla 55. Proyección del costo de la materia prima	100
Tabla 56. Costo del diésel	
Tabla 57. Vehículos	101
Tabla 58. Energía eléctrica	101
Tabla 59. Agua potable	101
Tabla 60. Transporte de la piedra caliza	102
Tabla 61. Transporte de la cal viva	102
Tabla 62. Costo obra civil y adecuaciones	
Tabla 63. Costo mano de obra	
Tabla 64. Mobiliaria y equipo de oficina	103
Tabla 65. Suministros de oficina	
Tabla 66. Costo del ladrillo refractario	104
Tabla 67. Costo big bag	104
Tabla 68. Costo de mantenimiento.	105
Tabla 69. Costo de fiscalización	105
Tabla 70. TIR Y VAN	105
Tabla 71. Flujo del proyecto	106

ÍNDICE DE ANEXOS

ANEXO A: PLANOS DEL RECIPIENTE DE DIÉSEL.

ANEXO B: UNIFILAR ELÉCTRICO.

ANEXO C: DIMENSIONAMIENTO DE OBRA CIVIL.

ANEXO D: LÍNEA AIRE COMPRIMIDO.

ANEXO E: LÍNEA AGUA POTABLE.

RESUMEN

Para obtener acero de buena calidad se requiere de cal viva que cumpla con los parámetros requeridos en el proceso de fundición. Para obtener una cal viva con las condiciones requeridas se debe tener una planta que proporcione la cal con la granulometría y el porcentaje de oxide de calcio necesario. Para lograr estas características de la cal viva partiendo de la piedra caliza se debe tener dos procesos los cuales son: trituración y calcinación, en el primer proceso se obtiene la cal viva de la granulometría requerida para que en el proceso de calcinación se pueda obtener la cal viva con las características deseadas. Para el correcto funcionamiento del proceso de trituración y calcinación se debe garantizar el suministro de energía eléctrica, agua potable, alimentación de combustible, selección de tuberías, las cuales fueron realizadas en el presente proyecto. Como se está generando un proyecto de inversión es fundamental asegurar que el periodo de recuperación del capital sea el menor, esto se logra mediante una correcta selección de maquinaria, equipos secundarios, proveedores de materia prima, material de trasporte y optimizando los envíos que se va a realizar tanto de materia prima para el proceso como la de producto termina hacia la planta principal de ANDEC S.A. La distribución de planta se realizó mediante el método de Muther optimizando los tiempos y movimientos. El periodo de recuperación de este proyecto es inferior a los 5 años, por lo tanto es un proyecto rentable para la empresa auspiciante.

PALABRAS CLAVES:

TRITURACION,

CALCINACION.

CAL VIVA,

ACERO,

PIEDRA CALIZA.

ABSTRACT

In order to obtain good quality steel, it is required quicklime that meets the needed parameters in the foundry process. To obtain quicklime with the required conditions, it is necessary to count with a plant that provides lime with the desired grain size and percentages of calcium oxidize. To meet these characteristics of quicklime, it must go through two processes: crushing and calcination. In the first process, it is obtained the quicklime of the required grain size, so that in the calcination process it can be obtained the quicklime with the desired characteristics. For the correct functioning of the crushing and calcination processes, it must be supplied electric power, potable water, fuel feed, and pipe selection, all of which were made in this project. As it is a funding project, it is fundamental to ensure that capital recovery is made in a minimum period, which can be achieved through an accurate selection of machinery, secondary equipment, raw material suppliers, transportation material, and by optimizing the deliveries of both raw material and the finished product to the main plant ANDEC S.A. The distribution of the plant was made through the Muther method, optimizing times and movements. The recovery process of this project is less than 5 years; therefore, it is a profitable project for the sponsor company.

KEYWORDS:

CRUSHING,

CALCINATION,

QUICKLIME,

STEEL,

LIMESTONE.

GLOSARIO

ASTM Asociación American de Prueba de Materiales (American Society for

Testing Materials).

 Al_2O_3 Trióxido de Dialuminio.

CC Caliente – Corroído.

CFM Pies Cúbicos por Minuto (Cubic Feet Minute).

C Carbón.

CO₂ Dióxido de Carbono.

CaO Óxido de calcio.

CaCO₃ Piedra caliza.

EAF Horno de Arco Eléctrico (*Electric Arc Furnace*).

FN Frio – Nuevo.

FP Factor de Potencia.

Fe-Si Ferro Silicio.

 H_2O Agua.

INEN Instituto Ecuatoriano de Normalización.

LRF Horno de Refinamiento Cuchara (*Ladle Refining Furnaces*).

MAWP Máxima Presión Admisible de Trabajo (Maximum Allowable Working

Pressure).

Mg0 Óxido de Magnesio.

Mn Manganeso.Mo Molibdeno.

O₂ Oxígeno.

PH Peso del Hidrógeno (*Pondus Hydrogenium*).

PPH Presión de Pruebas Hidrostáticas.

P Fósforo.Q Caudal.q Calor.

REDOX Reducción-Oxidación.

SPIF Sistema de Planeación para Facilidades Industriales (Industrial

Systematic Planning of Industrial Facilities).

SSOA Seguridad, Salud Ocupacional y Ambiente.

S Azufre.

Si Silicio.

SiO₂ Dióxido de Silicio.

TIR Tasa Interna de Retorno.

t Toneladas.

VAN Valor Actual Neto.

WACC Coste Medio Ponderado de Capital (Weighted Average Cost of

Capital).

WF Factor Ponderado (Weighting Factors).

W Wolframio.

CAPÍTULO I

1. GENERALIDADES

1.1. Antecedentes

A finales de los años sesenta, la necesidad de instalar una planta laminadora ecuatoriana que suministre hierro de calidad, se convirtió en una necesidad urgente para el mercado local, por lo que Acerías Nacionales del Ecuador ANDEC S.A. se crea, el 19 de octubre de 1969, para atender la demanda del sector de la construcción.

El compromiso de liderar el mercado con productos de calidad, personal capacitado y eficaz, impulsó a ANDEC S.A. a realizar cambios en sus procesos de producción, por lo que el 31 de julio de 2003, la empresa ANDEC S.A. consigue la certificación al Sistema de Gestión de Calidad ISO 9001:2000 y en el año 2005, ANDEC S.A. incorpora a su filial FUNASA, la cual era la encargada de la fundición del acero.

La empresa ANDEC S.A. dentro de sus procesos productivos utiliza una gran cantidad de cal viva, cálcica o calcinada para la producción de acero, como se puede observar en la Tabla 1. Además de la cal viva, para poder lograr la fundición del acero es necesario de otros fundentes tales como: carbón, magnesita, oxigeno, entre otros.

Los proveedores de ANDEC S.A. se encuentran actualmente entregando cal viva, la misma que no cumple con todos los parámetros necesarios, tales como granulometría y porcentajes de óxido de calcio *CaO*. Esta cal viva actualmente genera pérdidas de tiempo por obstrucción en la línea de abastecimiento como se indica en la Tabla 2.

Tabla 1. Producción de acero y consumo de cal viva mensual

MES	TONELADAS DE ACERO	TONELADAS DE CAL VIVA
Enero	12572,08	409,47
Febrero	10809,59	352,07
Marzo	13174,91	429,11
Abril	13532,92	440,77
Mayo	16351,36	532,57
Junio	16875,53	549,64
Julio	19313,40	629,04
Agosto	19655,93	640,20
Septiembre	20162,07	656,68
Octubre	19214,54	625,82
Noviembre	17961,66	585,01
Diciembre	16854,58	548,96
Total	196478,56	6399,33

Fuente: Histórico de producción de ANDEC S.A. año 2014

Tabla 2. Minutos de parada por línea de cal

MES	MINUTOS DE PARADA
Enero	77
Febrero	380
Marzo	150
Abril	12
Mayo	114
Junio	0
Julio	88
Agosto	61
Septiembre	49
Octubre	115
Noviembre	151
Diciembre	29

Fuente: Histórico de producción de ANDEC S.A. año 2014

Tomando en cuenta que los proveedores actuales no realizan los cambios correctivos necesarios en la producción de cal viva, para poder satisfacer las exigencias del proceso de fundición de ANDEC S.A., esta se ve en la necesidad de construir su propia planta de cal viva con el propósito de cubrir su demanda y eliminar los tiempos de parada por falla en la línea de abastecimiento de cal viva.

En la Figura 1 se muestra el proceso para la elaboración de la palanquilla y como se puede observar, la cal viva es utilizada como uno de sus fundentes.

Figura 1. Proceso de fabricación de la palanquilla

Fuente: (Weldg, 2013)

1.2. Definición del Problema

ANDEC S.A. dentro del proceso fundición en el Horno de Arco Eléctrico (Electric Arc Furnace EAF) utiliza como materia prima la chatarra clasificada, la cual para ser transformada en acero, requiere de insumos tales como: ferro manganeso, ferro silicio, estrella de aluminio, cal hidratada, antracita, oxígeno y la cal viva, en donde esta última es necesaria para eliminar las impurezas de la chatarra y ayudar a la formación de una escoria adecuada. En la Tabla 3 se muestra en kilogramos la cantidad de cal viva y cal hidratada a ser utilizada en una tonelada de acero.

Tabla 3. Kilogramos de cal viva y cal hidratada para una tonelada de acero

KILOGRAMOS
40
20

Fuente: Gerencia de Materia Prima ANDEC S.A.

Actualmente los proveedores de cal viva son las empresas Rosa Mora, Fausto Guevara y Cal Covital, los mismos que como ya se mencionó no cumplen con los parámetros de calidad requeridos para la producción del acero. En la Tabla 4 se muestra el porcentaje de óxido de calcio de cada uno de los proveedores.

Tabla 4. Porcentajes de óxido de calcio según proveedor

PROVEEDOR	CaO
Cal Covital	66,88%
Fausto Guevara	66,59%
Rosa Mora	67,77%

Fuente: Control de Calidad de ANDEC S.A.

El uso de una cal viva que no cumpla con los parámetros requeridos, provoca en el proceso de fundición escoria ácida, la misma que no permite atrapar los óxidos en el baño de acero líquido, generando retrasos en el proceso de producción, problemas en la eliminación de elementos residuales y el desgaste del refractario de forma agresiva.

1.3. Objetivos

1.3.1. Objetivo General

Realizar las ingenierías: conceptual, básica y de detalle, además de la simulación de la línea de producción de cal viva para ANDEC S.A. con una capacidad de $40 \, t/dia$.

1.3.2. Objetivos Específicos

- Ejecutar el levantamiento de información y el análisis de la situación actual del suministro de cal viva para el proceso de fundición de chatarra en ANDEC S.A.
- Realizar las ingenierías: conceptual, básica y de detalle para la línea de producción de cal viva.
- Diseñar la distribución de la planta, aprovisionamiento, almacenamiento y programación de producción.

- Elaborar el plan de mantenimiento de la maquinaria usada en el proceso de producción de la cal viva.
- Realizar la simulación del proceso de trituración y calcinación de cal viva.
- Elaborar el análisis económico financiero del proyecto.

1.4. Justificación

En el año 2014 ANDEC S.A. consumió 6399,33 t de cal viva, como se indicó en la Tabla 1. Además de que los actuales proveedores de cal viva entregan un insumo de baja calidad, ANDEC S.A tiene proyectado aumentar su producción de acero de $200000 \, t/año$ a $300000 \, t/año$, con lo cual la demanda de cal viva aumentará a $40 \, t/día$, lo que representan $10040 \, t/año$ de consumo de cal viva.

Debido a estos particulares se vuelve necesario e imprescindible de que ANDEC S.A implemente una planta propia de cal viva, que permita satisfacer su propia demanda y sobre todo obtener una cal viva que cumpla con los parámetros necesarios para el proceso de fundición, he aquí la importancia de realizar el presente proyecto.

1.5. Alcance

En el presente proyecto se realizan las ingenierías: conceptual, básica y detalle para la línea de producción de cal viva, obteniendo un producto de calidad a un bajo costo de inversión y logrando la disminución de fallas en el proceso de fundición del acero de ANDEC S.A. Se diseña la distribución de la planta, el aprovisionamiento de los recursos necesarios para la producción y las áreas de almacenamiento de materia prima y producto terminado.

Se elabora los manuales de mantenimiento para la maquinaria y se desarrolla la simulación del proceso productivo de cal viva con la ayuda de la herramienta Flex Sim para poder visualizar el proceso de producción de la misma. Finalmente se

realiza el estudio económico financiero para determinar la rentabilidad del proyecto y su tiempo de recuperación.

CAPÍTULO II

2. MARCO TEÓRICO

2.1. Proceso de Fabricación de la Palanquilla

2.1.1. Introducción

El acero se obtiene a partir de dos materias primas fundamentales: el arrabio que se obtiene del hierro en instalaciones dotadas con un alto horno y la chatarra tanto férrica como inoxidable. De las características de la materia prima dependerá su calidad y los distintos fundentes necesarios para obtener el acero.

El tipo de materia prima condiciona el proceso de fabricación. En términos generales, para fabricar el acero a partir de arrabio se utiliza el convertidor con oxígeno, mientras que partiendo de la chatarra como única materia prima se utiliza exclusivamente el horno de arco eléctrico (proceso electro-siderúrgico). Los procesos en el horno de arco eléctrico pueden usar casi un 100% de chatarra metálica como primera materia, convirtiéndolo en un proceso más favorable desde un punto de vista ecológico. Aun así, la estadística indica que el 85% de las materias primas utilizadas en los hornos de arco eléctrico son chatarra metálica (Medina, 2006).

Las aleaciones de acero se realizan generalmente a través del horno de arco eléctrico, incluyendo el acero inoxidable. En algunos tipos de acero inoxidable se añade a su composición molibdeno, titanio, niobio u otro elemento con el fin de conferir a los aceros distintas propiedades (Medina, 2006).

2.1.2. Proceso en el Horno Eléctrico

El horno eléctrico consiste en un gran recipiente cilíndrico de chapa gruesa (de 15 a 30 mm de espesor), este horno eléctrico se encuentra recubierto de material refractario que forma la solera y alberga el baño de acero líquido y escoria. El resto del horno está formado por paneles refrigerados por agua. La bóveda es desplazable para permitir la carga de la chatarra a través de unas cestas adecuadas.

En la Figura 2 se muestra el horno EAF que es de última generación, con una capacidad de 40 t de acero. Este horno es de marca italiana DANIELI (HORNO DE ARCO ELÉCTRICO EAF4300 1 F E 024). Se emplea energía eléctrica para fundir la chatarra y un sistema de MORE (italiano) para aportar energía química mediante la inyección de oxígeno y carbón que producen reacciones exotérmicas y formación de escoria espumosa. Este sistema está regulado por medio de un software que realiza todas las operaciones en forma sistemática.

Figura 2. Horno EAF Fuente: Acería ANDEC S.A.

En el horno EAF se realizan las operaciones de fusión, oxidación y reducción de algunos elementos. Se efectúan análisis químicos y posteriormente se vacía en una cuchara de $20\,t$ de capacidad (Figura 3) a la temperatura de $1600\,^{\circ}C$ aproximadamente.

Figura 3. Cuchara con acero Fuente: Acería ANDEC S.A.

2.1.3. Proceso de Afino

El proceso de afino nos permite obtener las propiedades del acero y este se lleva a cabo en dos etapas: la primera en el horno EAF con carbón, oxígeno y cal cálcica. La segunda en un Horno de Refinamiento Cuchara (*Ladle Refining Furnaces* LRF), el cual se puede observar en la Figura 4. En el primer afino se analiza la composición del baño fundido y se procede a la eliminación de impurezas y elementos indeseables (silicio, manganeso, fósforo). También se realiza un primer ajuste de la composición química por medio de la adición de ferroaleaciones que contienen los elementos necesarios (cromo, níquel, molibdeno, vanadio o titanio). En la segunda etapa de afino, el acero obtenido se vacía en una cuchara, revestida de material refractario, que hace la función de cuba de un segundo horno de afino en el que termina de

ajustarse la composición del acero y de dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación, que es la colada continua.

El horno LRF está compuesto por la cuchara, los electrodos, un tapón poroso, una válvula de argón que se utiliza para homogenizar el acero y las tolvas que sirven para adicionar las ferroaleaciones. Luego de que se ajusta perfectamente el análisis químico deseado y dependiendo del acero que se está fabricando, el acero es trasladado a la Máquina de Colada Continua.

Figura 4. Horno LRFFuente: Acería ANDEC S.A.

2.1.4. Proceso de Colada Continua

El proceso de colada continua está conformado por una torreta giratoria, un distribuidor, moldes de cobre refrigerados, máquinas de arrastre, máquinas enderezadoras y sopletes de oxígeno que cortan la palanquilla a la medida requerida.

En la Figura 5 se puede observar la maquinaria para el proceso de colada continua. Al final de este proceso se obtiene la palanquilla.

Figura 5. Colada Continua Fuente: Acería ANDEC S.A.

La máquina de colada continua tiene tres líneas para colar el acero, las cuales son habilitadas de acuerdo a las necesidades de producción para obtener la cantidad de palanquilla necesaria para su posterior laminación. En la Figura 6 se puede observar el proceso de fabricación de la palanquilla.

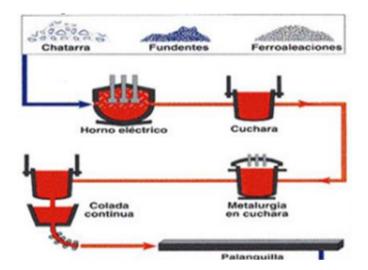


Figura 6. Proceso de elaboración de la palanquilla

Fuente: (Romero, 2011)

2.2. Materiales Utilizados para la Elaboración de la Colada

2.2.1. Introducción

En el campo de la metalurgia el término de colada se le da al acero que se encuentra en estado líquido. Para poder llegar a este estado, la materia principal del proceso ya sea la chatarra o el arrabio debe mezclarse con distintos componentes y así el proceso de fundición será el correcto. De acuerdo a la cantidad de fundentes que se suministre en esta colada se va a obtener distintas propiedades en el acero que se está preparando. Se puede decir, que en el proceso de fundición en su primera parte, en el horno EAF los fundentes ayuda a la formación de escoria y sacar las impurezas que posee la chatarra o el arrabio, para luego en la parte del afino se tenga un menor trabajo para la obtención del acero deseado.

Es necesario aclarar en este proceso la diferencia entre el hierro y el acero, el cual depende del porcentaje de carbón que tiene cada uno de ellos, el acero es un hierro con porcentaje de carbón entre 0,03% y el 1,075%, fuera de estos se considera una fundición de hierro, como se muestra en la Figura 7. El acero tiene distintas estructuras internas dependiendo del porcentaje de carbón como puede ser perlita, cementita y ferrita.

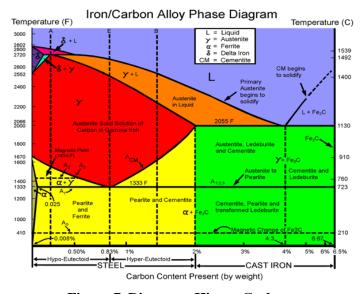


Figura 7. Diagrama Hierro-Carbono

Fuente: (PEREIRA, 2012)

2.2.2. Chatarra

La materia prima fundamental para la elaboración de la colada es la chatarra, la cual se obtiene mediante el reciclaje de elementos férricos empleados en las distintas áreas productivas. La chatarra se clasifica según su calidad y dimensiones. A continuación se detalla la clasificación de la chatarra.

2.2.2.1. Tipo A – Chatarra Pesada

La chatarra pesada no requiere de procesos de preparación, como por ejemplo la compactación, que se la realiza mediante una máquina dotada de cilindros que se accionan a través de un sistema hidráulico. Además no requiere de oxicorte, que mediante la mezcla de oxígeno y acetileno se logra cortar al tamaño que se necesita, no requiere de cizallado, el cual se lo realiza mediante maquinaria dotada con cuchillas accionada por un sistema hidráulico.

Las dimensiones máximas de este tipo de chatarra son de $400 \times 400 \times 400 mm$, largo, ancho y alto respectivamente. En Figura 8 se muestra la chatarra Tipo A utilizada por ANDEC S.A. Ejemplos de este tipo de chatarra son:

- Material de taller automotriz.
- Partes de equipo camionero.
- Restos de troquelado.
- Retazos de planchas ejes, vigas, varillas.
- Hierro fundido rompible.
- Rieles y partes de ferrocarriles.

Figura 8. Chatarra Tipo A
Fuente: Materia Prima Acería ANDEC S.A.

2.2.2.2. Tipo B – Chatarra Semipesada

La chatarra semipesada requiere de preparación, como es la compactación, corte o cizallado. ANDEC S.A. procesa este tipo de chatarra mediante la trituradora Vezzani y así obtiene chatarra triturada para luego compactarla en paquetes de $400 \times 400 \times 400 \, mm$. En la Figura 9 se muestra la chatarra semipesada que utiliza ANDEC S.A. Ejemplos de este tipo de chatarra pueden ser:

- Estructuras (galpones, chasis, baldes de volqueta).
- Tubos, vigas, ángulos.
- Paquetes compactados.
- Bastidores de tractores, otros equipos camioneros y maquinaria industrial.

