UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA

TEMA:

DISEÑO E IMPLEMENTACIÓN DE TÉCNICAS DE CONTROL PARA EL CONTROLADOR CAD DEL MANIPULADOR ROBÓTICO CRS A255

AUTOR

PATRICIO RIVERA

ÍNDICE

1 INTRODUCCIÓN

- Manipulador CRS A255
- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

ÍNDICE

INTRODUCCIÓN Manipulador CRS A255

2 MODELO CINEMÁTICO

- Matrices de trasformación homogénea
- Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

JUSTIFICACIÓN E IMPORTANCIA

Generar una solución viable para el controlador del manipulador, que permita poner en operación otros manipuladores, dejando la posibilidad de una mejora continua en el sistema de control del robot.

La investigación para el presente trabajo, tiene vital importancia en el desarrollo del proceso de aprendizaje de la cátedra de robótica industria.

JUSTIFICACIÓN E IMPORTANCIA

Generar una solución viable para el controlador del manipulador, que permita poner en operación otros manipuladores, dejando la posibilidad de una mejora continua en el sistema de control del robot.

La investigación para el presente trabajo, tiene vital importancia en el desarrollo del proceso de aprendizaje de la cátedra de robótica industria.

ALCANCE DEL PROYECTO

- Determinar los algoritmos necesarios para el cálculo del modelo cinemático del manipulador
- Analizar e Identificar la mejor técnica de control que se ajuste con las especificaciones de diseño para los actuadores del manipulador robótico
 Implementar el sistema de control y realizar la evaluación del mismo

ALCANCE DEL PROYECTO

- Determinar los algoritmos necesarios para el cálculo del modelo cinemático del manipulador
- Analizar e Identificar la mejor técnica de control que se ajuste con las especificaciones de diseño para los actuadores del manipulador robótico

Implementar el sistema de control y realizar la evaluación del mismo

ALCANCE DEL PROYECTO

- Determinar los algoritmos necesarios para el cálculo del modelo cinemático del manipulador
- Analizar e Identificar la mejor técnica de control que se ajuste con las especificaciones de diseño para los actuadores del manipulador robótico
- Implementar el sistema de control y realizar la evaluación del mismo

ÍNDICE

INTRODUCCIÓN Manipulador CRS A255

2 MODELO CINEMÁTICO

- Matrices de trasformación homogénea
- Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg.
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg.
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg.
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg.
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg.
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

CARACTERÍSTICAS

- Configuración antropomórfica
- Peso aproximado de 17 Kg.
- Longitud máxima 81.25 cm.
- Encoders Incrementales
- Motor DC como actuador

PROBLEMAS

ÍNDICE

INTRODUCCIÓN ■ Manipulador CRS A255

2 MODELO CINEMÁTICO

- Matrices de trasformación homogénea
- Cinemática

3 SISTEMA DE CONTROL

- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

LOCALIZACIÓN DE UN CUERPO RÍGIDO

DEFINICIÓN

Existen diversas herramientas matemáticas que permiten conocer la localización espacial de un cuerpo rígido. Estas herramientas nos permiten obtener la posición y orientación de cualquier objeto.

Posición: Sistema de coordenadas cartesianas (OXYZ)

Orientación: Matrices de rotación

LOCALIZACIÓN DE UN CUERPO RÍGIDO

DEFINICIÓN

Existen diversas herramientas matemáticas que permiten conocer la localización espacial de un cuerpo rígido. Estas herramientas nos permiten obtener la posición y orientación de cualquier objeto.

- Posición: Sistema de coordenadas cartesianas (OXYZ)
- Orientación: Matrices de rotación

LOCALIZACIÓN DE UN CUERPO RÍGIDO

DEFINICIÓN

Existen diversas herramientas matemáticas que permiten conocer la localización espacial de un cuerpo rígido. Estas herramientas nos permiten obtener la posición y orientación de cualquier objeto.

- Posición: Sistema de coordenadas cartesianas (OXYZ)
- Orientación: Matrices de rotación

PLANO DE 2 DIMENSIONES

Es un sistema de referencia constituido por la intersección de tres ejes perpendiculares entre sí en un origen definido y común. Sus componentes cartesianas están definidas en (x,y,z).

Describe la orientación entre un sistema de coordenadas unido a un cuerpo y un sistema de coordenadas fijo.