Figura 9. Chatarra Tipo BFuente: Materia Prima Acería ANDEC S.A.

2.2.2.3. Tipo C – Chatarra Liviana o de Poca Densidad

Este tipo de chatarra se caracteriza por poseer grasa, aceites, materiales no férricos y por tanto requiere de limpieza y corte para ser utilizada en el proceso de fundición. Debido a su procedencia y densidad debe ser mezclada con chatarra Tipo A o Tipo B. En la Figura 10 se muestra la chatarra liviana que utiliza ANDEC S.A. Ejemplos de este tipo de chatarra son:

- Carrocerías de vehículos.
- Carcasas de electrodomésticos.
- Lata estañada suelta.
- Escritorios, camas, coches.

- Virutas.
- Envolturas de bobinas.
- Zunchos metálicos.

Figura 10. Chatarra Tipo C Fuente: Materia Prima Acería ANDEC S.A.

2.2.2.4. Tipo D - Chatarra Naval

La chatarra naval requiere de desgasificación, limpieza de los residuos inflamables que generalmente se encuentran en los compartimientos de las embarcaciones. Al igual que los otros tipos de chatarra se debe obtener un tamaño máximo de chatarra de $400 \times 400 \times 400$ mm. En la Figura 11 se puede observar una embarcación procesada por ANDEC S.A. Ejemplos de este tipo de chatarra son:

- Buques cisternas para transporte de derivados de petróleo.
- Barcos pesqueros.
- Gabarras.

Figura 11. Chatarra Tipo DFuente: Materia Prima Acería ANDEC S.A.

2.2.3. Cal

La cal está compuesta por silicatos, aluminatos de calcio y por hidróxido de calcio, fabricada por cocción de marga calcárea en horno en capas a bajas temperaturas. (GEMONA DEL FRIULI, 2011). Como ya se indicó en el capítulo anterior, la cal se divide en dos tipos: cal viva y cal hidratada. A continuación se detalla cada una de ellas.

2.2.3.1. Cal Viva

En el campo de la siderúrgica la cal viva es uno de los componentes de mayor consumo, ya que en la fundición de la chatarra se utiliza este insumo para poder obtener la escorificación de las impurezas, para luego poder extraer la escoria del horno de fundición.

El consumo de cal viva es de $40 \, kg$ por cada tonelada de acero a ser fundido. En el caso de la empresa ANDEC, S.A. se tiene una producción de acero aproximado de $18000 \, t/mes$, por tanto el consumo de cal viva mensual es de $720 \, t$. En la Tabla 5 se muestra las propiedades de la cal viva.

Tabla 5. Propiedades de la cal viva

PROPIEDADES	
Estado de agregación	Sólido
Apariencia	Blanco
Densidad	$3300 kg/m^3$
Masa Molar	$56,1 \ g/mol$
Punto de Fusión	2572° <i>C</i>
Punto de Ebullición	2850 ° <i>C</i>

Fuente: (Coloma, 2008)

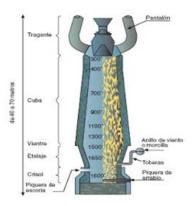
La cal viva que se utiliza en el horno EAF reacciona con el acero en estado líquido obteniendo las siguientes ventajas.

- Eliminación de impurezas (silicio y fósforo).
- Neutralización del azufre (desulfuraste).

- Formación de escorias que pueden ser separadas.
- Prolonga la duración del revestimientos refractario en los hornos.
- Controla la migración del magnesio del ladrillo refractario a la escoria.
- Controla el PH (*Pondus Hydrogenium*) a la escoria.

2.2.3.2. Cal Hidratada

La cal hidratada se obtiene mediante la hidratación del óxido de calcio con el uso de equipos llamados hidratadores. Los desechos del proceso de elaboración de la cal viva pueden ser utilizados para la producción de la cal hidratada.


Al llegar a la temperatura aproxima de 500 °C la cal hidratada se descompone en óxido de calcio y agua, esta reacción permite que los ácidos de cal hidratada tenga efectos sobre los metales. Las aplicaciones de la cal hidratada son:

- Metalúrgica.
- Química.
- Industrias alimentarias.
- Farmacopea.
- Cosmética.
- Industria papelera.
- Manufactura de discos de freno.
- Manufactura de ebonita.
- Material odontológico y dental.

2.2.4. Arrabio

El arrabio se obtiene del hierro fundido en un alto horno, mediante la reducción del mineral de hierro. El arrabio es una de las materias primas para la obtención de acero de buena calidad, la ventaja de este es que tiene un alto contenido de carbono que esta entre 3,5% y el 4,5%, además de otros componentes como el sílice. En la Figura 12 se puede observar un alto horno. En el alto horno se puede obtener el arrabio, este elemento es el conjunto del carbón no quemado, hierro y más

componentes. El arrabio como posee mayor densidad que la escoria va para la parte baja del horno y es extraído mediante la puerta de escoria. El arrabio cuenta con muchas impurezas, por tanto es un material muy frágil y es por ello que su uso es limitado. En la parte de la siderúrgica, el arrabio se lo usa como elemento para la fabricación de la colada.

Figura 12. Alto horno Fuente: (TAPIA, 2011)

El arrabio posee una alta concentración de hierro, por tanto no puede ser utilizado como única materia prima para obtener el acero, es por ello que se lo mezcla con chatarra y mediante el uso de la cal viva se logra sacar las impurezas y obtener un acero de mayor calidad. Los porcentajes de chatarra y de arrabio que deben ser suministrados son controlados de acuerdo al tipo de chatarra que se está utilizando así como también de la composición química de arrabio, ya que este al ser introducido al horno en una cantidad no adecuada puede producir reacciones químicas dentro del horno lo cual perjudicaría a la producción y a la calidad del acero.

2.2.5. Antracita

La antracita es el carbón mineral más alto en pureza, puede llegar a tener hasta un 95% de pureza. Debido a su poca presencia de material volátil su ignición es dificultosa. La antracita tiene un alto poder calorífico y requiere una alta cantidad de oxígeno para su combustión, al reaccionar con el oxígeno y la cal ayuda a formar la escoria espumosa que permite obtener un acero de mejor calidad. Se cuenta con grandes yacimientos de antracita a nivel mundial, por tal motivo no es muy

complicada su adquisición. Para el uso siderúrgico la antracita suministra más del 80% de los requerimientos totales de la energía. Su densidad varía entre 1,2 y $1,8 g/cm^3$ y su poder calorífico es de 8300 kcal/kg.

El aumento de la industria siderúrgica obligo a que se obtenga una mayor cantidad de antracita para poder satisfacer la demanda para este sector, ya que la antracita trabaja como agente reductor en el proceso de la generación de acero líquido. Un agente reductor es aquel que cede electrones a un agente oxidante. Existe un método químico conocido como reacción de oxidación-reducción o también llamado reacciones REDOX, que se consideran reacciones de transferencia de electrones.

2.2.6. Fundentes

Para la elaboración de la colada se maneja una receta, que dependiendo del tipo de acero que se desea producir, varia la cantidad de insumos suministrados. Los insumos utilizados en la colada son los que se detalla en la Tabla 6.

Tabla 6. Fundentes para la colada

INSUMO
Chatarra preparada
Chatarra importada
Antracita 5 - 20
Antracita M20
Cal viva
Cal hidratada
Ferrosilicio
Silicomanganeso
Termocuplas
Termocuplas de oxígeno
Estrella de aluminio
Energía eléctrica
Oxígeno
Carburo de calcio
Alambre ferro-calcio
Fluorita
Argón
Nitrógeno
Cal viva

Fuente: Gerencia de Materia Prima ANDEC S.A.

2.3. Requerimientos para el Correcto Funcionamiento del Horno

Chatarra.- Todos los tipos de chatarra deben estar libres de aceites o de agentes inflamables ya que si estos existieran se corre un grave riesgo al momento de realizar la fundición de la chatarra con los demás componentes. Al ingresar la chatarra al patio de materia prima de ANDEC S.A. se lleva a cabo un control de radioactividad mediante pilas radioactivas que se encuentran en la báscula. Las dimensiones de la chatarra no debe ser mayor a $400 \times 400 \times 400 \ mm$.

Cal Viva.- En el proceso de fundición del acero, en la empresa ANDEC S.A. se utiliza una línea de suministro de cal fabricada por la empresa MORE, la cual tiene como parámetros nominales que la granulometría de la cal a ser trasportada en este sistema debe estar entre 10 y 40 mm de diámetro para que no exista problemas de taponamiento en las líneas. De acuerdo al tipo de chatarra que fue suministrado en el horno y así como el porcentaje de arrabio que se encuentra, se procede al suministro de cal para que realice el trabajo de escorificación.

Es de suma importancia garantizar las propiedades de la cal en cuanto a su granulometría así como sus propiedades físico químicas (Tabla 7) para un correcto desempeño en el horno, ya que si se tiene una cal con la granulometría no indicada se va a tener taponamiento en la línea y si no se tiene la propiedades físico químicas no se va a cumplir con el principio de escorificación que es lo que se busca.

Tabla 7. Especiaciones químicas de la cal viva

ELEMENTO	% MÍNIMO	% MÁXIMO
CaO	85	Sólido
MgO		3
SiO_2		1
Al_2O_3		1
P		0,03
S		0,08
H_2O		0,5
P. Calcinación		3,5

Fuente: (GEMONA DEL FRIULI, 2011)

Los parámetros en cuanto a la granulometría de la cal viva son los siguientes:

- El 70% de los granos deben medir entre $10 40 \, mm$, Tolerancia +/- 10%.
- El 30% de los granos deben medir entre $0 10 \, mm$, Tolerancia +/- 10%.

Oxígeno.- Al insuflar el oxígeno con la antracita se produce una descarburación exotérmica ($C + O_2 = CO_2 + calor$) que facilita la oxidación de elementos perjudiciales que pasaran a la escoria (reducción del contenido en Si, Mn, P) así como una desoxidación posterior (eliminación del contenido en oxígeno) añadiendo ferro silicio Fe-Si (Herrera, 2010). El oxígeno es el que cumple con la función de consumir el exceso de carbono que tiene el acero líquido en el momento de la fundición.

Antracita.- El suministro de antracita en la empresa ANDEC S.A. es mediante un sistema conocido como LANZA PARPI, el cual es el encargado de suministrar la cantidad necesaria de antracita y de oxígeno para el proceso de fundición. La antracita realiza la función de reductor, en toda reacción química. El porcentaje de antracita que se llegue a tener nos ayudara a que en el momento del afino se utilice mayor o menor cantidad de componentes para obtener el acero deseado. El uso de coque en este proceso lograría que se obtenga mejores resultados pero debido a la relación de costo-beneficio es más rentable utilizar la antracita.

Refrigeración.- La refrigeración en hornos industriales utilizados en la metalurgia y demás procesos que requirieren elevadas temperaturas, es imprescindible para aumentar la vida de los revestimientos refractarios. La técnica de refrigeración contempla la instalación de una gran cantidad de paneles individuales, como se muestra en la Figura 13. Los paneles de refrigeración están compuestos por finas placas adaptadas a la forma de la camisa del horno, que llevan soldadas unas canaletas para la circulación de agua. Este sistema puede montarse tanto en hornos nuevos como en proyectos de modernización de hornos.

Figura 13. Panel de refrigeración

Fuente: (Maerz, 2013)

La refrigeración que se utiliza en todo proceso de fundición se la realiza en la parte del horno, ya que se maneja temperaturas entre 1000 °C y 1600 °C, por esto se utiliza refractarios para que no se desgaste de manera muy rápida y aumenten los costos.

Refractarios.- Los refractarios son materiales que en condiciones de servicio resisten elevadas temperaturas, erosión, abrasión, impacto, ataque químico y acción de gases corrosivos. En la Figura 14 se muestra los ladrillos refractarios, estos materiales se usan para el recubrimiento de hornos, hogares, conductos, chimeneas. La mayor parte de los refractarios son materias cerámicas fabricadas con óxidos de elevado punto de fusión. Algunos metales, como el molibdeno Mo (punto de fusión = $2600 \, ^{\circ}C$) y el Wolframio W (punto de fusión $3400 \, ^{\circ}C$) son también refractarios, incluso estos se pueden fundir en envases de cobre abundantemente refrigerados por agua. Los refractarios se clasifican según sus características químicas en: ácidos, básicos y neutros.

Figura 14. Refractarios

Fuente: (Refractarios Aldayacentes, SL, 2013)

2.4. Proceso de la Elaboración de la Cal Viva

- 1. Preparación de la piedra.- Luego que la piedra caliza es adquirida de las canteras y colocada en la bodega de materia prima, se empieza con la primera etapa de triturado, en la cual la piedra debe ingresar con un diámetro menor a 500 mm. Se depende de la calidad de la piedra caliza para obtener una cal viva con las condiciones requeridas para el proceso, el porcentaje de óxido de calcio ayuda a que la cal reaccione de mejor manera como escoriador en el proceso de fundición. En temporada de invierno se recomienda tener stock de piedra caliza en un lugar bien seco, porque no habrá producción en las canteras debido al factor invernal que provoca derrumbes, problemas en las vías, entre otros.
- 2. Trituración.- Las piedras con un diámetro no mayor a 500 mm, pasan por un proceso de trituración, comprendido por dos tipos de trituradoras: de impacto y mandíbulas, para poder obtener una piedra con un diámetro entre 10 y 40 mm, la cual es ingresada a la etapa de calcinación, obteniendo como resultado la cal viva que se utiliza en el proceso principal de ANDEC S.A.
- **3.** Calcinación.- Esta etapa consiste en ingresar la piedra caliza previamente triturada a temperaturas que oscilan entre 800 °C y 900 °C en el horno de calcinación. En este proceso la masa que se ingresa de piedra caliza no es la misma masa que se obtiene de cal viva.
- **4. Enfriador rotatorio.-** A la salida del horno de calcinación se encuentra el enfriador, el cual disminuye la temperatura de la cal viva, para luego ser transportado por un sistema de elevación por cangilones para su posterior envasado mediante el uso de una tolva de acumulación.
- **5. Envasado-Empaque**.- El empaque que se utiliza son sacos de 1000 kg de capacidad, como se observa en la Figura 15, los cuales son utilizados para el almacenamiento y posterior transporte del producto terminado.

Figura 15. Big Bags Fuente: ANDEC S.A.

6. Tiempo de almacenamiento.- El tiempo máximo que se puede almacenar la cal viva es de dos a tres días, debido a que es un producto que tiene una capacidad muy alta de adquirir humedad. Al momento que el producto gana humedad se ve alterado en su composición y afectando el proceso deseado de fundición.

2.5. Plantas Procesadoras de Cal Viva

Los tipos de plantas para la producción de cal viva se diferencian por el horno que se utiliza en el proceso y pueden ser hornos verticales u hornos rotatorios horizontales.

En el medio local se utiliza hornos verticales para la elaboración de la cal viva ya que en su mayoría es un trabajo artesanal. En la Figura 16 se muestra un tipo de horno vertical. En el horno vertical se tiene problemas por perdida de eficiencia, baja calidad en el producto terminado y realiza un trabajo demorado. En este tipo de horno la piedra caliza permanece en la parte inferior del horno y los gases calientes circulan hacia arriba a través de ella, por esto la piedra caliza debe tener un tamaño grande para proporcionar las cavidades suficientes para que los gases de la combustión suban a través de la misma.

El horno vertical usa piedra caliza con un tamaño usualmente entre $40 < \varphi < 150 \ mm$, el incremento de temperatura en este horno debe ser lento y por tanto el

tiempo de residencia alto (Hassibi, 2009). Los Hornos Verticales son operados a temperaturas entre los 900 °C y 1000 °C La ventaja de este tipo de horno es el bajo consumo de combustible pero con la desventaja de la baja capacidad de producción.

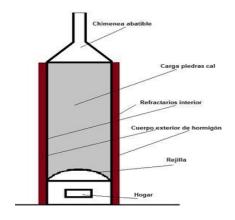


Figura 16. Horno vertical

Fuente: (Emison, 2012)

Los hornos rotatorios horizontales se compone de un cilindro, engranajes, el dispositivo de apoyo, el revestimiento del horno y equipos de la cola de sellado del horno, campana de la cabeza del horno y el dispositivo de la combustión. En la Figura 17 se muestra este tipo de horno. El tamaño de la piedra caliza que se debe tener para el proceso de calcinación en este horno, debe estar entre los $10 < \varphi < 40 \, mm$, este tamaño de materia prima se la obtiene en la etapa de trituración. Mientras el diámetro de la piedra caliza sea más homogéneo, el proceso de calcinación tendrá una mayor eficiencia, pero para lograr esta homogenización se debe llevar a cabo un proceso previo, que es el proceso de trituración.

Figura 17. Horno rotatorio horizontal

Fuente: (Zhengzhou, 2014)

2.5.1. Procesos de Trituración y Cribado

La piedra caliza debe contar con el tamaño indicado para el proceso de calcinación, por tanto debemos realizar un proceso previo llamado trituración, como se puede observar en la Figura 18.

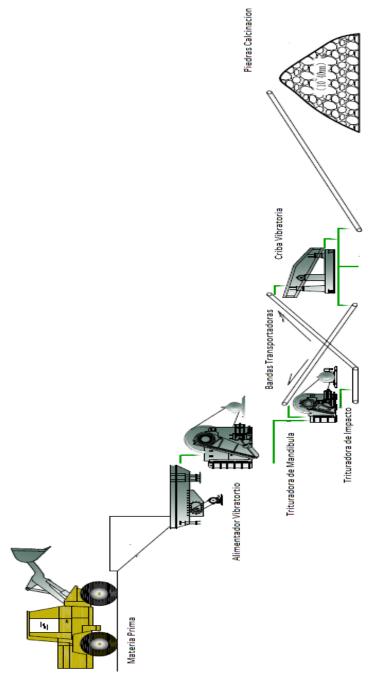


Figura 18. Proceso de trituración

Fuente: (Zhengzhou, 2014)

En el patio de almacenamiento se dispone de piedra caliza entre $0 < \varphi < 90 \,mm$, la cual es trasportada al alimentador vibratorio con una cargadora frontal, el alimentador vibratorio abastece de materia prima a las trituradoras en las cuales el diámetro de la materia disminuye. Después de la trituración, la piedra caliza se divide en tres categorías: $0 < \varphi < 10 \,mm$, $10 < \varphi < 40 \,mm$ y $40 < \varphi < 90 \,mm$.

La piedra caliza de $0 < \varphi < 10 \ mm$ se puede utilizar para la fabricación de cal hidrata o en otros procesos como la elaboración de polvo para extintores. La piedra de $10 < \varphi < 40 \ mm$ ingresa a la etapa de calcinación para obtener cal viva y la materia prima de $40 < \varphi < 90 \ mm$ se la reprocesa para obtener el diámetro requerido para el proceso de calcinación.

2.5.2. Proceso de Calcinación y Transporte

La piedra caliza ya triturada que se encuentra en el silo entra al horno rotatorio a través del alimentador vibratorio y el elevador de cangilones. El material se mueve gradualmente desde la cola hasta la cabeza del horno rotativo y luego se descarga. La piedra caliza se calcina a la temperatura de $1000\,^{\circ}C$ en el horno rotatorio y luego va al enfriador para reducir su temperatura a $70\,^{\circ}C$. La cal se levanta al silo de producto terminado por el elevador de cangilones. El proceso de calcinación de la piedra caliza se muestra en la Figura 19.

El gas de combustión del horno rotatorio se descargará a la atmósfera por la fuerza de succión natural a través de la chimenea después de pasar a través de la cámara de recogida de polvo.

La materia terminada es empacada mediante un sistema de tolva con una válvula proporcional para poder dispensar la cantidad necesaria de cal calcinada, en nuestro proceso será en paquetes de 1 t que es la capacidad de los big bags.

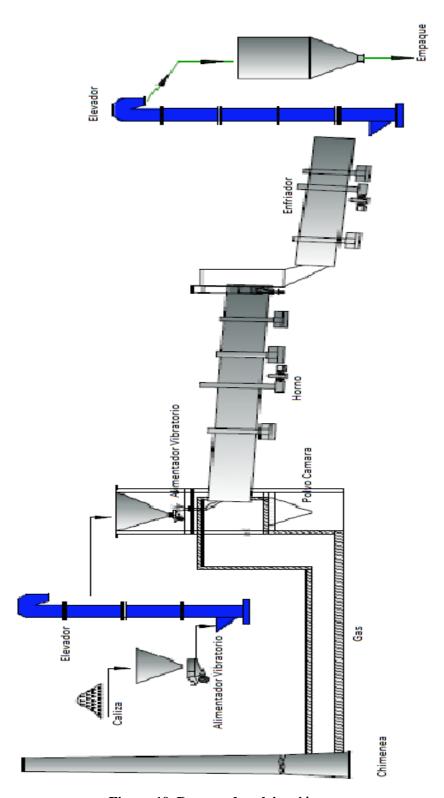


Figura 19. Proceso de calcinación

Fuente: (Zhengzhou, 2014)

2.5.3. Desechos en la Producción de Cal

Los desechos de la calcinación son: piedra de poca granulometría, polvos, dióxido de carbono, aceites usados, entre otros. La piedra de poca granulometría puede ser procesada para la obtención de la cal hidratada, la cual se la realizará mediante la mezcla de la cal viva con agua. El polvo y el dióxido de carbono son emitidos al ambiente en cantidades controladas, puesto que los equipos, en este caso el horno rotatorio es un horno amigable con el medio ambiente, el cual no va a producir un impacto ambiental elevado. Se puede dividir los tipos de desechos de acuerdo a la etapa del mismo como se indica en la Tabla 8.