• Vectores unitarios de los dos sistemas i_x, j_y, i_u, j_v

• Un vector expresado en ambos sistemas
$$p_{xy} = p_x i_x + p_y j_y$$
 y
 $p_{uv} = p_u i_u + p_v j_v$

$$R = \begin{bmatrix} i_{x}i_{u} & i_{x}j_{v} \\ j_{v}i_{u} & j_{y}j_{v} \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$

Describe la orientación entre un sistema de coordenadas unido a un cuerpo y un sistema de coordenadas fijo.

• Vectores unitarios de los dos sistemas i_x, j_y, i_u, j_v

Un vector expresado en ambos sistemas $p_{xy} = p_x i_x + p_y j_y$ y $p_{uv} = p_u i_u + p_v j_v$

$$R = \begin{bmatrix} i_x i_u & i_x j_v \\ j_v i_u & j_y j_v \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Describe la orientación entre un sistema de coordenadas unido a un cuerpo y un sistema de coordenadas fijo.

- Vectores unitarios de los dos sistemas i_x, j_y, i_u, j_v
- Un vector expresado en ambos sistemas $p_{xy} = p_x i_x + p_y j_y$ y $p_{uv} = p_u i_u + p_v j_v$

$$R = \begin{bmatrix} i_x i_u & i_x j_v \\ j_v i_u & j_y j_v \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$

Describe la orientación entre un sistema de coordenadas unido a un cuerpo y un sistema de coordenadas fijo.

- Vectores unitarios de los dos sistemas i_x, j_y, i_u, j_v
- Un vector expresado en ambos sistemas $p_{xy} = p_x i_x + p_y j_y$ y $p_{uv} = p_u i_u + p_v j_v$

$$R = \begin{bmatrix} i_x i_u & i_x j_v \\ j_v i_u & j_y j_v \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$

Describe la orientación entre un sistema de coordenadas unido a un cuerpo y un sistema de coordenadas fijo.

- Vectores unitarios de los dos sistemas i_x, j_y, i_u, j_v
- Un vector expresado en ambos sistemas $p_{xy} = p_x i_x + p_y j_y$ y $p_{uv} = p_u i_u + p_v j_v$

$$R = \begin{bmatrix} i_x i_u & i_x j_v \\ j_v i_u & j_y j_v \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$

MATRICES DE ROTACIÓN 3 DIMENSIONES

Para el caso de 3 dimensiones se debe tomar en cuenta el eje de giro

$$R(x, lpha) = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & cos lpha & -sen lpha \ 0 & sen lpha & cos lpha \end{array}
ight]$$

$$R(y, arphi) = \left[egin{array}{ccc} cos arphi & 0 & sen arphi \ 0 & 1 & 0 \ -sen arphi & 0 & cos lpha \end{array}
ight]$$

$$R(z,\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

MATRICES DE ROTACIÓN 3 DIMENSIONES

Para el caso de 3 dimensiones se debe tomar en cuenta el eje de giro

MATRIZ DE ROTACIÓN X

$$R(x, lpha) = \left[egin{array}{cccc} 1 & 0 & 0 \ 0 & cos lpha & -sen lpha \ 0 & sen lpha & cos lpha \end{array}
ight]$$
 $R(y, arphi) = \left[egin{array}{cccc} cos arphi & 0 & sen arphi \ 0 & 1 & 0 \ -sen arphi & 0 & cos lpha \end{array}
ight]$

$$R(z,\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- FUERZAS ARMAD

ÍNDICE

INTRODUCCIÓN ■ Manipulador CRS A255

- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

MATRICES DE TRASFORMACIÓN HOMOGÉNEA

Una matriz de dimensión 4x4 que representa la transformación de un vector desde un sistema de coordenadas a otro.

APLICACIONES

 Representar la posición y orientación de un sistema girado y trasladado O'UVW respecto a un sistema O'XYZ

 Transformar un vector expresado en coordenadas con referencia a O'UVW a su expresión en coordenadas del sistema de referencia

MATRIZ DE TRANSFORMACIÓN

$$T = \begin{bmatrix} R_{3\times3} & p_{3\times1} \\ f_{1\times3} & w_{1\times1} \end{bmatrix} = \begin{bmatrix} Rotación & Traslación \\ Perspectiva & Escala \end{bmatrix}$$

APLICACIONES

 Representar la posición y orientación de un sistema girado y trasladado O'UVW respecto a un sistema O'XYZ

 Transformar un vector expresado en coordenadas con referencia a O'UVW a su expresión en coordenadas del sistema de referencia

MATRIZ DE TRANSFORMACIÓN

$$T = \begin{bmatrix} R_{3\times3} & p_{3\times1} \\ f_{1\times3} & w_{1\times1} \end{bmatrix} = \begin{bmatrix} Rotación & Traslación \\ Perspectiva & Escala \end{bmatrix}$$

APLICACIONES

 Representar la posición y orientación de un sistema girado y trasladado O'UVW respecto a un sistema O'XYZ

 Transformar un vector expresado en coordenadas con referencia a O'UVW a su expresión en coordenadas del sistema de referencia

PRODUCTO DE EXPONENCIALES

Se interpreta como un mapeo de puntos de un sistema de coordenadas a otro. Se selecciona un eje de rotación "w", y un punto "q". Se utiliza el término $e^{[\hat{w}]\theta}$ para representar la localización de un sistema desde su posición inicial después de rotar θ radianes sobre el eje \hat{w} .

PRODUCTO DE EXPONENCIALES

MATRIZ DE TRANSFORMACIÓN

$$T_{01} = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] T_{02} = \left[\begin{array}{cc} R' & p' \\ 0 & 1 \end{array} \right]$$

$$\begin{aligned} R' &= e^{[\hat{w}]\theta} R\\ p' &= q + e^{[\hat{w}]\theta} (p-q) + h\theta \hat{w}\\ \begin{bmatrix} R' & p'\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{[\hat{w}]\theta} & (I-e^{[\hat{w}]\theta})q + h\theta \hat{w}\\ 0 & 1 \end{bmatrix} \begin{bmatrix} R & p\\ 0 & 1 \end{bmatrix} \end{aligned}$$

MATRIZ DE TRANSFORMACIÓN

$$abla_{01} = \left[egin{array}{cc} R & p \ 0 & 1 \end{array}
ight] T_{02} = \left[egin{array}{cc} R' & p' \ 0 & 1 \end{array}
ight]$$

$$R' = e^{[\hat{w}] heta} R \ p' = q + e^{[\hat{w}] heta} (p-q) + h heta \hat{w} \ \left[egin{array}{c} R' & p' \ 0 & 1 \end{array}
ight] = \left[egin{array}{c} e^{[\hat{w}] heta} (I - e^{[\hat{w}] heta})q + h heta \hat{w} \ 0 & 1 \end{array}
ight] \left[egin{array}{c} R & p \ 0 & 1 \end{array}
ight] \end{array}$$

$$S = \begin{pmatrix} w \\ v \end{pmatrix}$$

$$S = \begin{bmatrix} 0 & -w_3 & w_2 & v_1 \\ w_3 & 0 & -w_1 & v_2 \\ -w_2 & w_1 & 0 & v_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} [w] & v \\ 0 & 0 \end{bmatrix}$$

$$S = \begin{pmatrix} w \\ v \end{pmatrix}$$

$$S = \begin{bmatrix} 0 & -w_3 & w_2 & v_1 \\ w_3 & 0 & -w_1 & v_2 \\ -w_2 & w_1 & 0 & v_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} [w] & v \\ 0 & 0 \end{bmatrix}$$

$$S = \begin{pmatrix} w \\ v \end{pmatrix}$$

$$S = \begin{bmatrix} 0 & -w_3 & w_2 & v_1 \\ w_3 & 0 & -w_1 & v_2 \\ -w_2 & w_1 & 0 & v_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} [w] & v \\ 0 & 0 \end{bmatrix}$$

Se desea reescribir como una matriz de exponenciales para lo cual se toman las siguientes consideraciones; el término $e^{[\hat{w}]\theta}$ representa la matriz de rotación respecto al eje de giro y un término $S \in R^6$

$$e^{[S]\theta} = \begin{bmatrix} e^{[w]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}$$

$$G(\theta) = I\theta + (1 - \cos\theta)[w] + (\theta - \sin\theta)[w]^2$$

$$v = -w \times q + hw$$

Se desea reescribir como una matriz de exponenciales para lo cual se toman las siguientes consideraciones; el término $e^{[\hat{w}]\theta}$ representa la matriz de rotación respecto al eje de giro y un término $S \in R^6$

$$e^{[S]\theta} = \begin{bmatrix} e^{[w]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}$$
$$G(\theta) = I\theta + (1 - \cos\theta)[w] + (\theta - \sin\theta)[w]^2$$
$$v = -w \times q + hw$$