Tabla 8. Etapas de contaminación por desechos

ETAPA PROBLEMÁTICA	ACOPIO Y PREPARACIÓN DE LA MATERIA PRIMA	CALCINACIÓN	TRITURACIÓN	EMPAQUE		
CONTAMINACIÓN ATMOSFÉRICA	Polvo arcilloso y calizo	Polvo, óxido de carbono, dióxido de carbono, dióxido de azufre, óxido de nitrógeno	Polvo y partículas	Polvo		
RESIDUOS	Polvo, lodos arcillosos, aceites usados	Polvo, partículas de materiales	Aceites usados	Aceites usados		
CONTAMINACIÓN AUDITIVA	Molesta, maquinaria pesada	Molesta, maquinaria pesada	Molesta, maquinaria pesada	Molesta, maquinaria pesada		

2.6. Método de Muther

La correcta distribución de la planta tiene como objetivo que la materia prima, maquinaria, productos terminados, residuos y el personal trabaje con eficiencia para alcanzar una mayor productividad. En la mayoría de los casos la distribución de planta queda definida por los procesos de producción, tomando en cuenta la posible expansión de ésta y que cumpla con los parámetros para su correcto funcionamiento.

El volumen de producción y el tiempo que dura el proceso productivo nos indica la capacidad que debe tener la bodega de materias primas y la de productos terminados. En nuestro caso la materia prima tiene una capacidad muy alta de absorber humedad del medio ambiente, es por ello que se debe optimizar tanto el volumen de materia prima como el volumen de producto terminado. Los objetivos de un correcto *layout* son:

- Disminuir los tiempos de recorrido de materia prima.
- Eliminación de áreas innecesarias.
- Mejorar la supervisión y control.
- Facilidad de ajustes y cambios.
- Optimizar los tiempos de mantenimientos.
- Menor riesgo en la calidad del producto terminado.

Muther plantea el método de Planeación Sistemática de Plantas industriales (*Systematic Planning of Industrial Facilities* SPIF) en el cual a la planta se le trata como cinco subsistemas físicos interrelacionados entre ellos y con el entorno, como se muestra en la Figura 20.

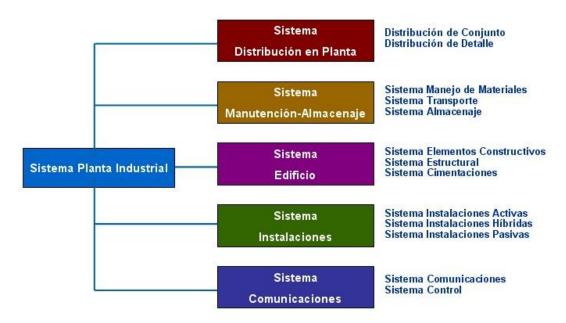


Figura 20. Subsistemas del método de Muther

Fuente: (Ruiz, 2008)

Para obtener una correcta distribución de planta Muther plantea lo siguiente:

- Integración conjunta de todos los factores que afectan a la distribución.
- Movimientos del material según distancias mínimas.
- Circulación del trabajo a través de la planta.
- Utilización efectiva de todo el espacio.
- Satisfacción y seguridad de los trabajadores.
- Flexibilidad en la ordenación que facilite ajustes posteriores.
- Disminuir tiempos de trasporte.
- Establecer la relación de áreas afines a su función o uso.

CAPÍTULO III

3. INGENIERÍA CONCEPTUAL

3.1. Necesidades de Producción

ANDEC S.A. en el año 2014 obtuvo una producción de 200000 t de acero lo que representa un consumo de 8000 t de cal viva al año. En la Figura 21 se puede ver la tendencia en color rojo del crecimiento de cal viva durante el año 2014.

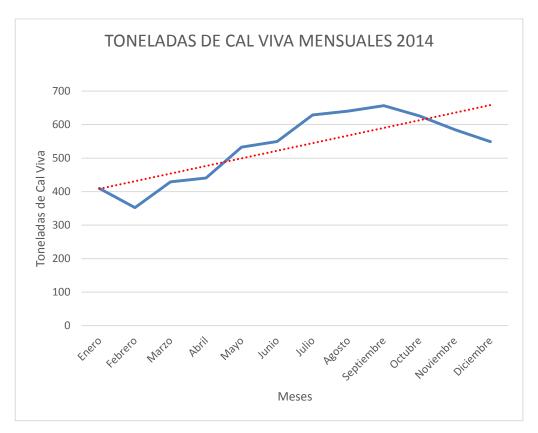


Figura 21. Histórico de consumo de cal en ANDEC S.A. para el año 2014

Fuente: Gerencia de Materia Prima

Para obtener cantidad y calidad necesaria de cal viva para el proceso de fundición de acero se proyecta la implementación de una planta que abastezca en un

33

100% las necesidades de ANDEC S.A. y con una proyección a convertirse en

proveedores locales de este insumo utilizado en distintas industrias.

Para la materia prima se considera el proceso de combustión y pérdidas,

obteniendo así que para la obtención de 56 gr de cal viva se requiere una cantidad de

100 gr de piedra caliza, como se indica en la Ecuación 1, la cual es la reacción

estequiométrica para la obtención de la cal viva.

$$CaCO_3 + q \longrightarrow CO_2 + CaO$$

$${}_{44} \qquad {}_{56} \qquad (1)$$

Donde:

 $CaCO_3$: Piedra caliza

q : Calor

CO₂ : Dióxido de carbono

CaO : Óxido de calcio.

Considerando que se va a satisfacer la necesidad de la planta en su totalidad y

con miras de ampliar las líneas de negocio, se realiza la ingeniería para la

implementación de una planta de cal viva con capacidad de producción de

11400 t/año, lo que equivale a 40 t/día por un periodo de 285 días laborables. Se

utiliza un horno de 50 t de capacidad neta de producción. Para la elaboración de la

cal viva se tienen el proceso de flujo que se muestra en la Figura 22.

3.2. Materia Prima

Las canteras, en la cuales se obtienen la piedra caliza con las características

físico químicas necesarias para el proceso de fabricación de cal viva, bajo los

parámetros necesarios para la fundición de acero en ANDEC S.A., se encuentran en

la comuna de San Antonio, provincia del Guayas. Es por tal motivo que la planta se

encontrará ubicada en la comuna San Antonio, puesto que la piedra caliza es un

material que adquiere humedad de una manera muy rápida, por tanto la cercanía a la cantera nos garantizara la calidad y el abastecimiento de la materia prima.

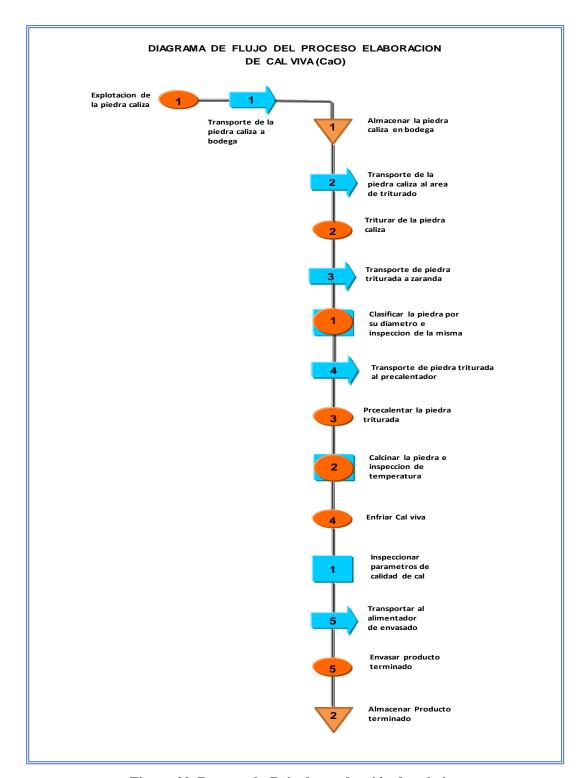


Figura 22. Proceso de flujo de producción de cal viva

Fuente: ANDEC S.A.

3.3. Mercado

Debido a que la elaboración de cal viva es para satisfacer el consumo interno del proceso de fundición de acero en ANDEC S.A., la ubicación de la planta debe encontrarse dentro de la provincia del Guayas en un área catalogada como zona industrial, la zona de San Antonio perteneciente al cantón Playas y cumple con dichas condiciones.

3.4. Mano de Obra

Puesto que la empresa ANDEC S.A. es una empresa socialmente responsable y se pretende montar la planta en un sector denominado comunero, la responsabilidad de la empresa es brindar oportunidades de trabajo a personas de la comuna. Por este motivo la mano de obra operacional será obtenida de personas que vivan en San Antonio, ayudando al desarrollo de la comuna y cumpliendo con los lineamentos empresariales.

3.5. Suministro de Agua Potable y Energía Eléctrica

La localización del terreno en donde se va implementar la planta procesadora de cal viva, cuenta con suministro de agua potable así como también del sistema nacional interconectado de electricidad con línea de media tensión 13,8 kV. Se debe realizar las acometidas internas de la red de agua potable y de energía eléctrica.

3.6. Vías de Comunicación

Se cuenta con la carretera principal Progreso a Playas, que es una carretera de primer orden, la cual nos permite llegar sin complicación al lugar de montaje de la planta. El trasporte de materia prima y de producto terminado no tendrá complicaciones debido a las características de la vía.

3.7. Matriz de Selección de Maquinaria

3.7.1. Matriz de Factores Ponderados

Se realiza una matriz de factores ponderados para seleccionar de manera correcta la maquinaria a ser adquirida para el proceso de fabricación de cal viva. Se evalúa los distintos parámetros, con sus porcentajes de acuerdo al grado de importancia, como se puede observar en la Tabla 9.

Tabla 9. Matriz de factores ponderados

PARÁMETROS DE EVALUACIÓN	1	2	3	4	5	6	7	8	9	Σ	%	% WF
1.Costo de maquinaria		1	1	1	1	1	1	1	2	9	20,45	24
2.Tiempo de construcción y entrega de maquinaria			1	1	1	1	1	1	2	8	18,18	18
3.Disponibilidad de repuestos				$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	1	2	$5\frac{1}{2}$	12,5	12
4.Fiabilidad de la maquinaria			$\frac{1}{2}$		$\frac{1}{2}$	$\frac{1}{2}$	1	1	2	$5\frac{1}{2}$	12,5	12
5. Granulometría requerida			$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}$	1	1	2	$5\frac{1}{2}$	12,5	12
6.Capacidad de incremento de producción			$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		1	1	2	$5\frac{1}{2}$	12,5	12
7.Experiencia en plantas								$\frac{1}{2}$	2	$2\frac{1}{2}$	5,68	5
8.Tiempo de montaje y puesta en marcha							$\frac{1}{2}$		2	$2\frac{1}{2}$	5,68	5
TOTAL										44	100	

3.7.2. Matriz de Selección de Maquinaria

La selección de la maquinaria se rige a la evaluación de los parámetros requeridos para la implementación de una planta, que cumpla con los requerimientos de producción, sea amigable con el medio ambiente y garantice la recuperación de la inversión.

Se da el grado de ponderación según la matriz de factores ponderados como se mostró en la Tabla 9, ya que algunos son de mayor importancia que otros, pero todos los aspectos deben ser analizados a profundidad para que cumplan con los requerimientos de la empresa ANDEC S.A. En la Tabla 10 se muestra la matriz de selección de maquinaria, para la cual se utilizan dos proveedores, los mismos que son constructores de maquinarias.

Tabla 10. Matriz de selección

		PROVI	EDOR CHINO	PROVEEDOR ALEMÁ		
PARÁMETROS DE EVALUACIÓN	% WF	Valor	Ponderación	Valor	Ponderación	
1. Experiencia en plantas	0,05	8	0,40	7	0,35	
2. Disponibilidad de repuestos	0,12	7	0,84	7	0,84	
3. Fiabilidad de la maquinaria	0,12	8	0,96	9	1,08	
4. Tiempo de montaje y puesta en marcha	0,05	9	0,45	8	0,40	
5. Granulometría requerida	0,12	9	1,08	8	0,96	
6. Capacidad de incremento de producción	0,12	10	1,20	9	1,08	
7. Tiempo de construcción y entrega de maquinaria	0,18	9	1,62	8	1,44	
8. Costo de maquinaria	0,24	10	2,40	6	1,44	
TOTAL			8,95		7,59	

3.8. Maquinaria

En razón al análisis realizado para la selección de maquinaria en los ítems anteriores y con la necesidad de satisfacer todas las condiciones por parte de producción se necesita una planta que cumpla con los siguientes parámetros:

- Capacidad de 40 t/día con opción a ampliar su capacidad.
- Que sea amigable con el medio ambiente.
- Que cumpla con las normas ambientales vigentes en el país.
- Que satisfaga los requerimientos del material tanto en calidad como en granulometría requerida para el proceso.
- Menor costo de inversión posible.

Garantía de repuestos y asistencia técnica de la maquinaria.

De acuerdo al proceso de flujo de producción de cal viva de la Figura 22, la maquinaria requerida para el correcto funcionamiento de la planta son las que se detalla en la Tabla 11.

Tabla 11. Maquinaria para la obtención de cal viva

MAQUINARIA
Trituradora de mandíbula
Trituradora de impacto
Criba vibratoria
Alimentador vibratorio
Banda transportadora
Elevador de cangilones
Horno rotatorio
Colector de polvo
Enfriador rotatorio
Máquina de empaque
Fuente: (Zhengzhou, 2014)

Trituradoras.- Sirven para realizar la primera fase del proceso de cal viva, en donde las rocas calizas son molidas o aplastadas hasta la medida adecuada para una correcta calcinación. En la Figura 23 se muestra una pequeña Trituradora de Mandíbula.

Figura 23. Trituradora de mandíbula Fuente: (Zhengzhou, 2014)

Criba Vibratoria.- Actúa en forma de cedazo en donde las piedras que tienen un diámetro diferente al requerido son separadas en esta etapa ya sea para su reproceso o para otros usos. En la Figura 24 se muestra una criba vibratoria.

Figura 24. Criba vibratoria Fuente: (Zhengzhou, 2014)

Elevadores de Cangilones.- Transportan la piedra caliza con el diámetro requerido a la tolva que se encuentra antes del horno de calcinación, como también después de ser calcinado y enfriado para ser trasportado a la tolva que se encuentra para el almacenamiento de la cal viva. En la Figura 25 se observa los elevadores de cangilones.

Figura 25. Elevadores de cangilones Fuente: (Zhengzhou, 2014)

Recolector de Polvos.- Ayuda a recolectar los polvos generados y tratarlos de una forma amigable con el medio ambiente, el recolector de polvos se encuentra en el ingreso de la piedra caliza al horno, estos polvos se puede utilizar en diferentes

aplicaciones como para la elaboración de cal hidratada. En la Figura 26 vemos un sistema de recolección de polvos.

Figura 26. Colector de polvos Fuente: (Zhengzhou, 2014)

Horno.- El horno rotatorio horizontal, es donde se calcina la piedra caliza en temperaturas entre $800^{\circ}C$ a $1000^{\circ}C$, este horno cuenta con material refractario para alargar la vida útil del horno así como la obtención adecuada de la cal viva. En la Figura 27 tenemos un horno rotatorio horizontal.

Figura 27. Horno rotatorio Fuente: (Zhengzhou, 2014)

Enfriador.- A la salida del horno, la cal viva se encuentra alrededor de los $1000^{\circ}C$, por tanto se requiere disminuir la temperatura para que pueda ser transportada a la tolva de acumulación del producto terminado para su empaquetamiento. En la Figura 28 se observa un enfriador rotatorio. La velocidad del enfriador esta relacionada con la velocidad de producción del horno rotatorio.

Figura 28. Enfriador rotatorio Fuente: (Zhengzhou, 2014)

Bandas Transportadoras.- Son utilizadas en el proceso de triturado para transportar la piedra caliza desde la trituradoras a la criba vibratoria. En la Figura 29 se muestra un tipo de banda transportadora.

Figura 29. Bandas transportadoras Fuente: (Zhengzhou, 2014)

Tolvas.- Se utilizan para acumular el material antes de ingresar al horno y en el almacenamiento después del proceso de calcinacion para su empaquetamiento final en los Big Bags. En la Figura 30 se puede observar una tolva de almacenamiento.

Figura 30. Tolvas Fuente: (Zhengzhou, 2014)

En máquinas auxiliares se clasifica a los elementos que no son completamente mecánicos, pero que son necesarios para que el proceso de producción se cumpla, entre las cuales se tiene a los generadores, bombas, valvulas, tuberías.

3.9. Disponibilidad Local

La disponibilidad de los componentes en el mercado local para la implementación de la planta se ve limitados a equipos secundarios tales como: tuberías, cables, bombas secundarias, armarios. Para la maquinaria principal no se cuenta con algún proveedor que pueda brindar la tecnología necesaria para garantizar los parámetros requeridos en el proceso de fundición de ANDEC S.A.

La existencia de proveedores locales da la garantía de la disponibilidad de estos elementos, en la ingeniería de detalle se podrá obtener con exactitud la cantidad y tipo de elementos que se requiere para la implementación de la planta.

Al ser una planta de producción continua se debe garantizar la disponibilidad de repuestos y material, ya que de esta manera reduciremos los tiempos muertos que afectan a la productividad de la empresa.

El mantenimiento de la maquinaria se debe realizar con un personal capacitado que se encuentre en el país, ya que mantener personal extranjero aumenta los costos de manera considerable. La elaboración de un plan de mantenimiento preventivo ayudará a contar con el stock de repuestos necesarios y el buen estado de las máquinas.

3.10. Importaciones

La empresa que suministra la maquinaria principal debe garantizar la disponibilidad de repuestos por el tiempo que cumpla con su vida útil o la pérdida total de su valor.

Al ser repuestos estratégicos y no contar con la disponibilidad local, el realizar la proyección y control de las horas de uso de la maquinaria va a ayudar a tener en stock los repuestos importados necesarios para los mantenimientos.

En las importaciones se debe considerar el tiempo que se demora en llegar los repuestos desde el país de origen hasta la planta de cal viva que como ya se indicó se encontrará en la Comuna de San Antonio.

3.11. Áreas Requeridas

Para el correcto funcionamiento de la planta de producción de cal viva se requiere de distintos espacios físicos, en esta etapa que es la ingeniería conceptual se pone las áreas requeridas tentativamente como se puede observar en la Tabla 12 y se presenta también un *layout* preliminar como se indica en la Figura 31, para luego mediante el método de Muther en la ingeniería básica se pueda realizar de una manera correcta la ubicación de las distintas áreas.

Tabla 12. Áreas tentativas de la planta

MAQUINARIA	ÁREAS REQUERIDAS PLANTA PRODUCCIÓN DE CAL
А	Garita de Seguridad
В	Parqueadero
С	Oficinas de Administración
D	Control Calidad
E	Bodega Materia Prima
F	Bodega Producto Terminado
G	Comedor / Baños
Н	Talleres

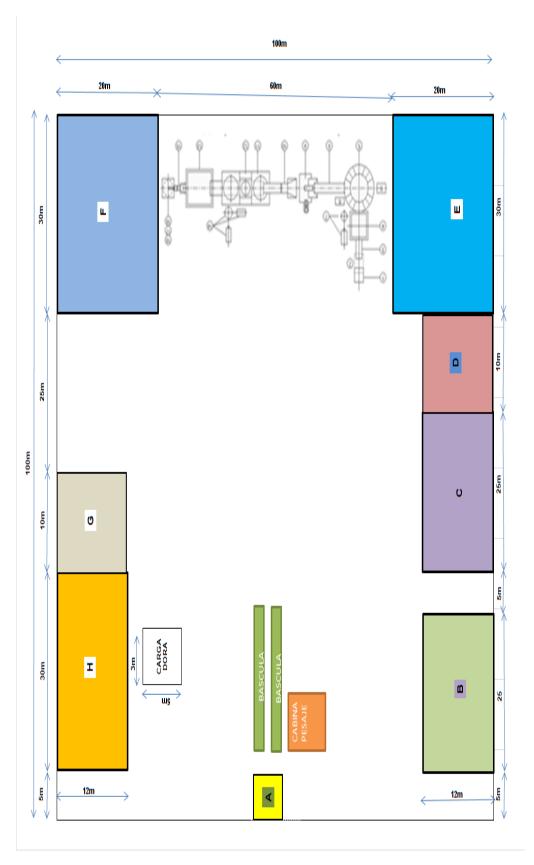


Figura 31. *Layout* proyectado

CAPÍTULO IV

4. INGENIERÍA BÁSICA

4.1. Esquemas de Funcionamiento

A continuación se detalla los dos procesos principales para la elaboración de la cal viva.