Se desea reescribir como una matriz de exponenciales para lo cual se toman las siguientes consideraciones; el término $e^{[\hat{w}]\theta}$ representa la matriz de rotación respecto al eje de giro y un término $S \in R^6$

$$e^{[S] heta} = \left[egin{array}{c} e^{[w] heta} & G(heta)v \ 0 & 1 \end{array}
ight]$$
 $G(heta) = I heta + (1 - \cos heta)[w] + (heta - \sin heta)[w]^2$
 $v = -w imes q + hw$

ÍNDICE

INTRODUCCIÓN ■ Manipulador CRS A255

2 MODELO CINEMÁTICO

Matrices de trasformación homogénea

Cinemática

3 SISTEMA DE CONTROL

- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

CINEMÁTICA DIRECTA E INVERSA

La relación entre el movimiento de las articulaciones del manipulador y el movimiento resultante a un sistema de referencia. La cinemática directa consiste en determinar la posición y orientación del efector final con los ángulos de cada articulación. La cinemática inversa determina la configuración del manipulador para una posición del extremo conocida.

CINEMÁTICA DIRECTA

Para un robot de pocos grados se puede obtener la solución mediante ecuaciones geométricas. Para robots que poseen más grados de libertad se debe optar por un procedimiento mas sistemático. Una matriz de transformación se define:

$$T = {}^{0} A_{6} = {}^{0} A_{1} {}^{1} A_{2} {}^{2} A_{3} \dots {}^{n-2} A_{n-1} {}^{n-1} A_{n}$$

Para determinar la matriz de transformación desde el sistema de origen hasta un sistema H, se utiliza una secuencia de multiplicaciones:

$$T_{OH} = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} \dots e^{[S_n]\theta_n} M$$

VECTORES W $w_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad w_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad w_{3} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad w_{4} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad w_{5} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

VECTORES W

$$w_{1} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \quad w_{2} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad w_{3} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad w_{4} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad w_{5} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

$$q_{1} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad q_{2} = \begin{bmatrix} 0\\0\\l_{1} \end{bmatrix} \quad q_{3} = \begin{bmatrix} 0\\0\\l_{1}+l_{2} \end{bmatrix} \quad q_{4} = \begin{bmatrix} 0\\l_{3}\\l_{1}+l_{2} \end{bmatrix} \quad q_{5} = \begin{bmatrix} 0\\0\\l_{1}+l_{2} \end{bmatrix}$$

$$v_{1} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad v_{2} = \begin{bmatrix} 0\\l_{1}\\0 \end{bmatrix} \quad v_{3} = \begin{bmatrix} 0\\l_{1}+l_{2}\\0 \end{bmatrix} \quad v_{4} = \begin{bmatrix} 0\\l_{1}+l_{2}\\-l_{3} \end{bmatrix} \quad v_{5} = \begin{bmatrix} -(l_{1}+l_{2})\\0\\0 \end{bmatrix}$$

VECTORES W

$$w_{1} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \quad w_{2} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad w_{3} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad w_{4} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad w_{5} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

$$q_{1} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad q_{2} = \begin{bmatrix} 0\\0\\l_{1} \end{bmatrix} \quad q_{3} = \begin{bmatrix} 0\\0\\l_{1}+l_{2} \end{bmatrix} \quad q_{4} = \begin{bmatrix} 0\\l_{3}\\l_{1}+l_{2} \end{bmatrix} \quad q_{5} = \begin{bmatrix} 0\\0\\l_{1}+l_{2} \end{bmatrix}$$

$$\mathbf{v_1} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad \mathbf{v_2} = \begin{bmatrix} 0\\l_1\\0 \end{bmatrix} \quad \mathbf{v_3} = \begin{bmatrix} 0\\l_1+l_2\\0 \end{bmatrix} \quad \mathbf{v_4} = \begin{bmatrix} 0\\l_1+l_2\\-l_3 \end{bmatrix} \quad \mathbf{v_5} = \begin{bmatrix} -(l_1+l_2)\\0\\0 \end{bmatrix}$$