4.1.1. Proceso de Trituración

El proceso de trituración empieza con la piedra caliza proveniente de la canteras, con una granulometría aproximada de 500 mm, la cual es depositada mediante una cargadora frontal al alimentador vibratorio, para abastecer de material al proceso de trituración, después de este proceso se obtiene una piedra con una granulometría aproximada de 10 mm y 40 mm, en caso de encontrarse piedras con mayor granulometría se vuelve a procesar la misma.

Mediante las bandas trasportadoras llega la piedra triturada a la criba vibratoria, en la cual se deja en su totalidad las piedras en el tamaño requerido para el proceso de calcinado. Una vez que se obtiene la piedra en el tamaño requerido se traslada a la línea de calcinación que es la segunda etapa del proceso de elaboración de la cal viva. En la Figura 32 se presenta el proceso de flujo de la trituración.

Figura 32. Proceso de flujo de trituración

4.1.2. Proceso de Calcinación

Una vez que se encuentra la piedra caliza con la granulometría entre 10 mm y 40 mm, esta ingresa al alimentador vibratorio, el cual alimenta al elevador de cangilones que va a proveer de materia prima al horno de calcinación.

Después del tiempo de calcinación de la piedra esta es trasferida a un enfriador para reducir la alta temperatura con la cual la piedra ya calcinada sale del proceso. Al encontrarse la piedra a una temperatura de 30 °C a la salida del enfriador, se la traslada mediante elevadores de cangilones al silo, el cual ayuda a almacenar el producto terminado para su posterior empaquetamiento en big bags de una tonelada de capacidad. En la Figura 33 se indica el proceso de flujo de calcinación. El producto ya empacado se traslada a la bodega de producto terminado para su traslado a la planta de fundición ANDEC S.A.

Figura 33. Proceso de flujo de calcinación

4.2. Distribución de la Planta

Muther ayuda a que la distribución de planta sea acorde a la necesidad de la línea de producción, pero la distribución final de cada una de las áreas está a criterio de la persona que se encuentra diseñando la misma. En la Tabla 13 se muestra los puntos de ponderación según Muther.

Utilizando el método de Muther para la distribución de la planta se realiza las diferentes relaciones de cercanía que deben tener las distintas áreas del proceso. En la Figura 34 se puede ver la correlación que existe entre las áreas de la planta de cal viva.

Tabla 13. Ponderaciones del método de Muther

RATIO	DEFINICIÓN
А	Absolutamente importante
E	Especialmente importante
1	Importante
0	Normalmente Proximidad OK
U	Sin Importancia
Х	Indeseable

Fuente: (Ruiz, 2008)

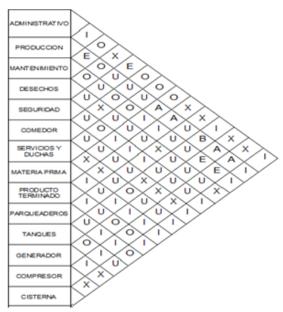


Figura 34. Relación entre las áreas de la planta de cal viva

Para ver el análisis de movimientos se realizó un diagrama de líneas del proceso, usando la ponderación de líneas indicado por Muther. En la Tabla 14 se puede ver dicha ponderación.

Tabla 14. Códigos de líneas del método de Muther

RATIO	CÓDIGOS DE LÍNEA
А	
Е	
1	
0	
U	
Χ	

Fuente: (Ruiz, 2008)

Las áreas que se van a utilizar en la planta de cal viva se indican en la Tabla 15.

Tabla 15. Áreas de la planta de cal viva

ÍTEM	ÁREA
1	Administrativo
2	Producción
3	Taller de mantenimiento
4	Desechos
5	Seguridad
6	Comedor
7	Servicios higiénicos y ducha
8	Materia prima
9	Producto terminado
10	Parqueaderos
11	Recipiente
12	Generador
13	Compresor
14	Cisterna de agua

Por tanto, para la planta de cal viva utilizando como ya se indicó las ponderaciones de Muther se tiene la correlación que se muestra en la Figura 35.

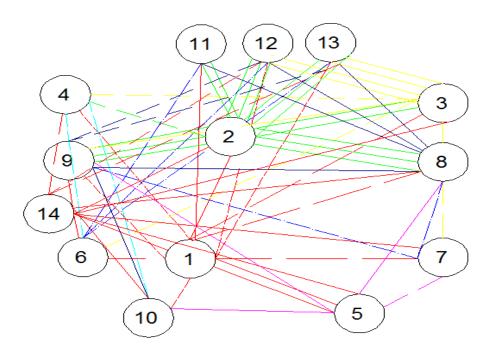


Figura 35. Línea de distribución de la planta de cal viva

Mediante esta distribución de áreas se puede realizar el *layout*, el cual nos determina la distribución de las distintas áreas para un correcto funcionamiento de la planta de producción de cal viva. En la ingeniería de detalle se pondrán los dimensionamientos y los requerimientos de cada una de estas áreas. En la Figura 36 se muestra el *layout* de la distribución de la planta de cal viva.

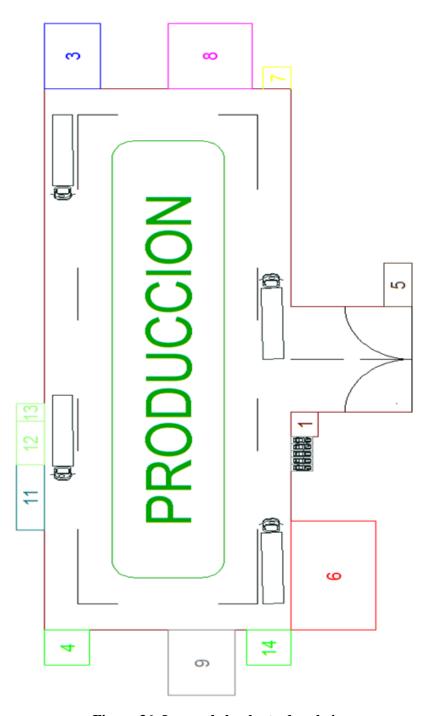


Figura 36. Layout de la planta de cal viva

4.3. Requerimientos de la Maquinaria

Para el correcto funcionamiento de la planta de cal viva se debe garantizar los requerimientos de las distintas maquinarias. Se requiere de tendido eléctrico de 220 v y 440 v, agua potable y aire comprimido. En los equipos que trabajan con energía eléctrica se va a realizar el tendido eléctrico. Se diseñara el tendido de aire comprimido para los trabajos de limpieza, como también el diseño de tuberías para el agua potable. El horno de calcinación opera con diésel y se debe diseñar el recipiente de almacenamiento de diésel, la capacidad del recipiente se debe calcular en función del poder calorífico necesario para la calcinación de la piedra y también de las pérdidas que existen en el proceso.

4.3.1. Cálculo y Diseño del Recipiente de Diésel

Se realiza el diseño de un recipiente de $10000 \ gal$ que es la capacidad máxima de trasporte de los tanqueros de este combustible. Se diseña según la norma ASME, sección VIII división 1, que se refiere al diseño de recipientes a presión. El consumo de combustible para el horno seleccionado es de $2525000 \ kcal/t$, con el poder calorífico del combustible de $10100 \ kcal/kg$ obtenemos la masa de combustible.

$$\dot{m} = m * cp \tag{2}$$

$$m = \frac{2525000 \frac{kcal}{t} * 40 t}{10100 \frac{kcal}{kg}}$$
 (3)

$$m = 10000 kg \tag{4}$$

Donde:

m: Flujo másico

m: Masa

cp: Poder calorífico.

Para obtener el volumen de diésel realizamos el cálculo con la densidad del combustible que es de $832 \, kg/m^3$.

$$d = \frac{m}{V} \tag{5}$$

$$V = \frac{10000 \, kg}{832 \frac{kg}{m^3}} = 12,02 \, m^3 \tag{6}$$

$$V = 12,02m^3 * 1000 \frac{l}{m^3} * \frac{1}{3.79} \frac{gal}{l} = 3171,5 \ gal$$
 (7)

Donde:

d: Densidad del combustible.

V: Volumen del combustible.

Se diseña el recipiente para 10000 *gal* y así garantizar el abastecimiento del combustible por 3 días, para realizar el diseño tomamos las siguientes consideraciones:

- Presión de diseño $Pd = 100 \ psi$.
- Temperatura de diseño $Td = 250 \, {}^{\circ}F$.
- Diámetro Interno del cuerpo ID = 8ft.
- Longitud interna del cuerpo LIC = 27ft.
- Corrosión Admisible CA = 1/8 in.
- Cabezas elípticas 2: 1.
- Radiografiado total E = 1.

Vamos a seleccionar un material 516 - 70 el esfuerzo de este material es de $20000 \, psi$. (Buthod, Paul , 2001). Se utiliza las fórmulas de diámetro interno debido a que ese es el parámetro que tenemos para el diseño. Para el cálculo del espesor del cuerpo utilizamos:

$$tc = \frac{Pd * (Ri + CA)}{Sy560 * E - 0.6Pd} + CA$$
 (8)

$$tc = 0.367 in$$
 (9)

$$tc = 9.32 mm \tag{10}$$

Donde

tc: Espesor del cuerpo

Ri: Radio Interno.

Sy : Esfuerzo.

E: Radiografiado.

Como se requiere de un espesor de pared que se pueda encontrar en el mercado, obtenemos este valor de la Tabla 16, la cual nos indica los espesores comerciales de las planchas con sus respectivas cédulas.

Tabla 16. Espesores comerciales de las planchas de acero

	CONVERSION TABLE — LENGTH INCHES TO MILLIMETERS (1 Inch = 25.4 Millimeters)															
IN.	0	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.0 25.4 50.8 76.2 101.6 127.0 152.4 203.2 228.6 254.0 279.4 330.2 355.6 381.0 406.4 431.8 457.2 482.6 508.0 533.4 584.2 609.6	1.6 27.0 52.4 77.8 103.2 128.6 154.0 179.4 204.8 230.2 255.6 281.0 306.4 331.8 357.2 382.6 408.0 433.4 458.8 458.6 500.6 550.0 550.0 550.0 550.0 550.0	3.2 28.6 54.0 79.4 104.8 130.2 155.6 181.0 206.4 231.8 257.2 282.6 308.0 333.4 358.8 384.2 409.6 435.0 4460.4 85.8 511.2 536.6 562.6 587.4 612.8	4.8 30.2 55.6 81.0 106.4 131.8 157.2 182.6 208.0 208.0 235.0 335.0 360.4 385.8 411.2 436.6 487.4 512.8 538.9 614.4	6.4 31.8 57.2 82.6 108.0 133.4 158.8 184.2 209.6 235.0 260.4 285.8 311.2 336.6 362.0 387.4 412.8 438.2 463.6 489.0 514.4 539.8 590.6 616.0	7.9 33.3 58.7 109.5 134.9 160.3 155.7 211.1 287.3 338.1 363.5 261.9 287.3 338.1 490.5 515.9 541.3 556.7 592.1 617.5	9.5 34.9 60.3 86.3 111.1 136.5 187.3 212.7 238.1 263.5 288.9 339.7 365.1 390.5 441.3 492.1 517.5 542.8 593.7 619.1	11.1 36.5 61.9 87.3 112.7 138.1 163.5 188.9 214.3 239.7 265.1 290.5 341.3 366.7 342.3 493.7 519.1 544.9 468.3 493.7 519.1 545.5 569.9 595.3 620.7	12.7 38.1 63.5 9 114.3 139.7 190.5 215.9 2215.9 242.9 368.3 393.7 444.5 445.3 445.3 520.7 546.1 596.9 622.3	14.3 39.7 65.1 90.5 91.5 91.5 115.9 141.3 1217.5 2242.9 268.3 293.7 344.5 369.9 395.3 496.9 522.3 596.9 577.3 1598.5 623.9	15.9 41.3 66.7 92.1 117.5 142.9 193.7 219.1 144.5 269.9 295.3 3346.1 371.5 523.9 447.7 447.7 447.7 447.7 459.5 523.9 523.9 524.5 523.9 625.5 523.9 625.5 523.9 625.5 523.9 625.5 523.9 625.5 525.9 625	17.5 42.9 68.3 93.7 119.1 144.5 169.9 195.3 220.7 246.1 271.5 296.9 312.3 347.7 373.1 388.5 423.9 449.3 474.7 500.1 525.5 550.9 576.3 601.7	19.1 44.5 69.9 95.3 120.7 146.1 171.5 196.9 222.3 247.7 273.1 298.5 333.9 349.3 374.7 400.1 425.5 450.9 476.3 501.7	20.6 46.0 71.4 96.8 122.2 147.6 173.0 198.4 223.8 2249.2 274.6 300.0 452.4 452.4 452.4 664.8 660.2	22. 2 47. 6 98. 4 123. 8 149. 2 255. 4 250. 8 276. 2 301. 6 454. 0 332. 4 403. 2 428. 6 454. 0 504. 8 500. 6 666. 4 631. 8	23.8 49.2 74.6 100.0 125.4 150.8 176.2 201.6 227.0 252.4 277.8 303.2 354.0 354.0 354.0 354.0 506.4 551.8 557.2 582.6 608.0 633.4

Fuente: (Buthod, Paul, 2001)

Entonces, el espesor comercial tcc que se utiliza para el cuerpo del recipiente es:

$$tcc = \frac{3}{8} in \tag{11}$$

Se debe calcular la máxima presión admisible (*Maximum Allowable Working Pressure* MAWP) que resistirá el cuerpo del recipiente, Se calcula en las dos condiciones: Frio - Nuevo (FN) y Caliente - Corroído (CC).

■ MAWP para Frio – Nuevo (*MAWPcFN*)

$$MAWPcFN = \frac{SyC516 * E * tcc}{Ri + 0,6tcc}$$
 (12)

$$MAWPcFN = 155,5 psi (13)$$

■ MAWP para Caliente y Corroído (*MAWPcCC*)

$$MAWPcCC = \frac{SyC516 * E * (tcc - CA)}{Ri + 0.6(tcc - CA)}$$
(14)

$$MAWPcCC = 103,8 psi (15)$$

En algunas condiciones se debe ejecutar un tratamiento térmico a los materiales después de realizar el conformado. Para determinar esto se debe calcular la elongación de las fibras, si el porcentaje de elongación es mayor al 5% se debe realizar un tratamiento térmico del cuerpo conformado.

$$\% elongación = \frac{50 * tcc}{Ri} * \left(1 - \frac{Ri}{Ro}\right)$$
 (16)

$$\%elongaci\'on = 0.39$$
 (17)

Como se puede observar en la Ecuación 17 el porcentaje de elongación es inferior al 5%, por tanto no requiere de tratamiento térmico. Para el cálculo de las cabezas debemos aproximar los radios de dichas cabezas, los cuales se pueden determinar de la siguiente manera:

$$Lcab = 0.9 * Di = 86.4 in$$
 (18)

$$Rcab = 0.7 * Di = 16.32 in$$
 (19)

Donde:

Lcab: Longitud aproximada de la cabeza.

Rcab: Radio aproximado de la cabeza.

Como se va realizar del mismo material seguimos con el valor de $Sy = 20000 \, psi$, con estos valores se calcula el espesor de la cabeza del recipiente (tcaElip) de la siguiente manera:

$$tcaElip = \frac{Pd * (2 * Ri + 2 * CA)}{2 * Sy * E - 0.2 * Pd} + CA$$
 (20)

$$tcaElip = 0.367 in (21)$$

$$tcaElip = 9,3218 mm (22)$$

Al igual que se realizó en el cuerpo, se procede a encontrar el valor del espesor comercial de la cabeza (*tca*) según como se indicó en la Tabla 16. Obteniendo que el valor del espesor de la cabeza es:

$$tca = \frac{3}{8}in \tag{23}$$

Entonces se calcula el MAWP que resistirá las cabezas del recipiente en las condiciones Frio - Nuevo (FN) y Caliente - Corroído (CC).

■ MAWP para Frio – Nuevo (*MAWPcaFN*)

$$MAWPcaFN = \frac{2 Sy * E * tca}{2 * Ri + 0.2tca}$$
(24)

$$MAWPcaFN = 156,13 psi (25)$$

■ MAWP para Caliente y Corroído (*MAWPcaCC*)

$$MAWPcaCC = \frac{2 Sy * E * (tca - CA)}{2 * Ri + 0.2(tca - CA)}$$
(26)

$$MAWPcaCC = 103,84 psi (27)$$

Al igual que el cuerpo se calcula el porcentaje de elongación de las fibras de la cabeza para confirmar si se requiere de tratamiento térmico.

$$\%elongación = \frac{75 * tca}{Lcab} * \left(1 - \frac{Lcab}{\infty}\right)$$
 (28)

$$\%elongaci\'on = 0,326$$
 (29)

$$\%elongación = \frac{75 * tca}{Rcab} * \left(1 - \frac{Rcab}{Lcab}\right)$$
(30)

$$\%elongación = 1,39$$
 (31)

Como se puede observar en las Ecuaciones 29 y 31 el porcentaje de elongación es inferior al 5%, por tanto no requiere de tratamiento térmico.

Para garantizar el correcto funcionamiento del recipiente se debe realizar las pruebas hidrostáticas (PPH), tanto en la condición de Frio - Nuevo y de Caliente - Corroído, para lo cual se debe determinar la presión que se debe aplicar para las pruebas.

$$PPH(FN) = 1.3 * MAWPcFN \frac{Sprueba}{Sy}$$
 (32)

$$PPH(FN) = 202,18 \text{ psi} \tag{33}$$

$$PPH(CC) = 1,3 * MAWPcCC \frac{Sprueba}{Sy}$$
 (34)

$$PPH(CC) = 135 \, psi \tag{35}$$

Se debe calcular el peso del recipiente para poder determinar los soportes, considerando los pesos del cuerpo, cabeza y del líquido. Por cuestiones de diseño se lo realiza en la condición más crítica asumiendo que el recipiente se encuentra lleno de agua. El valor de los pesos de la cabeza se obtiene de la Tabla 17, los valores se encuentra en lb/ft.

Tabla 17. Peso del cuerpo y la cabeza

78 84 90	314 338 362	311 335 359	836 965 1110	638 737 842	1079 1265 1466 1682 1912	366 394 422	362 391 419	983 1136 1298	745 860 983	1478 1713 1965	
----------------	-------------------	-------------------	--------------------	-------------------	--------------------------------------	-------------------	-------------------	---------------------	-------------------	----------------------	--

Fuente: (Buthod, Paul, 2001)

$$wcuwerpo = 386 * 24 = 9264 lb$$
 (36)

$$wcabeza = 2 * 1260 = 2520 lb$$
 (37)

Para el cálculo del peso del agua en el recipiente se obtiene de la Tabla 18 con el diámetro interno del mismo. Se obtiene los siguientes valores:

$$wH20c = 3138 * 24 = 75312 lb \tag{38}$$

$$wH20ca = 2 * 4184 = 8368 lb \tag{39}$$

Se obtiene el peso total del recipiente sumando los valores de los pesos obtenidos parcialmente:

$$wt = wcuerpo + wcabezas + wH_2Oc + wH_2Oca$$
 (40)

$$wt = 9264 + 2520 + 75312 + 8368 = 95464 \, lb \tag{41}$$

Tabla 18. Peso de la columna de agua

	VOLUME OF SHELLS AND HEADS								
I.D.						2:1 ELLIP. HEAD*			
of Vessel in.	Cu.Ft.	Gal.	вы.	Wt. of Water lb.	Cu.Ft.	Gal.	Вы.	Wt. of Water lb.	
12	0.8	5.9	0.14	49	0.1	0.98	0.02	8.17	
14	1.1	8.0	0.19	67	0.2	1.55	0.04	12.98	
16	1.4	10.4	0.25	87	0.3	2.32	0.06	19.37	
18	1.8	13.2	0.31	110	0.4	3.30	0.08	27.58	
20	2.2	16.3	0.39	136	0.6	4.53	0.11	37.83	
22	2.6	19.7	0.47	165	0.8	6.03	0.14	50.35	
24	3.1	23.5	0.56	196	1.0	7.83	0.19	65.37	
26	3.7	27.6	0.66	230	1.3	9.96	0.24	83.11	
28	4.3	32.0	0.76	267	1.7	12.44	0.30	103.8	
30	4.9	36.7	0.87	306	2.0	15.30	0.36	127.7	
32	5.6	41.8	0.99	349	2.5	18.57	0.44	155.0	
34	6.3	47.2	1.12	394	3.0	22.27	0.53	185.9	
36	7.1	52.9	1.26	441	3.5	26.47	0.63	220.1	
38	7.9	58.9	1.40	492	4.2	31.09	0.74	259.5	
40	8.7	65.3	1.55	545	4.8	36.27	0.86	302.6	
42	9.6	72.0	1.71	601	5.6	41.98	1.00	350.4	
48	12.6	94.0	2.24	784	8.4	62.67	1.49	523.0	
54	15.9	119.0	2.83	- 993	11.9	89.23	2.12	744.6	
60	19.6	146.9	3.50	1226	16.3	122.4	2.91	1021	
66	23.8	177.7	4.23	1483	21.8	162.9	3.88	1360	
72	28.3	211.5	5.04	1765	28.3	211.5	5.04	1765	
78	33.2	248.2	5.91	2071	35.9	268.9	6.40	2244	
84	38.5	287.9	6.85	2402	44.9	335.9	8.00	2802	
90 96	44.2	330.5	7.87	2758	55.2	413.1	9.84	3447	
	50.3	376.0	8.95	3138	67.0	501.3	11.94	4184	
102	56.7	424.4	10.11	3542	80.3	601.4	14.32	5018	
114	63.6 70.9	475.9	11.33	3971	95.4	713.8	17.00	5957	
120		530.2	12.62	4425	112.2	839.5	20.00	7006	
126	78.5 86.6	587.5	13.99	4903	130.9	979.2	23.31	8171	
132	95.0	647.7	15.42	5405	151.5	1134	27.00	9459	
138	103.9	710.9	16.93	5932	174.2	1303	31.03	10876	
144	113.1	846.0	18.50 20.14	6484 7060	190.1 226.2	1489 1692	35.46 40.29	12428 14120	
				e straight f				.4120	

Fuente: (Buthod, Paul, 2001)

La selección de las orejas de Izaje se realiza con el peso del recipiente, ya que estas orejas sirven para el transporte del recipiente, se utiliza la Tabla 19 para la selección de las orejas. De acuerdo al peso que tenemos del recipiente que es de 95464 *lbs*, se tiene los siguientes parámetros:

$$D = 2 \frac{1}{2} in$$
 (42)

$$T = 1 \frac{1}{2} in \tag{43}$$

$$R = 4 \frac{1}{2} in$$
 (44)

$$H = 9 in (45)$$

$$L = 16 in (46)$$

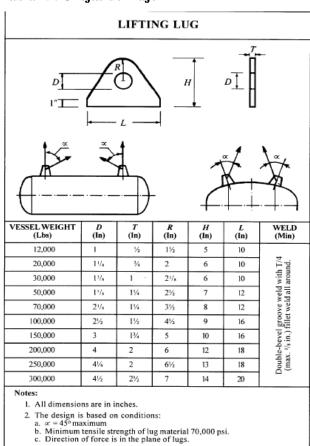


Tabla 19. Orejas de Izaje

- Use wear plate if necessary to eliminate buckling due to normal or sudden loading.

Fuente: (Buthod, Paul, 2001)

Para las inspecciones, abastecimiento y transporte del fluido se debe diseñar las distintas aberturas. Las inspecciones y trabajos de limpieza se diseñaran por dos Manhole con un diámetro de 20 in (np20), una en el cuerpo y la otra en la cabeza. Se tienen que calcular el espesor de la tubería que se va a utilizar de la siguiente manera:

$$tnp20 = \frac{Pd*D}{2*(Sytb*E+Pd*Y)} + CA \tag{47}$$

Donde Y es el coeficiente de temperatura y viene dado por la Tabla 20.

Tabla 20. Coeficientes de temperatura

VALORES DEL COEFICIENTE Y PARA t<D/6

		TEMPERATURA °C (°F)							
MATERIALES	< 482 (900 Y MENORES)	510 (950)	538 (1000)	566 (1050)	593 (1100)	>621 (1150 Y SUPERIORES)			
Aceros ferríticos	0,4	0,5	0,7	0,7	0,7	0,7			
Aceros Austeníticos	0,4	0,4	0,4	0,4	0,5	0,7			
Otros Metales									
Dúctiles	0,4	0,4	0,4	0,4	0,4	0,4			
Hierro Fundido	0,0								

Fuente: (Buthod, Paul, 2001)

Las ecuaciones que se van a emplear son utilizadas para aberturas donde el espesor es menor al valor del diámetro divido para seis.

$$tnp20 < \frac{D}{6} \tag{48}$$

$$tnp20 = \frac{100*20}{2*(17100*1+100*0,4)} + 0,125 \tag{49}$$

$$tnp20 = 0.183 in$$
 (50)

Con la Tabla 21 de las propiedades de la tubería obtenemos el espesor y la cédula de la misma.

Tabla 21. Espesor y cédula de la misma

	PROPERTIES OF PIPE (con't.)										
Nom- inal pipe size	Sched Carbon & alloy steels		Weight designa- tion	Outside diam- in.	Inside diam. in.	Wall thick- ness in.	Weight per foot lb.	water	Outside surface per ft. sq. ft.	Inside surface per ft. sq. ft.	Trans- verse area sq. in.
20	10 20 30 40 80 100 120 140		Std. X-Stg.	20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000	19.500 19.374 19.250 19.124 19.000 18.875 18.814 18.750 18.376 18.250 18.188 17.938 17.438 17.000 16.501 16.313	.250 .313 .375 .438 .500 .562 .593 .625 .812 .875 .906 1.031 1.281 1.500 1.750 1.844	53 66 79 92 105 117 123 129 167 179 185 909 256 297 342 357 379	130.0 128.1 126.0 125.1 122.8 121.1 120.4 119.5 114.9 113.2 112.7 109.4 103.4 98.3 92.6 90.5 87.9	5.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94	5.11 5.08 5.04 5.01 4.97 4.94 4.93 4.91 4.81 4.78 4.76 4.80 4.56 4.45 4.32 4.21	299.0 295.0 291.1 288.0 283.5 279.8 276.1 265.2 261.6 259.8 252.7 238.8 227.0 213.8 209.0 202.7

Fuente: (Buthod, Paul, 2001)

De la Tabla 21 se obtiene:

$$tnp20c = 0.250 in$$
 (51)

$$cednp20 = 10 (52)$$

Se realiza el cálculo de la presión admisible para esta abertura.

$$MAWPnp20fn = \frac{2 * (Sytb * E * tnp20c)}{D - 0.4 * tnp20c} = 431,82psi$$
 (53)

$$MAWPnp20cc = \frac{2 * (Sytb * E * (tnp20c - ca))}{D - 0.4 * (tnp20c - ca)} = 214,83psi$$
 (54)

Con el uso de las tablas se realizaron los cálculos para las distintas aberturas de 34, 3, 6, 16. En el ANEXO A se encuentra los planos del Reciente de Diésel.

4.3.2. Selección del Transformador

Para la selección del transformador tenemos que obtener los *kVA* (Kilovoltio Amperio).

$$kVA = \frac{kW}{FP} \tag{55}$$

Donde

kW: Kilovatios de la máquina

FP: Factor de potencia

Mediante la utilización de esta fórmula debemos calcular los *kVA* que debe tener nuestro transformador para satisfacer las necesidades de la planta, como se observa en la Tabla 22.

Tabla 22. Calculo de kVA

CANTIDADES	DESCRIPCIÓN	FP	kW	v	kVA
1	Trituradora de mandíbula	0,7	90	440	129
1	Trituradora de impacto	0,7	132	440	189
1	Criba vibratorio	0,6	15	440	25
1	Alimentador vibratorio	0,7	22	440	32
2	Alimentador vibratorio	0,7	0,4	240	1
4	Banda transportador	0,6	7,5	440	50
1	Elevador	0,7	5,5	440	8
1	Elevador	0,7	7,5	440	11
1	Horno rotatorio	0,75	37	440	50
1	Enfriador rotatorio	0,75	7,5	440	10
1	Máquina de empaque	0,7	5,5	440	8
30	Luminarias vía	0,9	0,25	240	9
12	Luces talleres	0,9	0,4	240	6
18	Luminarias MP y PT	0,9	0,4	220	8
20	Luces oficinas	0,9	0,1	220	2
2	Aparatos eléctricos	0,9	5	220	12
			TOTAI	DE <i>kVA</i>	550

Se requiere un transformador de 13,8 kv A 440 kv con una capacidad de 550 kVA para que pueda satisfacer la demanda de la planta. Puede existir un aumento en el consumo energético ya que se puede instalar nuevas maquinarias o nuevas líneas para optimizar la producción, por ello se debe sobredimensionar el transformador para que pueda cumplir con la demanda que puede ser requerida. Se selecciona un trasformador con las características que se indica en la Tabla 23.

Tabla 23. Características del transformador

DESCRIPCIÓN	
Potencia	600 kVA
Voltaje primario	13800 v
Voltaje secundario	440/254 v
Grupo de conexión	DYn5
Cambiador de derivaciones taps	(+1-3x2.5%)
Frecuencia	60 Hz
Bil	95/30 <i>k</i> v
Norma de fabricación:	INEN 2115: Revisión 2004

Para que no se tenga que pagar penalidad por el factor de potencia (FP) que se maneja en la planta, se debe calcular la corrección del factor de potencia. En las regulaciones actuales un valor menor a 0,92 es penalizado, es por ello que se debe tener un banco de capacitores que corrija el FP, tomando como referencia el factor promedio de la información de la maquinaria. Se va a utilizar un banco de capacitores para poder compensar el factor de potencia, la compensación en grupo es la que se manejara con un solo interruptor, el uso de las maquinarias que demanda mayor energía se va a utilizar de manera simultánea, bajo estas condiciones es preferible utilizar una compensación en grupo.

4.4. Estudio de la Red Eléctrica

La red de energía eléctrica que se requiere para el correcto funcionamiento de las maquinarias son de 440 v y de 220 v con una frecuencia convencional de 60 Hz. La red pública que suministra la energía eléctrica posee un voltaje de 13,8 kv es por ello que se requiere un transformador que realice la conversión de este voltaje al voltaje que vamos a utilizar. La selección del transformador se ve ligada a los kVA que se requiere para satisfacer las necesidades de la planta, con miras de una posible expansión de la misma, por tanto se debe sobre dimensionar la capacidad del mismo, como se detalla en la Tabla 24. El diagrama unifilar de la red eléctrica se encuentra en ANEXO B.

Tabla 24. Capacidades del transformador

Capacidad de diseño	550 <i>kVA</i>
Capacidad convencional	600 <i>kVA</i>
Capacidad real	510 <i>kVA</i>

Para el cálculo de la intensidad de corriente se utiliza la fórmula de la potencia la cual nos indica lo siguiente:

$$I = \frac{W}{\vartheta} \tag{56}$$

Dónde:

I : Intensidad de corriente en Amprs.

W : Potencia en Watts.

 ϑ : Voltaje en Volts.

Se realiza este cálculo para las distintas maquinarias y líneas de energía trazadas en el diagrama unifilar eléctrico para poder obtener el calibre del cable, como ejemplo podemos utilizar la trituradora de mandíbula obteniendo.

$$I = \frac{90000 \, W}{440 \, \text{v}} \tag{57}$$

$$I = 204,545 A \tag{58}$$

El valor obtenido se le multiplica por el factor de seguridad del 20% obteniendo 245,455 A. La selección de los calibres de los conductores eléctricos se lo realiza en base a la Tabla 25, dependiendo de la cantidad de corriente que va a circular por cada uno de estos conductores con su respectivo factor de seguridad.

Tabla 25. Calibre de Cables según Amperaje

		FORMACION			Sem	iduro	Suave	(*)
Calibre	Sección	No. de Hilos	DIAMETRO	PESO	TENSION DE	RESISTENCIA	RESISTENCIA	CAPACIDAD
AW G ó	mm2	por diámetro	EXTERIOR	TOTAL	RUPTURA	C.C. a 20 °C	C.C. a 20 °C	Corriente
MCM		en mm.	Mm	Kg/Km	Kg.	OHMS/Km.	OHMS/Km.	Amp.
14	2.08	1 x 1,63	1.63	18,50	76.00	8.490	8.280	35
12	3.31	1 x 2,05	2.05	29,40	119.00	5.330	5.210	45
10	5.26	1 x 2,59	2.59	46.77	187.00	3.360	3.280	68
8	8.37	1 x 3,26	3.26	74.38	292.00	2.110	2.060	92
6	13.30	1 x 4,12	4.12	118.20	461.00	1.340	1.297	125
14	2.08	7 x 0,62	1.86	18.89	69.00	8,603	8,390	35
12	3.31	7 x 0,78	2.34	30.57	110.00	5.412	5.290	45
10	5.26	7 x 0,98	2.94	47.76	175.00	3.401	3.320	68
8	8.37	7 x 1,23	3.69	75.90	276.00	2,151	2.100	95
6	13,30	7 x 1,55	4.65	121.00	432.00	1,354	1,322	129
4	21.15	7 x 1,96	5.88	192.00	682.00	0.851	0.832	170
2	33.62	7 x 2,47	7.41	305.00	1069.00	0.536	0.519	230
1 1	42.36	7 x 2,78	8.34	385.00	1330.00	0.428	0.412	275
1/0	53.49	7 x 3,12	9.36	485.00	1681.00	0.337	0.329	310
2/0	67.43	7 x 3,50	10.50	611.00	2103.00	0.267	0.261	360
1/0	53.49	19 x 1.89	9.45	481.00	1722.00	0.337	0.329	319
2/0	67.43	19 x 1,69	10.60	610.00	2149.00	0.337	0.329	371
3/0	85.01	19 x 2,12	11.95	711.00	2715.00	0.267	0.207	427
4/0	107.20	19 x 2,39	13.40	972.00	3395.00	0.168	0.207	500
4/0	107.20	17 X 2,00	13.40	7/2.00	3373.00	0.100	0.164	300
250	127.00	37 x 2,09	14.63	1150.00	4067.00	0.1420	0.1390	540
300	152.00	37 x 2,29	16.03	1380.00	4883.00	0.1180	0.1160	605
350	177.00	37 x 2,47	17.29	1610.00	5648.00	0.1020	0.0991	670
400	203.00	37 x 2,64	18.48	1840.00	6416.00	0.0887	0.0868	730
500	253.00	37 x 2,95	20.65	2300.00	7944.00	0.0712	0.0694	840
600	304.00	37 x 3,23	22.61	2760.00	9553.00	0.0592	0.0578	945
650	329.00	37 x 3,37	23.59	2990.00	10340.00	0.0563	0.0530	985
700	355.00	37 x 3,49	24.43	3220.00	11155.00	0.0501	0.0496	1040
			L				L	

Fuente: (DISENSA, 2013)

El mismo cálculo efectuado para la trituradora se realizará para el resto de maquinaria y acometidas. En el diagrama unifilar eléctrico se indica los distintos tipos de calibres utilizados, la maquinaria cuenta con su calibre sugerido por el fabricante. En la Tabla 26 se observa los calibres utilizados para garantizar el abastecimiento de energía sin generar calentamiento en los mismos.

Tabla 26. Calibres usados

EQUIPOS	kW	v	AMPERAJE NOMINAL	AMPERAJE REAL	CALIBRE
Alimentador vibratorio 1	22	440	50	62,5	10
Trituradora de mandíbula	90	440	204,55	255,68	1
Trituradora de impacto	132	440	300	375	3/0
Banda transportador	7,5	440	17,05	21,31	14
Criba vibratorio	15	440	34,09	42,61	12
Alimentador vibratorio	0,4	240	1,67	2,08	14
Elevador1	5,5	440	12,5	15,63	14
Horno Rotatorio	37	440	84,09	105,11	6
Enfriador rotatorio	7,5	440	17,05	21,31	14
Elevador2	7,5	440	17,05	21,31	14
Máquina de empaque	5,5	440	12,5	15,63	14
Luminarias Vía	0,25	240	1,04	1,3	14
Luces Talleres	0,4	240	1,67	2,08	14
Luminarias MP y PT	0,4	220	1,82	2,27	14
Luces Oficinas	0,1	220	0,45	0,57	14

4.5. Dimensionamiento Obra Civil

El REGLAMENTO DE SEGURIDAD Y SALUD DE LOS TRABAJADORES Y MEJORAMIENTO DEL MEDIO AMBIENTE DE TRABAJO indica que los lugares de trabajo deben contar por lo menos de 2 metros cuadrados de espacio por trabajador y un volumen de 6 metros cúbicos por cada uno de ellos, se debe restar el área ocupada por maquinarias, equipos de oficina, aparatos y materiales.

Los pasillos de los mismos no podrán ser menores a 80 cm contando desde el punto más saliente del recorrido de las partes móviles de las maquinarias. Los techos

y tumbados deberán reunir las condiciones suficientes de altura, iluminación, ventilación, temperatura, para resguardar a los trabajadores de las inclemencias del tiempo.

Para los galpones de almacenamiento de materia prima y de producto terminado se realiza el cálculo para el aprovisionamiento de 5 días de producto, para poder obtener las dimensiones se calcula el volumen que se va a requerir. Se sabe que en el proceso con 1 t de piedra caliza se obtiene 560 kg de óxido de calcio, para obtener la capacidad de 40 t diarias de óxido de calcio se requiere:

$$Kg\ piedra\ caliza\ proceso = \frac{40000kgCaO*1000kgpiedra\ caliza}{560kgCaO} \tag{59}$$

$$Kg \ piedra \ caliza \ proceso = 71428,57 \ kg \ piedra \ caliza$$
 (60)

Se requiere de 64,285 t de piedra caliza para obtener la producción deseada y satisfacer el proceso de producción de ANDEC S.A., como se desea tener un abastecimiento para 5 días de producción, el galpón debe tener una capacidad de 325 t. Para obtener el volumen del galpón de materia prima que se requiere usamos la densidad de la piedra caliza.

$$V = \frac{m}{d} \tag{61}$$

$$V = \frac{71428,57 \, kg}{2520 \, kg/m^3} \times 5 = 141,723m^3 \tag{62}$$

Para la cal viva se realiza el mismo cálculo pero con la densidad de $3350 \, kg/m^3$.

$$V = \frac{40000kg}{3350 \, kg/m^3} \times 5 = 59,70m^3 \tag{63}$$

Tomando en cuenta la normativa vigente antes mencionada, los espacios requeridos para el almacenamiento de la materia prima y producto terminado, se tiene las siguientes dimensiones de la obra civil, tal como se indica en la Tabla 27.

Tabla 27. Dimensionamiento de obra civil

ÁREA	LARGO	ANCHO	ALTURA	ÁREA
AREA	[m]	[m]	[m]	[m²]
Administrativo	6	5	3	30
Mantenimiento	15	10	3	150
Desechos	8	8	3	64
Seguridad	10	5	3	50
Comedor	10	15	3	150
Servicios higiénicos y duchas	5	5	3	25
Materia prima	18	18	6	324
Producto terminado	15	12	6	180
Parqueadero	10	3		30
Recipiente	15	5		75
Generador	10	5	5	50
Compresor	4	5	3	20
Producción	100	20		2000
Cisterna	8	8		64

En el ANEXO C se encuentra los planos del dimensionamiento de la obra civil.

4.6. Definición y Especificación de Equipos

4.6.1. Maquinaria de Trituración

Alimentador Vibratorio 1.- Es una estructura metálica vibratoria, está compuesto por dos ejes excéntricos fijos junto con una caja de engranes, es impulsado por un motor a distintas frecuencias dependiendo de la cantidad de piedra caliza que se debe abastecer. Realiza la alimentación a la trituradora de impacto. Se debe alimentar de una piedra no mayor a 500mm, como se puede observar en la Figura 37. Se debe garantizar el abastecimiento en el alimentador de 3,5 t de materia prima por hora para obtener la tasa de producción deseada.

Figura 37. Alimentador vibratorio

Trituradora de Mandíbula.- Su estructura está compuesta de armazón, eje excéntrico, polea, volante, mandíbulas. El movimiento es generado por un motor eléctrico el cual realiza que la mandíbula móvil se mueva y realice la trituración de la piedra. El material es de estas mandíbulas es de acero realizado tratamientos térmicos para aumentar su resistencia y disminuir el desgaste de los componentes de la máquina. Es la primera etapa del triturado de la materia prima con un ingreso de piedra con una a 100 mm, para poder ser enviada a la trituradora de impacto. Como se puede observar en la Figura 38.

Figura 38. Trituradora de mandíbula

Trituradora de Impacto.- El principio de estas trituradoras, como indica el nombre, es el impacto. Consta de boca de alimentación, rotor, martillos de impacto. La inercia del rotor ayuda a realizar el trabajo de una manera más eficiente. En esta etapa de la trituración la materia prima ingresa con una granulometría entre 40 y 100 mm, tal como se puede observar en la Figura 39. La piedra caliza sale con una granulometría entre 10 y 40 mm que es la requerida para el proceso de calcinación. El abastecimiento de la materia prima es de 3,5 toneladas de piedra triturada por hora.