MATRIZ M

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_3 + l_4 \\ 0 & 0 & 1 & l_1 + l_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 40,5 \\ 0 & 0 & 1 & 50,8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\bar{}=e^{S_1\theta_1}e^{S_2\theta_2}e^{S_3\theta_3}e^{S_4\theta_4}e^{S_5\theta_5}M$

MATRIZ M

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_3 + l_4 \\ 0 & 0 & 1 & l_1 + l_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 40,5 \\ 0 & 0 & 1 & 50,8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$T = e^{\widehat{S_1}\theta_1} e^{\widehat{S_2}\theta_2} e^{\widehat{S_3}\theta_3} e^{\widehat{S_4}\theta_4} e^{\widehat{S_5}\theta_5} M$$

Es una matriz en donde se relaciona la velocidad del efector final respecto a un sistema de coordenadas fijo en la base del manipulador o con respecto a su efector final.

VELOCIDAD ESPACIAL

$$[V_{S}] = \dot{T} T^{-1}$$

$$T(\theta_{1}, ..., \theta_{n}) = e^{[S_{1}]\theta_{1}} e^{[S_{2}]\theta_{2}} ... e^{[S_{n}]\theta_{n}} M$$

$$\dot{T} = \left(\frac{d}{dt}e^{[S_1]\theta_1}\right)\dots e^{[S_n]\theta_n}M + e^{[S_1]\theta_1}\left(\frac{d}{dt}e^{[S_2]\theta_2}\right)\dots e^{[S_n]\theta_n}M + \dots$$
$$T^{-1} = M^{-1}e^{-[S_n]\theta_n}\dots e^{-[S_1]\theta_1}$$
$$[V_s] = [S_1]\dot{\theta}_1 + e^{[S_1]\theta_1}[S_2]e^{-[S_1]\theta_1}\dot{\theta}_2 + e^{[S_1]\theta_1}e^{[S_2]\theta_2}[S_3]e^{-[S_1]\theta_1}e^{-[S_2]\theta_2}\dot{\theta}_3 + \dots$$
$$V_s = V_{s1}(\theta)\dot{\theta}_1 + \dots + V_{sn}(\theta)\dot{\theta}_n = J_s(\theta)\dot{\theta}$$

$$\dot{T} = \left(\frac{d}{dt}e^{[S_1]\theta_1}\right) \dots e^{[S_n]\theta_n}M + e^{[S_1]\theta_1}\left(\frac{d}{dt}e^{[S_2]\theta_2}\right) \dots e^{[S_n]\theta_n}M + \dots$$
$$T^{-1} = M^{-1}e^{-[S_n]\theta_n} \dots e^{-[S_1]\theta_1}$$
$$[V_s] = [S_1]\dot{\theta}_1 + e^{[S_1]\theta_1}[S_2]e^{-[S_1]\theta_1}\dot{\theta}_2 + e^{[S_1]\theta_1}e^{[S_2]\theta_2}[S_3]e^{-[S_1]\theta_1}e^{-[S_2]\theta_2}\dot{\theta}_3 + \dots$$
$$V_s = V_{s1}(\theta)\dot{\theta}_1 + \dots + V_{sn}(\theta)\dot{\theta}_n = J_s(\theta)\dot{\theta}$$

El término i de la parte derecha de la ecuación es de la forma $Ad_{Ti-1}(S_i) = T_{i-1}(S_i)T_{i-1}^{-1} = \begin{bmatrix} R & 0\\ (p)R & R \end{bmatrix} \begin{pmatrix} w\\ v \end{pmatrix}$, donde $T_{i-1} = e^{[S_1]\theta_1} \dots e^{[S_{i-1}]\theta_{i-1}}$. Considerando que el término S_i es el vector de movimiento de la articulación i.