Figura 39. Trituradora de impacto

Bandas trasportadoras.- Cumple el proceso de alimentación continua y está conformada por la cinta trasportadora entre dos tambores. La energía necesaria para el movimiento, es suministrada por un motor eléctrico de 7,5 kW. Las bandas trasportadoras son utilizadas para el trasporte de la piedra triturada, después de la trituradora de impacto, luego es enviada a la criba vibratoria. También es usada durante el envió de la piedra caliza con granulometría mayor a 40 mm para que sea reprocesada.

Criba Vibratoria.- Es la última etapa de la trituración, se compone de varias capas con el tamiz deseado, en nuestro caso entre 10 *y* 40*mm*. Las piedras de mayor granulometría son trasportadas para su reproceso en la trituradora de impacto y las de granulometría menor a 10 *mm* se almacenan o son vendidas en un subproceso. En la Figura 40 se detalla la criba vibratoria.

Figura 40. Criba vibratoria

4.6.2. Maquinaria Calcinación

Elevadores de Cangilones 1.- El trasporte de la piedra caliza para el proceso de calcinación requiere del elevador de cangilones. Una cadena o una banda trasmiten la potencia generada por el motor para el movimiento de los mimos. En el proceso de producción de cal calcinada el primer elevador es utilizado para el trasporte de la piedra triturada al horno de calcinación.

Horno Rotatorio.- Es la parte principal del proceso de la calcinación de la piedra caliza para obtener la cal viva. La temperatura de operación del horno es entre 900 a $1000 \, ^{\circ}C$, la capacidad de operación del horno es de $2 \, t/hora$. La piedra caliza calcinada es conocida como cal viva en el proceso de fundición del acero.

Enfriador Rotatorio.- Para poder ser trasportada la piedra ya calcinada al silo de empaquetamiento debe disminuir su temperatura, es por ello que después de estar en la etapa de calcinación a una temperatura de 1000 °C se debe reducir la temperatura en el enfriador rotatorio a una temperatura de 30 °C para poder ser transportada.

Elevadores de Cangilones 2.- Trasporta la cal viva de la salida del enfriador al silo de almacenamiento, el cual va almacenando el producto terminado para su posterior empaquetamiento.

Empacadora.- El empaquetamiento del producto terminado se realiza en big bags de 1t de capacidad, es una máquina controlada mediante una válvula proporcional, que permite el llenado del producto terminado. La capacidad de empaquetamiento es 2t/h que es la capacidad de producción del horno.

4.6.3. Equipos Auxiliares

Transformador.- El trasformador requerido es de 13,8 kV a 440 v, con una capacidad de 600 kVA. En este valor se considera el respectivo sobredimensionamiento para que cumpla con todos los requerimientos de las máquinas y futura ampliación de la planta.

Compresor.- El compresor satisface las necesidades de limpieza y mantenimiento de la maquinaria. Se va a utilizar un compresor de simple efecto refrigerado por aletas propias puestas en su carcasa. Como no se requiere de aire comprimo en el proceso de calcinación, sólo es utilizado para operaciones de mantenimiento y limpieza.

Bomba de Combustible.- La bomba de combustible es la encargada de dar la presión necesaria para el abastecimiento de diésel en horno de calcinación. El trasporte de combustible será desde el recipiente de almacenamiento al horno en la parte de producción.

CAPÍTULO V

5. INGENIERÍA DE DETALLE

5.1. Especificaciones Técnicas de Equipos y Materiales

Se debe tener las especificaciones técnicas para el proceso de elaboración de cal viva. En la Figura 41 se puede observar los elementos que conforman el proceso de producción de la cal viva.

Figura 41. Proceso de producción de la cal viva

5.1.1. Proceso de Trituración

Las características técnicas de los equipos que conforman la trituración se muestra en la Figura 42.

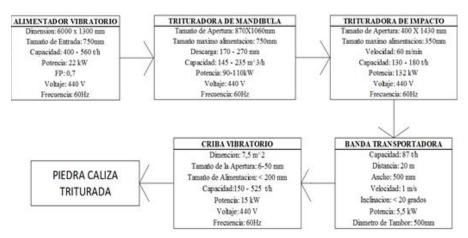


Figura 42. Características técnicas de los equipos de trituración

5.1.2. Proceso de Calcinación

Las características técnicas de los equipos que conforman el proceso de calcinación se muestra en la Figura 43.

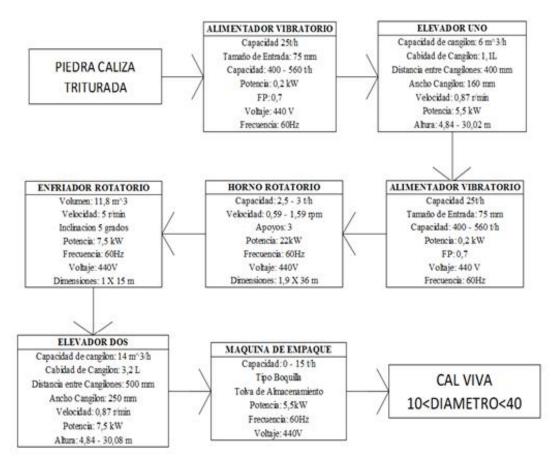


Figura 43. Características técnicas de los equipos de calcinación

5.1.3. Materia Prima

La materia prima que es la piedra caliza debe tener las siguientes propiedades:

- Granulometría: no mayor a 50 *mm*.
- Ca mayor al 95%.

5.1.4. Transporte

Para el trasporte de la materia prima y del producto terminado se requiere de:

Cargadora Frontal.- Debe cumplir con el abastecimiento de materia prima al alimentador vibratorio, en el proceso de trituración. En el mercado se cuenta con cucharones de $2,3 m^3$ de capacidad.

$$m = V * d \tag{64}$$

$$m = 2.3m^3 * 2520 \, kg/m^3 \tag{65}$$

$$m = 5796 \, kg \tag{66}$$

Se debe realizar 12 abastecimientos con este cucharon por hora.

Montacargas.- Se requiere de un montacargas de una capacidad mínima de 1,5 t, que es el que transporta el producto terminado, el mismo que se encuentra empacado en contenedores de una capacidad de 1 t. Para poder tener un factor de seguridad de 1,5 se requiere de un montacargas con la mencionada capacidad.

En el mercado se cuenta con montacargas de distintas capacidades y de distintas formas de funcionalidad; estos pueden ser eléctricos o de combustible. Se recomienda el uso de los montacargas eléctricos cuando se desea trabajar en espacios cubiertos puesto que estos emiten gases como el dióxido de carbono.

5.2. Especificaciones Funcionales

Trituradoras.- Entregar la piedra caliza con una granulometría comprendida entre 10 y 40 mm para poder ser procesadas en el horno de calcinación y cumpliendo de este modo con los requerimientos de la maquinaria utilizada en los procesos principales de ANDEC S.A.

Los inputs y outputs de la maquinaria es de 200 t/h, con lo que se logra satisfacer la demanda de la planta por 3 días con una hora de trabajo de las mismas. Las trituradoras deben operar en una tensión de 440 v a una frecuencia de 60 Hz, puesto que este es el valor convencional en el Ecuador.

Criba Vibratoria.- Es la parte final de la parte de la trituración, es la encargada de realizar el último tamizado de la piedra para obtener la granulometría requerida antes de la calcinación. La maquinaria requiere de instalación de 440 v, con una frecuencia de 60 Hz.

El funcionamiento de la maquinaria es mediante desplazamiento del eje que se encuentra conectado al motor mediante las poleas y realiza un movimiento vibratorio, obteniendo de este modo una piedra caliza con la granulometría deseada para el proceso.

Bandas Transportadoras.- Son las encargadas de trasportar la materia prima en el proceso de trituración, son las que llevan la piedra caliza triturada al patio de almacenamiento de las mismas. Las piedras calizas que salen de las trituradoras es llevada a través de la banda a la criba vibratoria, estas bandas funcionan a 440 v con una frecuencia de 60 Hz.

Las piedras calizas con granulometría menor a 10 mm son separadas y almacenadas. Las que se encuentran entre 10 y 40 mm son enviadas al horno de calcinación.

5.3. Equipos de Apoyo

Los equipos de apoyo permiten el desarrollo normal del proceso; para el caso de la planta procesadora de cal viva son los que se encuentran en los siguientes sistemas:

- Red de Aire Comprimido.
- Alimentación de Combustible.
- Red de Agua Potable.

5.3.1. Red de Aire Comprimido

La red de aire comprimido va a ser utilizada en las diferentes áreas del proceso para operaciones de limpieza y mantenimiento, ya que en el proceso de producción no se utiliza el aire comprimido.

Para el dimensionamiento de la red, se debe tomar en cuenta los diferentes accesorios que se va a utilizar, para poder obtener la longitud equivalente de estos accesorios, se utiliza la Tabla 28.

Tabla 28. Longitud equivalente de accesorios

ACCESORIOS DE TUBERÍAS	DIÁMETRO DE LA TUBERÍA					
	1"	1,5"	2"			
Válvula de diagrama	1,5	2	3			
Válvula de compuerta	0,3	0,5	0,7			
Curva de 90	0,3	0,5	0,6			
Curva de 45	0,15	0,25	0,3			
Codos redondos	1,5	2,5	3,5			
Codos con enlace	1	2	2,5			
Tés	2	3	4			
Manguitos de reducción	0,5	0,7	1			

Fuente: (Royo, 1994)

Para satisfacer la demanda de los diferentes puntos de la planta se requiere de los siguientes accesorios, los cuales ya se encuentran con la longitud equivalente para los distintos cálculos, como se puede observar en la Tabla 29.

Tabla 29. Longitud equivalente de la red aire comprimido

ACCESORIOS	CANTIDAD	UNIDAD	EQUIVALENCIA	TOTAL [m]
Tubería	267	m	1	267
Tés	6	unidad	2	12
Válvulas	9	unidad	0,3	2,7
Codos	3	unidad	1,5	4,5
	Distancia to	tal equivalent	е	286,2

El consumo de aire comprimido va a ser estimado de acuerdo a la Tabla 30, y así poder calcular la capacidad necesaria del compresor así como también el diámetro de las tuberías de la red de aire comprimido.

Tabla 30. Consumo de aire comprimido

Tools or equipment	Size or type ^a	Air pressure, psi	Air consumed, scfm ^b
Hoists	1 ton	70-100	1
Blow guns		70-90	3
Bus or truck lifts	14,000-lb cap	70-90	10
Car lifts	8,000-lb cap	70-90	6
Car rockers		70-90	6
Drills, rotary	V4-in cap	70-90	20-90
Engine, cleaning		70-90	5
Grease guns		70-90	4
Grinders	8'-in wheel	70-90	50
Grinders	6'-in wheel	70-90	20
Paint sprayers	Production gun	40-70	20
Spring oilers	a re-circum guin	40-70	4
Paint sprayers	Small band	70-90	2-7
Riveters	Small to large	70-90	10-35
Drills, piston	1/2-in cap, 3-in cap	70-90	50-110
Spark plug cleaners	Reach 36-45	70-90	5
Carving tools	recincii ses-as-	70-90	10-15
Rotary sanders		70-90	50
Rotary sanders		70-90	30
Tire changers		70-90	1
Tire inflaters		70-90	11/4
Tire spreaders		70-90	1
Valve grinders		70-90	2
Air hammers	Light to heavy	70-90	30-40
Sand hammers	ingine to neary	70-90	25-40
Nut setters and runners	1/4-in cap to 3/4-in cap	70-90	20-30
Impact wrenches/screwdrivers	Small to large	70-90	4-10
Air bushings	Small to large	80-90	4-10
Pneumatic doors	Daniel to Imge	40-90	2
File and burr tools		70-90	20
Wood borers	1-2 in	70-90	40_80
Rim strippers	1-2 111	100-120	6
Body polishers		70-90	2
Vacuum cleaners		100-120	õ
Carbon removers		70-100	3
Sand blasters	Wide variation	90	6-400

Fuente: (Oviedo, 2005)

El consumo de aire comprimido en las distintas áreas se representa en la Tabla 31.

Tabla 31. Longitud equivalente de la red aire comprimido

ÁREA	FLUJO	PORCENTAJE
ANLA	CFM	%
Mantenimiento	15	0,9
Desechos	5	0,9
Materia prima	5	0,9
Producto terminado	5	0,9
Recipiente	5	0,9
Generador	5	0,9
Total	40	0,9

Para satisfacer la demanda requerimos un compresor de las siguientes características:

Tabla 32. Características del compresor

Potencia	10 hp
Voltaje	220 v
Frecuencia	60 Hz
CFM	40,6
Caudal	$1,15 m^3/min$

A continuación se va realizar el cálculo del diámetro de la tubería para la red de aire comprimido. Como se requiere tener una velocidad entre 8 y 10 m/s se va realizar el cálculo de la tubería con una velocidad de 9 m/s.

$$v = \frac{Q}{A} \tag{67}$$

Dónde:

Q: Caudal.

A: Área de la sección trasversal de la tubería.

v: Velocidad.

Como la sección trasversal de la tubería es un círculo el área puede ser remplazada con la siguiente formula:

$$A = \frac{\pi * D^2}{4} \tag{68}$$

$$D = \sqrt{\frac{4 * Q}{\pi * \nu}} \tag{69}$$

$$D = \sqrt{\frac{4*65}{\pi*9*60}} \tag{70}$$

$$D = 52,07 \, mm \tag{71}$$

La tubería es de 52,07 mm pero de acuerdo con la Tabla 33 se debe calcular el diámetro comercial de la tubería.

Tabla 33. Diámetro comercial de las tuberías

	W	DE	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI	ANSI
(")	(mm)	(mm)	Sch 10	Sch 20	Sch 30	Sch 40	Sch 60	Sch 80	Sch 100	Sch 120	Sch 140	Sch 160
11000	400,000		Dint	Dint	Dint	Dint	Dint	Dint	Dint	Dint	Dint	Dint
3/8	10	17,1	-			12,6	-	10,8		-	-	
1/2	15	21,3		4.7		15,8	-	13,9			-	11,8
3/4	20	26,7	100	- 44		20,9	- B	18,8		: ::		15,5
1	25	33,4	28,16	+-:	- 6	26,6	+	24,3		32	-	20,7
11/4	32	42,2	36,86	+ 1	- 23	35		32,5		54	-	29,5
1 1/2	40	48,3	42,76	8 6 1	-	40,9	S - 5- 3	38,1				34
2	50	60,3	54,76	4.7	-	52,5	+	49,3			-	42,8
21/2	65	73,0	70	4.1		62,7	9.3	59		- 34		54
3	80	88,9	82,8	4.5	- 23	77,9	4.5	73,7			-	66,6
4	100	114,3	108,2	+3	- 20	102,3	40	97,2		92	-	87,3
5	125	141,3	132,9	400	. 2	128,2	95	122,2		115,9	-	109,6
6	150	168,3	161,5	4.		154,1	10.40.9	146,3		139,7		131,7
8	200	219,1	209,54	206,4	205,02	202,7	198,48	193,7	188,92	182,5	177,86	173,1
10	250	273,0	264,62	260,3	257,4	254,5	247,6	242,9	236,48	230,2	222,2	215,9
12	300	323,8	314,76	311,2	307,14	303,2	295,36	288,9	281,02	273	266,74	257,2
14	350	355,6	342,9	339,76	336,56	333,3	325,42	317,5	307,94	300	292,1	284,2
16	400	406,4	393,7	390,56	387,36	381	373,08	363,5	354,02	344,5	333,34	325,4
20	500	508,0	495,3	488,96	482,6	477,8	466,76	455,6	442,92	431,8	419,1	408
24	600	609,6	596,9	590,56	581,06	574,6	560,38	547,7	531,82	517,6	504,86	490,5

Fuente: (ANSI, 2005)

De acuerdo a la tabla de los espesores comerciales vamos a utilizar una tubería de 2" que corresponde a un diámetro interno de 49,1 mm, el cual satisface a los valores requeridos para el tendido de la red. En el ANEXO D se encuentra el plano de distribución de la red de aire comprimido.

5.3.2. Alimentación de Combustible

El combustible es necesario en el proceso de calcinación de la piedra ya que es utilizado en el horno. La cantidad de combustible que se requiere para el proceso es de $520 \, kg \, diésel / hora$, y para encontrar el caudal requerido se utiliza la densidad del diésel, la cual es $832 \, kg/m^3$. Obteniendo lo siguiente:

$$Q = \frac{flujo\ masico}{densidad} \tag{72}$$

$$Q = \frac{520 \, kg/hora}{832 \, kg/m^3} = 0,625 \, \frac{m^3}{h} \tag{73}$$

Se debe seleccionar una bomba que cumpla con este valor requerido en el proceso y además multiplicado por un factor de seguridad o posibles ampliaciones. La bomba que cumple con estas especificaciones es:

Tabla 34. Características de la bomba de combustible

Tensión	12 v
Caudal	$1000 \; lt/h$
Consumo vacío	22 A
Consumo en carga	42 A
Entra y salida	1 ¼ in
Peso	11,5 <i>kg</i>

Fuente: (Catálogo de Bombas y Accesorios, 2014)

5.3.3. Agua Potable

La línea de agua potable que se requiere en la planta, es para el uso de los trabajadores, así como para operaciones de limpieza de las distintas áreas. El agua potable va a ser abastecida por la empresa municipal de agua potable, lo que se requiere es realizar la instalación de tuberías. Para garantizar el abastecimiento de agua en caso de que exista una interrupción del sistema de agua potable, se contará con una cisterna que garantiza la demanda de agua para los empleados y el proceso en sí.

El consumo estimado es de $10 \, m^3$ diarios. El dimensionamiento de la tubería se lo realizará para una velocidad de $1 \, m/s$ con un flujo de $1,25 \, m^3/h$, y para una longitud equivalente de $304 \, m$ considerando la longitud lineal de la tubería y los accesorios de la misma, como observamos en la Tabla 35.

Tabla 35. Distancia de la red de agua potable

ACCESORIOS	CANTIDAD	UNIDAD	EQUIVALENCIA	TOTAL [m]
Tubería	282	m	1	282
Tés	8	unidad	2	16
Válvulas	10	unidad	0,3	3
Codos	2	unidad	1,5	3
DIS	304			

El diámetro de la tubería se calcula de la siguiente ecuación:

$$D = \sqrt{\frac{Q*4}{3600*v*\pi}} \tag{74}$$

$$D = \sqrt{\frac{1,25*4}{3600*1*\pi}} = 0,023m \tag{75}$$

$$D = 23 mm \tag{76}$$

Para una tubería comercial sería de 1". El diagrama unifilar de la red de agua potable se encuentra en el ANEXO E. La bomba a ser utilizada se selecciona del siguiente cuadro:

Tabla 36. Bomba de agua

Modelo trifásico	Modelo monofásico	Potencia KW	Potencia HP	Caudal máximo I / min	Caudal máximo m3 / hora	Altura máxima metros
JSW1C	JSWm 1C	0.37	0.5	50	3.0	35
JSW1B	JSWm 1B	0.5	0.7	50	3.0	41
JSW 1A	JSWm 1A	0.6	0.85	50	3.0	47
JSW 10H	JSWm 10H	0.75	1	50	3.0	56
JSW 12H	JSWm 12H	0.9	1.25	50	3.0	64
JSW 15H	JSWm 15H	1.1	1.5	50	3.0	70
JSW 10M	JSWm 10M	0.75	1	80	4.8	46
JSW 12M JSW 15M	JSWm 12M JSWm 15M	0.9 1.1	1.25 1.5	80 80	4.8 4.8	50 55

FUENTE: (Solar, 2013)

Para el abastecimiento de agua potable en la planta se requiere de una bomba JSW 1C, con potencia de $0.37 \, kW$, con un caudal máximo de $3 \, m^3/h$ y una altura máxima de $35 \, m$, lo cual satisface las necesidades de la planta y una posible expansión de la misma.

5.4. Listado de Equipos, Instrumentación, Accesorios y Material

En el proceso de trituración y calcinación para la obtención de la cal viva se requiere de la siguiente maquinaria para el proceso.

5.4.1. Maquinaria

Tabla 37. Descripción de la maquinaria

DESCRIPCIÓN	POTENCIA $[kW]$	VOLTAJE $[v]$	$INPUT \ [t/h]$	OUTPUT $[t/h]$
Trituradora de mandíbula	90	440	200	200
Trituradora de impacto	132	440	200	200
Criba vibratorio	15	440	200	200
Alimentador vibratorio	22	440	200	200
Alimentador vibratorio	0,4	240	2	2
Banda transportador	7,5	440	200	200
Elevador	5,5	440	2	2
Elevador	7,5	440	2	2
Horno rotatorio	37	440	2	1
Enfriador rotatorio	7,5	440	2	2
Máquina de empaque	5,5	440	2	2

5.4.2. Equipos Auxiliares

Para el correcto funcionamiento de la maquinaria y para satisfacer los requerimientos de las diferentes áreas, se requiere del transformador, que se indica en la Tabla 38.