JACOBIANO ESPACIAL

$$V_s = \begin{bmatrix} V_{s1}(\theta) & V_{s2}(\theta) & \dots & V_{sn}(\theta) \end{bmatrix}$$

ΓĠ₁]

$$V_s = J_s(\theta)\dot{\theta}$$

$$J_{s}(\theta) = \begin{bmatrix} w_{1} & w_{2} & w_{3} & w_{4} & w_{5} \\ v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -(l_{1}+l_{2}) \\ 0 & l_{1} & l_{1}+l_{2} & l_{1}+l_{2} & 0 \\ 0 & 0 & 0 & -l_{3} & 0 \end{bmatrix}$$

El término i de la parte derecha de la ecuación es de la forma $Ad_{Ti-1}(S_i) = T_{i-1}(S_i)T_{i-1}^{-1} = \begin{bmatrix} R & 0\\ (p)R & R \end{bmatrix} \begin{pmatrix} w\\ v \end{pmatrix}$, donde $T_{i-1} = e^{[S_1]\theta_1}...e^{[S_{i-1}]\theta_{i-1}}$. Considerando que el término S_i es el vector de movimiento de la articulación i.

JACOBIANO ESPACIAL

$$V_{s} = \begin{bmatrix} V_{s1}(\theta) & V_{s2}(\theta) & \dots & V_{sn}(\theta) \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \vdots \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix}$$
$$V_{s} = J_{s}(\theta)\dot{\theta}$$
$$J_{s}(\theta) = \begin{bmatrix} w_{1} & w_{2} & w_{3} & w_{4} & w_{5} \\ v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -(l_{1}+l_{2}) \\ 0 & l_{1} & l_{1}+l_{2} & l_{1}+l_{2} & 0 \\ 0 & 0 & 0 & -(l_{3} & 0) \end{bmatrix}$$

Encuentra los valores que deben adoptar las coordenadas articulares del robot

$$q = \{q_1, q_2, ..., q_n\}^7$$

Existen metodologías que ofrecen herramientas para realizar los cálculos necesarios. No existe una solución única. Pocos grados de libertad pueden ser resueltos por geometría. Los métodos numéricos son utilizados para mejorar la precisión de las soluciones

NEWTON-RAPHSON

Es un método que linealiza una función por la recta tangente a un valor supuesto. La intersección con el eje, según el método, será una mejor aproximación de la raíz que el valor anterior. Se realizarán sucesivas repeticiones hasta que el método haya convergido lo suficiente.

Se encuentra una solución numérica para el problema de la cinemática inversa

$$T(\theta) = X$$

$$T(\theta)X^{-1} = I$$

$$log(X^{-1}T(\theta)) = 0$$

$$[V_b] = T^{-1}\dot{T} = [J_b(\theta)\dot{\theta}]$$

$$[V_b] \triangle t = T^{-1}\triangle T$$

$$[V_b] \triangle t = X^{-1}(X - T(\theta_0)) = I - X^{-1}T(\theta_0)$$

$$X^{-1}T(\theta_0) = I + [S]$$

$$J_b(\theta)\triangle \theta = S$$

Se encuentra una solución numérica para el problema de la cinemática inversa

$$T(\theta) = X$$

$$T(\theta)X^{-1} = I$$

$$log(X^{-1}T(\theta)) = 0$$

$$[V_b] = T^{-1}\dot{T} = [J_b(\theta)\dot{\theta}]$$

$$[V_b] \triangle t = T^{-1}\triangle T$$

$$[V_b] \triangle t = X^{-1}(X - T(\theta_0)) = I - X^{-1}T(\theta_0)$$

$$X^{-1}T(\theta_0) = I + [S]$$

$$J_b(\theta)\triangle \theta = S$$

$$[S] = log(X^{-1}T(\theta_0))$$

Se encuentra una solución numérica para el problema de la cinemática inversa

$$T(\theta) = X$$

$$T(\theta)X^{-1} = I$$

$$log(X^{-1}T(\theta)) = 0$$

$$[V_b] = T^{-1}\dot{T} = [J_b(\theta)\dot{\theta}]$$

$$[V_b] \triangle t = T^{-1}\triangle T$$

$$[V_b] \triangle t = X^{-1}(X - T(\theta_0)) = I - X^{-1}T(\theta_0)$$

$$X^{-1}T(\theta_0) = I + [S]$$

$$J_b(\theta)\triangle \theta = S$$

$$[S] = log(X^{-1}T(\theta_0))$$

Dado
$$X \in SE(3)$$

$$\begin{bmatrix} S \end{bmatrix} = log T(\theta) X^{-1}$$

$$J_s(\theta) \triangle \theta = S$$

$$\theta \leftarrow \theta + \triangle \theta$$

ÍNDICE

INTRODUCCIÓN Manipulador CRS A255

- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

DINÁMICA

NEWTON-EULER

Formulación de Newton Euler para la dinámica del manipulador robótico $au_i = M(q)\ddot{q}_i + c(q,\dot{q})\dot{q} + gg(q) + f_f(\dot{q},q)$:

Significado	Notación
Masa del eslabón 1, 2, 3	m1, m2, m3
Longitud del eslabón 1, 2, 3	/1, /2, /3
Inercia del eslabón 1, 2, 3	l_{z1}, l_{z2}, l_{z3}
Inercia del eslabón 1, 2, 3	l_{y1}, l_{y2}, l_{y3}
Inercia del eslabón 1,2 ,3	I_{x1}, I_{x2}, I_{x3}

Significado	Notación
Centro de masa del eslabón 1, 2, 3	<i>l</i> c1, <i>l</i> c2, <i>l</i> c3
Coeficiente de fricción viscosa 1, 2, 3	b_{1}, b_{2}, b_{3}
Coeficiente de fricción de Coulomb 1, 2, 3	f_{c1}, f_{c2}, f_{c3}
Coeficiente de fricción estática 1, 2, 3	f_{e1}, f_{e2}, f_{e3}
Aceleración debido a la gravedad	g

Usada para modelar la incertidumbre asociada con la falta de precisión y falta de información. Propuesta por primera vez por Zadeh (1965) para controlar un motor a vapor. Su estructura básica es la siguiente:

SISTEMA DE CONTROL DIFUSO

Fusificación: Asignar los valores de entrada a conjuntos difusos
 Base de Reglas: Condiciones lingüísticas, conjunto de reglas
 Inferencia Difusa: Obtener las funciones de pertenencias
 Defusificación: Se transforma en una acción de control para el sistema

SISTEMA DE CONTROL DIFUSO

Fusificación: Asignar los valores de entrada a conjuntos difusos
 Base de Reglas: Condiciones lingüísticas, conjunto de reglas
 Inferencia Difusa: Obtener las funciones de pertenencias
 Defusificación: Se transforma en una acción de control para el sistema

SISTEMA DE CONTROL DIFUSO

Fusificación: Asignar los valores de entrada a conjuntos difusos
 Base de Reglas: Condiciones lingüísticas, conjunto de reglas
 Inferencia Difusa: Obtener las funciones de pertenencias
 Defusificación: Se transforma en una acción de control para el sistem

SISTEMA DE CONTROL DIFUSO

- **Fusificación**: Asignar los valores de entrada a conjuntos difusos
- Base de Reglas: Condiciones lingüísticas, conjunto de reglas
- Inferencia Difusa: Obtener las funciones de pertenencias
- Defusificación: Se transforma en una acción de control para el sistema

- Grande Negativo "GN"
- Pequeño Negativo "PN"
- Cero "Z
- Pequeño Positivo "PP"
- Grande Positivo "GP"

Grande Negativo "GN"
Pequeño Negativo "PN"
Cero "Z"
Pequeño Positivo "PP"
Grande Positivo "GP"

- Grande Negativo "GN"
- Pequeño Negativo "PN"
- Cero "Z"
- Pequeño Positivo "PP"
- Grande Positivo "GP"

- Grande Negativo "GN"
- Pequeño Negativo "PN"
- Cero "Z"
- Pequeño Positivo "PP"

Grande Positivo "GP"

- Grande Negativo "GN"
- Pequeño Negativo "PN"
- Cero "Z"
- Pequeño Positivo "PP"
- Grande Positivo "GP"

Los datos para realizar la matriz se utiliza el error y la integral del error primera articulación.

e∖ie	GN	PN	Ζ	PP	GP
GN	ΡN	PN	GN	GN	GN
PN	ΡN	PN	ΡN	ΡN	GN
Ζ	ΡN	PN	Z	PP	PP
PP	GP	PP	PP	PP	PP
GP	GP	GP	GP	PP	PP

Los datos para realizar la matriz se utiliza el error y la integral del error, segunda y tercera articulación.