Tabla 38. Descripción del transformador

Entrada	13,8 kV
Salida	440~kV
KVA	550 <i>kVA</i>

El proceso de calcinación del horno requiere de combustible, el cual se encuentra almacenado en el recipiente diseñado para el efecto, pero debe ser trasportado mediante la utilización de una bomba de las siguientes características:

Tabla 39. Características de la bomba

Tensión	12 v
Caudal	$1000 \ lt/h$
Consumo vacío	22 A
Consumo en carga	42 <i>A</i>
Entra y salida	1 ¼ in
Peso	11,5~kg

Para la limpieza de las diferentes áreas, así como para el mantenimiento de la maquinaria y utilización de las herramientas, se requiere de un compresor con las características que se detallan en la tabla 40.

Tabla 40. Características del compresor

Potencia	10 hp
Voltaje	220 v
Frecuencia	60 Hz
CFM	40,6
Caudal	$1,15 m^3/min$

El abastecimiento del agua potable estará dado por la bomba con las siguientes características indicadas en la tabla 41

Tabla 41. Características de la bomba de agua

Potencia	0,37 <i>kW</i>
Caudal	$3 m^3/h$
Altura máxima	35 m

5.4.3. Materia Prima

Para la materia prima se requiere calcular la reacción de la misma y poder encontrar la cantidad requerida para el proceso, como se indica en la Ecuación 1. Obteniendo que para la producción deseada se requiere:

Tabla 42. Cantidad de materia prima y producto terminado

Toneladas a producir de cal viva	36 t/día
Toneladas de piedra caliza	65 t/día

La piedra caliza debe tener un porcentaje mayor al 95% de pureza para el proceso de la obtención de cal viva.

5.5. Manuales de Mantenimiento

Para los manuales de mantenimiento de la maquinaria se va a separar por áreas, las cuales son: trituración y calcinación.

5.5.1. Trituración

Para la ejecución de los manuales de mantenimiento se va a distribuir por tipos de máquinas, ya que el mantenimiento de las máquinas es el mismo, solo que en mayor o menor magnitud, se detallará el mantenimiento que se debe realizar en las partes y el período de ejecución de las mismas. Como la capacidad de la línea de trituración es de $200 \, t/h$, se puede realizar el trabajo durante un tiempo requerido para cumplir con las necesidades de la línea de calcinación.

La línea de calcinación es de 40 t/dia, lo que nos indica que una hora de trabajo de la línea de trituración puede satisfacer las necesidades de calcinación de tres días, debido a que en el proceso de calcinación, los inputs en el horno cumple la relación de 2 a 1 con los outputs que nos entrega el horno.

El mantenimiento preventivo que se debe realizar a los equipos es de mucha importancia para evitar las paras por fallos en los equipos, para eso deben realizarse las actividades en los períodos indicados en cada una de las distintas máquinas de acuerdo a sus elementos y a los tiempos de utilización. A continuación se detalla los mantenimientos que se deben realizar a la maquinaria en la línea de trituración del proceso.

Tabla 43. Mantenimiento de trituradoras

			FRE	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANUAL	[min]	RESPONSABLE	CONDICION
	Limpieza	×				10	Operador	Parada
MOTOR	Alineación			×		09	Mecánico	Parada
	Rodamientos			×		20	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
BANDAS	Inspección		×			15	Operador	Operación
	Cambio			×		09	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
MANDÍBULA	Ajuste		×			30	Mecánico	Parada
	Cambio			×		120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
CARCASA	Ajuste		×			30	Mecánico	Parada
	Pintura				×	180	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Engrasado		×			15	Operador	Operación
RODAINIENTOS	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

Tabla 44. Mantenimiento de cribas vibratorias

			FREG	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANUAL	[min]	RESPONSABLE	CONDICION
	Limpieza	×				10	Operador	Parada
MOTOR	Alineación			×		09	Mecánico	Parada
	Rodamientos			×		20	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
BANDAS	Inspección		×			15	Operador	Operación
	Ajuste			×		09	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
CAMAS	Ajuste		×			30	Mecánico	Parada
	Cambio			×		120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
CARCASA	Ajuste		×			30	Mecánico	Parada
	Pintura				×	180	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Engrasado		×			15	Operador	Operación
RODAIMIEN OS	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

Tabla 45. Mantenimiento de bandas transportadoras

			FREC	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANUAL	[min]	RESPONSABLE	CONDICION
	Limpieza	×				10	Operador	Parada
MOTOR	Alineación			×		09	Mecánico	Parada
	Rodamientos			×		20	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
BANDAS	Inspección		×			15	Operador	Operación
	Cambio			×		09	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
EJES	Ajuste		×			30	Mecánico	Parada
	Cambio			×		120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Engrasado		×			15	Operador	Operación
NO DAIMIENTOS	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

5.5.2. Calcinación

En el proceso de calcinación los elementos que requieren de mantenimiento son los elevadores, horno rotatorio y enfriador rotatorio. En dicho proceso, el tiempo de trabajo de los equipos es de 16 horas productivas puesto que la capacidad del mismo es de 2 t/h, y como se debe satisfacer en su totalidad el abastecimiento de este insumo se debe trabajar el tiempo estimado.

Como existen máquinas que se encuentran en movimiento, los puntos más críticos son la lubricación y la limpieza de las partes móviles. Se debe tener especial atención en los ladrillos refractarios en el horno ya que estos ayudan a que exista una temperatura indicada en el horno de calcinación, el cual es la parte principal, puesto que en este punto se trasforma la materia prima ya triturada a cal viva que se requiere para el proceso.

Los elevadores de canjilones deben estar con la correcta lubricación para que cumplan su funcionamiento de una manera óptima y la velocidad sea la indicada para el abastecimiento al horno como al silo de almacenamiento de producto terminado.

El mantenimiento preventivo a las distintas maquinarias ayudará a que no existan paradas en la producción y poder obtener la cantidad de producto necesario para satisfacer la necesidad de cal viva en el proceso de fundición de acero en ANDEC S.A.

Se detalla el plan de mantenimiento de las distintas maquinarias en esta parte del proceso. En el horno rotatorio se debe tener en cuenta de manera especial el refractario, ya que es el encargado en conservar y distribuir el calor para una calcinación uniforme de la piedra caliza, así como también la alineación del motor y la tensión de las bandas. El correcto movimiento del enfriador, garantizara que la piedra llegue a la temperatura indicada para el trasporte al silo de almacenamiento de producto terminado.

Tabla 46. Mantenimiento de elevador de cangilones

			FREC	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANUAL	[min]	RESPONSABLE	CONDICION
	Lubricación	×				10	Operador	Parada
REDUCTOR	Alineación			×		09	Mecánico	Parada
	Rodamientos			×		120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
BANDAS	Inspección		×			15	Operador	Operación
	Cambio			×		09	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
EJES	Ajuste		×			30	Mecánico	Parada
	Cambio			×		120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Engrasado		×			15	Operador	Operación
CHUMACERAS	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
v) d. l. l. l. d. C. t.	Ajuste		×			30	Operador	Operación
IORNILLERIA	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

			FREC	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANDAL	[min]	RESPONSABLE	CONDICION
	Limpieza	×				10	Operador	Parada
	Engrasado		×			30	Operador	Operación
CANGILONES	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Inspección		×			15	Operador	Operación
CINITAS	Alineación			×		09	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

Tabla 47. Mantenimiento del horno rotatorio

			FREG	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANUAL	[min]	RESPONSABLE	CONDICION
	Limpieza	×				10	Operador	Parada
MOTOR	Alineación			×		09	Mecánico	Parada
	Rodamientos			×		20	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
BANDAS	Inspección		×			15	Operador	Operación
	Cambio			×		09	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
EJES	Ajuste		*			30	Mecánico	Parada
	Cambio			×	×	120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Engrasado		×			15	Operador	Operación
RODAIMIEN O	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
REFRECTARIO	Inspección		×			10	Mecánico	Operación
	Cambio				×	009	Mecánico	Parada

Continúa

			FREC	FRECUENCIA		TIEMPO		CONDICIÓN
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	SEMANAL TRIMESTRAL	ANDAL	[min]	RESPONSABLE	
	Limpieza	×				10	Operador	Parada
QUEMADORES	Inspección		×			10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

Tabla 48. Mantenimiento del enfriador rotatorio

			FREG	FRECUENCIA		TIEMPO		
SUBCONJUNTO	TAREA	DIARIA	SEMANAL	TRIMESTRAL	ANUAL	[min]	RESPONSABLE	CONDICION
	Limpieza	×				10	Operador	Parada
MOTOR	Alineación			×		09	Mecánico	Parada
	Rodamientos			×		20	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
BANDAS	Inspección		×			15	Operador	Operación
	Cambio			×		09	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
EIES	Ajuste		×			30	Mecánico	Parada
	Cambio			×		120	Mecánico	Parada
	Limpieza	×				10	Operador	Parada
	Engrasado		×			15	Operador	Operación
RODAMIENTOS	Inspección			×		10	Mecánico	Operación
	Cambio				×	120	Mecánico	Parada

5.6. Organización Administrativa

La planta de cal viva es parte de ANDEC S.A., es por ello que se encuentra ligada directamente a la gerencia de materia prima. En la Tabla 49 se indica el personal que se requiere para el funcionamiento de la planta de cal viva.

Tabla 49. Personal necesario en la planta

- 1 Jefe de Planta
- 1 Asistente de jefe de planta
- 1 Técnico control de calidad
- 10 Operadores maquinaria
- 1 Técnico electromecánico

5.7. Seguridad

La seguridad de la planta debe realizarse mediante la supervisión de la gerencia de Seguridad, Salud Ocupacional y Ambiente SSOA de ANDEC S.A. Al ser parte directa de la compañía cumple con todos los parámetros de seguridad que se maneja en la planta principal de ANDEC S.A.

Se debe garantizar el cumplimiento del REGLAMENTO DE SEGURIDAD Y SALUD DE LOS TRABAJADORES Y MEJORAMIENTO DEL MEDIO AMBIENTE DE TRABAJO.

5.8. Normas y Regulaciones

Debe cumplir con las normas del Instituto Ecuatoriano de Normalización INEN y de la Asociación American de Prueba de Materiales (*American Society for Testing Materials* ASTM), en referencia a la cal viva, para la planta diseñada, para propósito metalúrgico.

5.9. Control de Calidad

Se debe realizar el control de calidad de la materia prima y del producto terminado, en la materia prima se debe garantizar que la piedra caliza tenga por lo menos 92% de $\it CaO$ y en el producto terminado se tiene que garantizar que la granulometría se encuentre entre $10 < \phi < 40 \ mm$.

CAPÍTULO VI

6. SIMULACIÓN

6.1. Trituración

La simulación del proceso se realiza mediante el software Flex Sim para poder entender de una manera gráfica el proceso. Para la simulación de este proceso vamos a utilizar el siguiente proceso de flujo:

Figura 44. Proceso de flujo de trituración

De esta forma obtenemos el siguiente esquema de la línea de cal en la parte de la trituración.

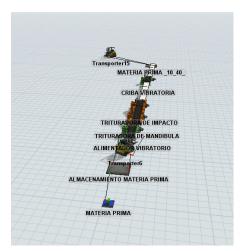


Figura 45. Vista superior del proceso de trituración

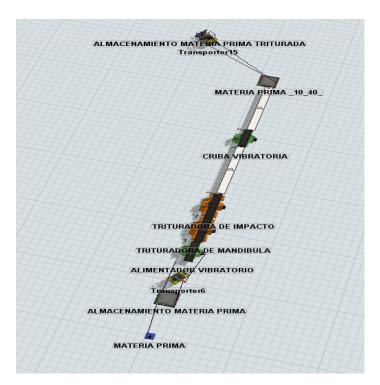


Figura 46. Vista posterior del proceso de trituración

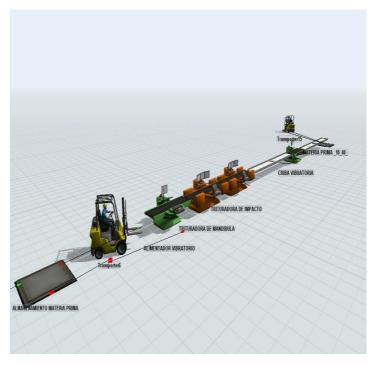


Figura 47. Vista lateral del proceso de trituración

6.2. Calcinación

Para simular el proceso de calcinación se usa el siguiente proceso de flujo del proceso:

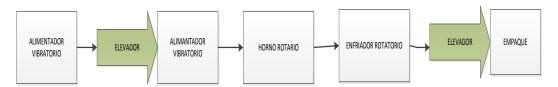


Figura 48. Proceso de flujo de calcinación

En base al proceso de flujo de la Figura 48 se tiene las siguientes vistas de la línea de calcinación de la planta de cal:

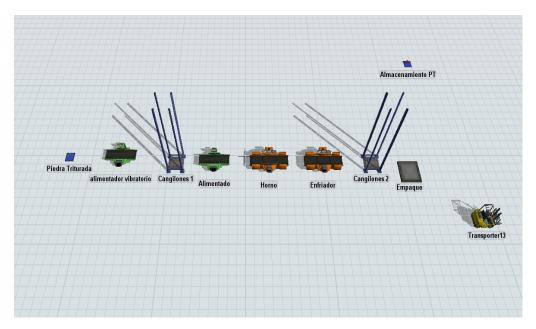


Figura 49. Vista superior del proceso de calcinación

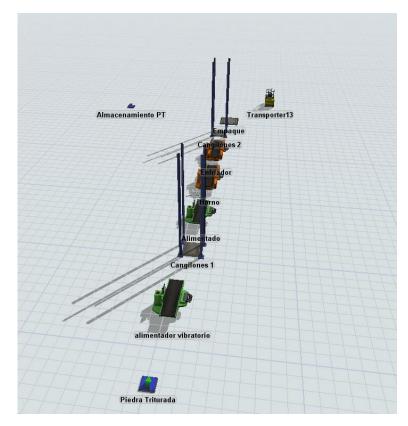


Figura 50. Vista posterior del proceso de Calcinación

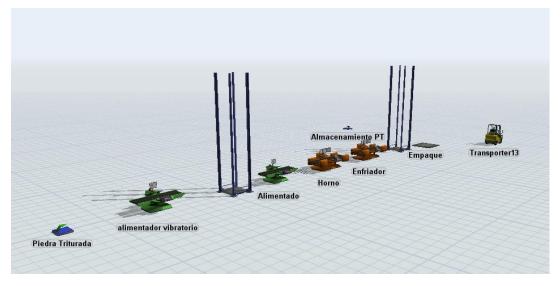


Figura 51. Vista lateral del proceso de Calcinación

CAPÍTULO VII

7. ANÁLISIS ECONÓMICO FINANCIERO

7.1. Inversión

Se realiza el estudio económico financiero del proyecto con una producción anual de 220000 toneladas de acero para el año 1, se usa este valor, puesto la cantidad de cal viva utilizada se encuentre directamente relacionada con este valor. Existe una proyección de crecimiento de 20000 toneladas de acero anuales hasta obtener una producción de $300000 \, t/año$ que es la capacidad máxima del horno EAF. Para el año 1 se realiza la inversión de toda la maquinaria, equipo, obra civil, entre otros.

Tabla 50. Proyección de fabricación de acero en toneladas

Detalle	2015	2016	2017	2018
Capacidad de diseño [t]	220000	240000	260000	300000
Capacidad real [t]	200000	230000	250000	290000
Eficiencia	0,91	0,96	0,96	0,97

Tabla 51. Toneladas de cal viva requerida en el proceso

Detalle	2015	2016	2017	2018
Capacidad de diseño [t]	10500	10500	10500	10500
Capacidad real $[t]$	7614,2	8306,4	8998,6	10383
Eficiencia	0,73	0,79	0,86	0,99

Para poder obtener esta producción de cal viva, se requiere de una planta con una capacidad de 40 t/dia, a su vez se requiere de equipos y vehículos como se detalla a continuación.

Tabla 52. Maquinaria necesaria para la producción

CANTIDAD	MAQUINARIA	ORIGEN	COSTO [\$]	TOTAL [\$]
1	Alimentador vibratorio ZWS-600X130	CHINA	15,600	15,600
1	Trituradora de mandíbula	CHINA	55,900	55,900
3	Banda transportadora B500	CHINA	6,600	19,800
1	Trituradora de impacto	CHINA	35,650	35,650
1	Criba vibratoria	CHINA	15,000	15,000
2	Alimentador vibratorio GZ3	CHINA	1,250	2,500
1	Elevador TH160	CHINA	7,300	7,300
1	Horno rotatorio	CHINA	95,000	95,000
1	Colector de polvo	CHINA	67,200	67,200
1	Enfriador rotatorio	CHINA	15,800	15,800
1	Elevador TH250	CHINA	16,400	16,400
1	Máquina de empaque	CHINA	1,400	1,400
2	Tolvas	ECUADOR	5,000	10,000
1	Cargadora frontal	EEUU	208,208	208,208
1	Montacargas	EEUU	31,857	31,857
2	Básculas	EEUU	28,000	56,000
	TOTAL			\$ 653,615

Los días laborables para el año $2015\,$ son los que se detallan en la Tabla $53.\,$

Tabla 53. Días laborables 2015

MES	DÍAS AL MES	FINES DE SEMANA	FERIADOS	DÍAS LABORABLES
Enero	31	9	1	21
Febrero	28	8	2	18
Marzo	31	9	0	22
Abril	30	8	1	21
Mayo	31	10	1	20
Junio	30	8	0	22
Julio	31	8	0	23
Agosto	31	10	1	20
Septiembre	30	8	0	22
Octubre	31	9	1	21
Noviembre	30	9	2	19
Diciembre	31	8	1	22
	то	TAL		251

En la Tabla 54 se detalla el costo de la piedra caliza perteneciente a la cantera de San Antonio.

Tabla 54. Costo dela piedra caliza

Precio de la piedra caliza	4,9 \$/t
Producción anual	251 días
Total de caliza	13738 <i>t/a</i> ño
Costo anual total de piedra caliza	\$ 67180,24

Se debe realizar el costo de la materia prima con la proyección a crecimiento así como también con el promedio de la inflación que se maneja en el país.

Tabla 55. Proyección del costo de la materia prima

AÑO	MATERIA PRIMA [t]	COSTO [\$]	TOTAL [\$]
2015	13738,29	4,89	67180,24
2016	14987,23	4,93	73917,81
2017	16236,16	4,97	80766,29
2018	18734,03	5,02	93993,32

El combustible requerido para el funcionamiento del horno es el diésel, el cual al ser comprado directamente al estado y en los volúmenes requeridos se obtiene un mejor precio por galón el cual es 0,923 dólares por galón, con la proyección de crecimiento se obtiene los consumos indicados en la Tabla 56.

Tabla 56. Costo del diésel

DESCRIPCIÓN	2015	2016	2017	2018
Precio del galón de diésel [\$]	0,94	0,94	0,94	0,94
Consumo de diésel por tonelada de cal viva [<i>gal</i>]	79	79	79	79
Producción esperada [<i>t</i>]	7614,2	8306,4	8998,6	10383
COSTO TOTAL DE DIÉSEL [\$]	\$ 567836,58	\$ 619458,09	\$671079,59	\$774322,61

Se requiere una camioneta para el trasporte del personal que debe realizar algún trabajo, la movilización será desde la planta a la panta principal de ANDEC S.A., ubicada en Guayaquil.

Tabla 57. Vehículos

CANTIDAD	FOLUDO	COSTO	TOTAL
CANTIDAD EQUIPO	[\$]	[\$]	
1	Camioneta Transporte	\$ 28,770.00	\$ 28,770.00

Para la operación de la planta se requiere de la red de energía eléctrica, aire comprimido, combustible y agua potable.

Tabla 58. Energía eléctrica

Acometida eléctrica [\$]	60000
Tendido eléctrico [\$]	20000
Generador auxiliar [\$]	15000
Transformador [\$]	20000
Cableado [\$]	20,000
Consumo energía [\$]	231924
TOTAL	\$ 348924

Tabla 59. Agua potable

Consumo de agua anual [\$]	3765
Tuberías [\$]	10000
Bomba [\$]	8000
TOTAL	\$ 21765

El trasporte de la materia prima así como el producto terminado está relacionado con la producción es por ello que se realiza el cálculo con la proyección de crecimiento de la planta. Se tiene dos trayectos a cubrir con el trasporte, el que se lleva la materia prima a la planta procesadora de cal, y el que lleva el producto terminado a la planta principal de ANDEC para ser utilizado en el proceso de fundición.

Tabla 60. Transporte de la piedra caliza

DESCRIPCIÓN	2015	2016	2017	2018
Piedra caliza requerida $[t/a\ o]$	13738,29	14987,23	16236,16	18734,03
Costo de transporte $[\$/t]$	2,31	2,31	2,31	2,31
COSTO ANUAL	\$ 31735,45	\$ 34620,49	\$ 37505,53	\$ 43275,61

Tabla 61. Transporte de la cal viva

DESCRIPCIÓN	2015	2016	2017	2018
Cal Viva $[oldsymbol{t/a}$ ñ $oldsymbol{o}]$	7614,2	8306,4	8998,6	10383
Costo de transporte [\$/ t]	3,50	3,50	3,50	3,50
COSTO ANUAL	\$ 26649,70	\$ 29072,40	\$ 31495,10	\$ 36340,50

Debemos considerar el costo que tiene el terreno, así como la obra civil, adecuaciones, permisos ambientales, fiscalización. Estos son considerados para el año 1 del proyecto.

Tabla 62. Costo obra civil y adecuaciones

NOMBRE	CANTIDAD	VALOR [\$]	TOTAL [\$]
Terreno	10000 m	2	20000
Estructura metálica galpones	500 kg	200	100000
Construcción civil adecuación	60 m	200	12000
Construcción civil	200 m	900	180000
Valor por cerramiento	400 m	70	28000
Estudio topográfico			1500
Licencia ambiental			15000
TOTA	\L		\$ 356500

La mano de obra se considera con el personal necesario para obtener la producción esperada, así como también el área administrativa. Para el flujo del proyecto se estimó un aumento salarial a partir del año 5 del proyecto.

Tabla 63. Costo mano de obra

CARGOS	SUELDO MENSUAL [\$]	COSTO ANUAL CON BENEFICIOS DE LEY [\$]
Jefe de planta	2202,76	37799,36
Asistente de jefe de planta	1520,68	26094,87
Técnico control de calidad	1216,35	20872,57
Operador maquinaria	800	13728
Técnico electromecánico	900	15444
TOTAL		\$ 237490,80

El costo de la mobiliaria y equipos de oficina es la que se detalla en la Tabla 64.

Tabla 64. Mobiliaria y equipo de oficina

CANTIDAD	CONCEPTO	COSTO [\$]	TOTAL [\$]
5	Escritorio	150	750
2	Archivadores	100	200
15	Sillas de oficina	70	1050
5	Sillas de espera	35	175
2	Casilleros	100	200
4	Computadoras	600	2400
3	Impresoras	300	900
	TOTAL		\$ 5675

Los suministros de oficina son los siguientes:

Tabla 65. Suministros de oficina

CANTIDAD	CONCEPTO	VALOR UNITARIO [\$]	VALOR TOTAL [\$]
10	Tinta para impresora	22	220
20	Resma de Papel	3,50	70
50	Esferos	0,18	9
20	Caja de clips	0,65	13
20	Caja de grapas	1,25	25
20	Lápices	0,25	5
20	Borradores	0,40	8
	TOTAL		\$ 350

El material refractario para el horno y el enfriador son valores a considerar anualmente, como mantenimiento programado del mismo.

Tabla 66. Costo del ladrillo refractario

	CANTIDAD	COSTO	COSTO TOTAL
	[t]	[\$/t]	[\$]
Ladrillo refractario	25	515	12875
Cemento refractario	5	635	3175
T	OTAL		\$ 16050

El producto terminado es trasportado por Big-Bags los cuales son relacionados directamente con la producción que se tiene.

Tabla 67. Costo big bag

NOMBRE	COSTO [\$/UNIDAD]	PRODUCCIÓN [t/AÑO]	TOTAL [\$]
BIG - BAG 1 TON 2015	5	7614,20	38071
BIG - BAG 1 TON 2016	5	8306,40	41889,18
BIG - BAG 1 TON 2017	5	8998,60	45770,21
BIG - BAG 1 TON 2018	5,13	10383,00	53265,96

Para el mantenimiento se estima un 3% del valor de la maquinaria

Tabla 68. Costo de mantenimiento

Maquinaria	\$ 46860
Vehículos	\$ 10345,04
TOTAL	\$ 57205,04

El Proyecto debe ser fiscalizado en la parte de la implementación, para que se cumpla con los parámetros dispuestos por la empresa para tener una aceptación completa del mismo.

Tabla 69. Costo de fiscalización

NOMBRE	COSTO [\$]
Obra Civil	396500,00
Costo Maquinaria	597275,00
Total	993775,00
COSTO TOTAL FISCALIZACIÓN	\$34782,13

7.2. Tasa Interna de Retorno y Valor Actual Neto

Con los costos del proyecto y considerando una tasa WACC de 12,35% se obtienen un proyecto viable, puesto que el TIR del presente proyecto es de 14,3% y el VAN es de \$ 144615,20.

Tabla 70. TIR Y VAN

TIR	14,3%
VAN	\$ 144615,20
PERIODO DE RECUPERACIÓN	4,13 años

7.3. Utilidad

Tabla 71. Flujo del proyecto

Price Pric	ΔÑΩ	0	-	2	en	4	r.	9	7		6	₽
TTO, 00	PRODUCCIÓN ACERIA		220.000,00	240.000,00	260.000,00	300.000,00	300,000,00	300.000,00	300.000,00	300.000,00	300.000,00	300.000,00
123 6FS 010	PRODUCCIÓN PLANTA CAL		7614,20	8306,40	8398,60	10383,00	10383,00	10383,00	10383,00	10383,00	10383,00	10383,00
1.00	COSTO TNL CAL		170,00	171,46	172,94	174,42	175,92	177,44	178,96	180,50	182,05	183,62
1.200.000 1.20	XVAR. ANUAL INFLACION		200'0	0,86%	0,86%	0,86%	0,86%	0,86%	0,86%	0,86%	0,86%	0,86%
-22 0000,000 -37 10 603,000 -37 10 603,000 -37 10 603,000 -37 10 600,000	INVERSIÓN EQUIPOS	-653.615,00										
1.000000000000000000000000000000000000	INVERSION TERRENO	-20.000,00										
1.283.014.00 2.374.683.00 2.374.90.00	INVERSION VEHICULO	-28.770,00										
-1.000000000000000000000000000000000000	INVERSION CONSTRUCCION-FISCALIZACION	-370.689,00										
NICHALO 1.056.004.01 1.424.231.96 1.556.187.05 1.1810.042.60 1.1826.687.57 1.182	PERMISOS MUNICIPIO AMBIENTE ESTUDIO	-30.000,00										
1.00 1.00	VARIOS ENTRE OTROS	-160,000,00										
Number N	INVERSION TOTAL	-1.263.074,00						ı				
\$ 527749) 8 \$ 237749) 8 \$ 237749) 8 \$ 237749) 8 \$ 237749) 8 \$ 237749) 9 \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ \$ 237490 9 \$ 237	COSTO DE PROVEEDOR EXTERNO		1.294.	\$ 1.424.231,96	\$ 1.556.187,05	1.811.042,60	1.826.617,57		\$ 1.858.170,49	\$ 1.874.150,75	\$ 1.890.268,45	1.906.524,76
Column C	MANO DE OBRA	**				237.490,80	37.490,80		\$ 237.490,80	\$ 237.490,80	\$ 237.490,80	337.490,80
Colored Colo	SUELDO ADMINISTRATIVO	**	\$ 59.277,48		\$ 59.277,48	59.277,48	61.648,58			\$ 61.648,58	\$ 61.648,58	64.114,52
Facing Secretary Secreta	MATERIA PRIMA		67180.24			93.993,32				\$ 93.993,32	\$ 93.993,32	33.993,32
Color	SERVICIOS BASICOS(LUZ-AGUA)		186.889,32			186.889,32				-		186.889,32
\$ 57.204,00 \$ 57	REFRACTARIOSYBIGBAGS				\$ 45.770,21	53.265,96	53.265,96			*	*	53.265,96
\$ 567.85,58 \$ 613,458,109 \$ 671,073,59 \$ 774,322,61 \$ 774,322,62,62 \$ 774,322,61 \$ 774,322,61 \$ 774,322,61 \$ 774,322,61 \$ 774,322,744,322,74,322,74,322,74,322,74,322,74,322,74,322,74,322,74,322,744,322,74,322,74,322,74,322,74,322,74,322,74,322,74,322,74,322,742,322,7	MANTENIMIENTO		\$ 57.204,00		\$ 57.204,00 \$	57.204,00	57.695,95			↔	\$ 57.695,95	58.192,14
Procedure \$ 1204.982.44 \$ 1337.24.15 \$ 163.733.42 \$ 1	COMBUSTIBLE		\$ 567.836,58	•	\$ 671.079,59	774.322,61	774.322,61			*	*	774.322,61
Property	TRANSPORTE		\$ 58.193,26		\$ 63.963,34 \$	69.733,42	69.733,42			\$ 69.733,42	**	69.733,42
\$ 1825 \$ 180.08 \$ 153.46,01 \$ 278.865,63 \$ 231577,51 \$ 307.286,52 \$ 323	COSTO CaO con NUEVO PROYECTO			_	\$ 1.402.441,03 \$	1.532.176,91	1.535.039,96		\$ 1,535,039,96	\$ 1.535.039,96	\$ 1.535.039,96	1,538,002,09
1	COSTOUNITARIO				\$ 155,85 \$	147,57	147,84		*	\$ 147,84	\$ 147,84	148,13
ON MAGUNAPHA ON MAGUNAPHA ON MAGUNAPHA ON MAGUNAPHA ON MAGUNAPHA ON METALETHIC O	AHORRO POR PRODUCIR		89.451,56	87.026,98	\$ 153.746,01	278.865,69	291,577,61		\$ 323,130,53	\$ 339.110,79	\$ 355.228,49	368.522,67
ON VEHICLICO ON VEHICLICO ON VEHICLICO ON VEHICLICO ON TERFEND ON TERFE	VALOR DE RECUPERACION MAQUINARIA											5 65,361,50
ON VERNERNO CONTEDENO CONTEDNO CON	VALOR DE RECUPERACION VEHICULO											2.877,00
Control Cont	VALOR DE RECUPERACION TERRENO											22.000,00
Color Colo	VALOR DE RECUPERACION INFRAESTRUCTURA											370.689,00
RESIDENCE RESI	TOTAL VALOR RECUPERACION DE AC	TIVOS										460.927,50
PESSING PESS	UTILIDAD BRUTA		83.451,56	84.026,38	153. 746,01	278.865,69	231.577,61	307.286,52	323.130,53	333.110,73	355.228,49	829.450,17
Company Comp	DEPRECIACION DE INFRAESTRUCTURA		(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)	(18.534,45)
15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 15, 04, 00 16, 04, 05	DEPRECIACION DE MAQUINARIA		(65.361,50)	(65.361,50)	(65.361,50)	(65.361,50)	(65.361,50)	(65,361,50)	(65.361,50)	(65,361,50)	(65.361,50)	(65,361,50)
The color of the	DEPRECIACION DE VEHICOLO		(5.754,00)	(5.754,00)	(5.754,00)	(5.754,00)	(5,754,00)					
C10000 C100000 C1000000 C1000000 C1000000 C1000000 C1000000 C1000000 C1000000 C1000000 C1000000 C10000000 C10000000 C10000000 C10000000 C100000000 C10000000000	DEPRECIACION TOTAL		(89.649,95)	(89.649,95)	(83.649,95)	(83.649,95)	(89.649,95)	(83.895,95)	(83.895,95)	(83.895,95)	(83.895,95)	(83.895,95)
(198.39) (2.622.37) 64.096.06 189.216.74 201.927.66 223.330.57 -1.263.074,00 83.451.56 87.026.38 153.746,01 278.865.69 231.577.61 307.286.52	TOTAL UTILIDADY DEPRECIACION		(198,39)	(2.622,97)	64.096,06	189.215,74	201.927,66	223.390,57	239.234,58	255.214,84	271.332,54	745.554,22
(198.33) (2.622.37) 64.056,06 183.275,74 201.327,66 223.330,57 8.365,59 83.655,59 83.6	IMPUESTO		-		-				-			•
-1.263.074.00 83.451.56 87.026.36 83.643.56 83.643.55 83.895.52 83.895.52	UTILIDAD NETA		(198,39)	(2.622,97)	90'08'08	189.215,74	201.927,66	223.390,57	239.234,58	255.214,84	271.332,54	745.554,22
-1263.074,00 89.451,56 87.026,39 153.746,01 278.865,63 291577,61 307.286,52	DEPRECICACION TOTAL		89.649,95	89.649,95	89.649,95	89.649,95	89.649,95	83.895,95	83.895,95	83.895,95	83.895,95	83.895,95
	TOTALFLUJO	-1.263.074,00	89.451,56	87.026,38	153,746,01	278.865,69	231.577,61	307.286,52	323.130,53	339.110,79	355.228,49	829.450,17

H	14,3%	COSTO OPORT
VAN	144.615,20	TASA WACC(12,35)
Periodo recuperacion	4,13	

CAPÍTULO VIII

8. CONCLUSIONES Y RECOMENDACIONES

8.1. Conclusiones

- Se debe garantizar la producción de 7614 toneladas de cal viva en el año
 2015, para poder satisfacer el proceso de fundición en ANDEC S.A.
- Debido a que la cal viva es un insumo fundamental en el proceso de fundición para la obtención de acero, la implementación de esta planta garantizará el autoabastecimiento del producto así como también su calidad y granulometría, requerida por los equipos usados en la fundición.
- El método de Muther empleado para la distribución de las diferentes áreas de la planta diseñada, es el más recomendado debido a que en él se pondera las ubicaciones de las áreas, así como también se interrelacionan todas las áreas de la planta con el fin de disminuir tiempos de operación y de producción.
- El costo de combustible en el proceso de calcinación, hace que el período de recuperación de la inversión en este proyecto aumente; el uso de aceite quemado como combustible alternativo ayudaría a disminuir dichos costos.
- El abastecimiento de la materia prima debe garantizarse mediante proveedores directos de la piedra caliza; debe realizarse con la cantera que proporcione dicha piedra con los parámetros físicos químicos que se requieren para el proceso de producción de la cal viva.

- La selección apropiada de la maquinaria requerida para el proceso de la elaboración de cal viva mediante la utilización de la matriz de factores ponderados, ayuda a que se tome la selección adecuada para la fabricación de cal viva.
- La inversión inicial que debe realizarse para la ejecución de este proyecto, se recuperará en 4,13 años siendo este menor al período de recuperación considerado en un proyecto de ingeniería que es de 5 años.
- Además de que la implementación de la planta garantizará un insumo de calidad requerido por ANDEC S.A., este es un proyecto viable ya que la tasa interna de retorno TIR es de 14,3% y el valor actual neto de \$ 144615,20.

8.2. Recomendaciones

- Se debe buscar líneas de producción paralelas para utilizar y optimizar al máximo la capacidad de los equipos en la parte de la trituración y de este modo aumentar los ingresos para el proyecto.
- Contar con varias cotizaciones de proveedores de la maquinaria principal para así obtener nuevas opciones que cumplan con las condiciones del proceso para la elaboración de cal viva con la calidad y cantidad requerida.
- Realizar la instalación de los equipos secundarios con las características técnicas recomendadas para que satisfagan las necesidades de la planta.
- Adquirir el terreno donde va a ser implantada la planta de producción de cal viva lo más cercano posible a las canteras de piedra caliza, ya que con esto se disminuirá los costos de trasporte de la materia prima y se asegurará que la piedra caliza no adquiera humedad debido a su higroscopia.

- Utilizar el medio de transporte que traslada los polvos producidos en el área de acería de ANDEC S.A. hasta la población de Villingota, para que a su retorno a la planta principal de ANDEC S.A. lo haga con la cal viva, con lo cual se lograría disminuir el costo en el transporte del producto terminado.
- Tener el suficiente abastecimiento de materia prima, para garantizar la producción de la cal viva en tiempo de invierno, ya que en esta temporada se dificulta la extracción de la piedra caliza de las canteras.
- Realizar los mantenimientos preventivos en la maquinaria para no realizar mantenimientos correctivos, y así minimizar los tiempos muertos que podrían presentarse debido al mal funcionamiento de algún componente o maquinaria en general.
- Utilizar los diámetros indicados en las tuberías para aire comprimido, trasporte de diésel y agua potable. Los calibres de los cables de las distintas máquinas deben ser los especificados, ya que se encuentran relacionadas directamente con el amperaje que operan.

BIBLIOGRAFÍA

- Maerz, O. (2013). NEW Cooling of industrial kilns and furnaces. *Maerz*.
- ANSI. (2005, Abril 20). https://upcommons.upc.edu/pfc/bitstream/2099.1/17145/7/ANEXO%20E2%20%20BASES%20DE%20C%C3%81LCULOS%20DE%20TUBER%C3%8DAS.pdf. Retrieved from https://upcommons.upc.edu/pfc/bitstream/2099.1/17145/7/ANEXO%20E2%20%20BASES%20DE%20C%C3%81LCULOS%20DE%20TUBER%C3%8DAS.pdf
- Buthod, Paul. (2001). Pressure Vessel Hand Book. Oklahoma: Tulsa.
- Catálogo de Bombas y Accesorios. (2014). Retrieved from Catálogo de Bombas y Accesorios: http://www.bombasyaccesorios.com.ar/
- Coloma, G. (2008). La Cal: Es un reactivo químico. Chile.
- D388-82, A. (2008). Clasificacion de carbones minerales por rango.
- DISENSA. (2013, Febrerp). http://disensa.com/main/images/pdf/electro_cables.pdf. Retrieved from http://disensa.com/main/images/pdf/electro_cables.pdf.
- Emison. (2012, 08 12). *www.emison.com*. Retrieved from www.emison.com: http://www.emison.com/hornos%20discontinuos%20para%20cal.htm
- GEMONA DEL FRIULI. (2011). MANUAL DE INSTALACIÓN. In MORE, MANUAL DE INSTALACIÓN (p. 15). ITALIA.
- Hassibi, M. (2009). FACTORES QUE AFECTAN LA CALIDAD DE LA CAL VIVA (CAO). CHEMCO SYSTEMS.
- Herrera, M. L. (2010). *Metalurgia*. Retrieved from Metalurgia: http://ocw.unican.es/ensenanzas-tecnicas/metalurgia-y-siderurgia/materiales/Bloque%204%20Siderurgia.pdf
- Hinsa. (2010, Octubre 13). *produccioncal.blogspot.com*. Retrieved from http://produccioncal.blogspot.com/2010/10/video-1-produccion-de-cal.html
- Medina, R. (2006, Mayo). Análisis de la viabilidad económica y de la sostenibilidad del uso de armaduras corrugadas de acero inoxidable en elementos de hormigón armado sometidos a clases generales de exposición agresivas. Aplicación a los elementos en contacto con aguas residuale. España.
- Monografias. (2014, 04 02). Retrieved from http://es.wikipedia.org/wiki/%C3%93xido_de_calcio#cite_ref-10

- Oviedo, U. d. (2005, 12 30). *INSTALACIÓN DE AIRE*. Retrieved from http://web.uniovi.es/Areas/Mecanica.Fluidos/
- PEREIRA, U. T. (2012, 07 28). *METALOGRAFIA*. Retrieved from METALOGRAFIA: http://blog.utp.edu.co/metalografia/2012/07/28/5-5-diagrama-hierro-carbono-puntos-criticos-y-ejemplos-de-regla-de-la-palanca-2-2/
- Refractarios Aldayacentes, SL. (2013). *re-ald*. Retrieved from http://www.re-ald.com/ladrillos_refractarios.html
- Romero, L. (2011, 05 11). *Elementos de la Metalurgia*. Retrieved from Elementos de la Metalurgia: http://elementosdemetalurgiaromero.blogspot.com/2011/05/proceso-productivo-del-acero.html
- Rosas, L. (2011). DISEÑO DEL PLAN DE EJECUCIÓN DEL PROYECTO INSTALACIÓN DE UNA PLANTA PROCESADORA. Puerto Ordaz.
- Royo, E. C. (1994). *Aire comprimido, Teoria y calculo de instalaciones*. S.A. EDICIONES PARANINFO.
- Ruiz, R. (2008). Gestión de Operaciones.
- Solar, C. C. (2013, 08 15). *CODESOLAR*. Retrieved from CODESOLAR: http://www.codesolar.org/Energia-Solar/Energias-Renovables/Bombas-Agua/Pedrollo-Bomba-JSW-JSWM-3BH-3AM.html
- TAPIA, L. J. (2011, 07 28). *SIDERURGICA*. Retrieved from SIDERURGICA: http://siderurgiavoca2.blogspot.com/2011/07/produccion-de-arrabio.html
- Valle, S. d. (2009). *Manual Práctico de Acústica* (Terceira ed.). Rio de Janeiro : Música & Tecnología.
- Weldg, M. (2013, octubre 14). *metfusion*. Retrieved from http://metfusion.wordpress.com/2013/10/14/fabricacion-y-procesamiento-del-acero/
- Zhengzhou, H. (2014). *Henan Zhengzhou Mining Machinery Co., Ltd.* Retrieved from http://es.inczk.com/contents/2/118.html

ANEXOS