e∖ie	GN	PN	Ζ	PP	GP
GN	GN	GN	GN	GN	GN
PN	PN	PN	PN	GN	GN
Ζ	PN	PN	Z	PP	PP
PP	GP	GP	PP	PP	PP
GP	GP	GP	GP	GP	GP

e∖ie	GN	PN	Ζ	PP	GP
GN	PN	PN	PN	GN	GN
PN	PN	PN	PN	ΡN	ΡN
Ζ	ΡN	ΡN	Z	PP	PP
PP	GP	GP	GP	PP	PP
GP	GP	GP	GP	GP	GP

Los datos para realizar la matriz se utiliza el error y la integral del error, movimiento de la muñeca.

e∖ie	GN	PN	Ζ	PP	GP
GN	PN	PN	PN	GN	GN
PN	PN	PN	ΡN	PN	ΡN
Ζ	PN	PN	Z	PP	PP
PP	GP	GP	PP	PP	PP
GP	GP	GP	GP	GP	GP

e∖ie	GN	PN	Ζ	PP	GP
GN	GN	GN	GN	GN	GN
PN	PN	ΡN	ΡN	GN	GN
Ζ	PN	ΡN	Z	PP	PP
PP	GP	GP	PP	PP	PP
GP	GP	GP	GP	GP	GP

INFERENCIA DIFUSA

INFERENCIA DIFUSA CINTURA

INFERENCIA DIFUSA CODO

INFERENCIA DIFUSA HOMBRO

INFERENCIA DIFUSA MUÑECA

CENTRO DE GRAVEDAD

La salida del sistema es el resultado del promedio de todas las reglas, donde el nivel de salida z_i de cada regla es ponderado por el valor w_i de su inferencia : $u_{crisp} = \frac{\sum w_i z_i}{\sum w_i}$

ÍNDICE

INTRODUCCIÓN Manipulador CRS A255

- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

ÍNDICE

INTRODUCCIÓN Manipulador CRS A255

- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

5 CONCLUSIONES

•
$$G_s = \frac{25,25}{(1+0,0215*s)^2}$$

• $\tau = 0,0723$
• $ts = 0,126$

•
$$G_s = \frac{25,25}{(1+0,0215*s)^2}$$

• $\tau = 0,0723$
• $ts = 0,126$

•
$$G_s = \frac{25,25}{(1+0,0215*s)^2}$$

• $\tau = 0,0723$
• $ts = 0,126$

•
$$G_s = \frac{25,25}{(1+0,0215*s)^2}$$

• $\tau = 0,0723$
• $ts = 0,126$

	Rise Time	Setling Time	Кр	Tp1	Tp2	fit
P2_10	0,0932	0,17	25,133	0,0073	0,0412	89,64%
P2_12	0,0736	0,128	23,829	0,0217	0,0221	88,17%
P2_14	0,0784	0,141	25,21	0,0128	0,0317	88,25%
P2_16	0,0687	0,119	27,825	0,0204	0,0204	89,50%
P2_18	0,0723	0,126	25,256	0,0215	0,0215	90,84%
P2_20	0,0895	0,155	23,337	0,0266	0,0266	88,33%

CONTROL

- Regulador 5V v 3V
- STM32f4
 Discovery
- Entradas y Salidas
- MPU6050

Potencia

- Fuente 12V
 20A
- Drivers L298N
- Mosfet IRFZ44N
- Convertidor
 Boost
- Optoacoplador 4N25

CONTROL

- Regulador 5V y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

Potencia

- Fuente 12V 20A
- Drivers L298N
- Mosfet IRFZ44N
- Convertidor
 Boost
- Optoacoplador 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet
 IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet
 IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet
 IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V y 3V
- STM32f4 Discovery
- Entradas y Salidas

MPU6050

- Fuente 12V 20A
- Drivers L298N
- Mosfet IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V 20A
- Drivers L298N
- Mosfet IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V 20A
- Drivers L298N
- Mosfet IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet
 IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet
 IRFZ44N
- Convertidor
 Boost
- Optoacoplador
 4N25

CONTROL

- Regulador 5V
 y 3V
- STM32f4 Discovery
- Entradas y Salidas
- MPU6050

- Fuente 12V20A
- Drivers L298N
- Mosfet
 IRFZ44N
- Convertidor
 Boost
- Optoacoplador 4N25

CARACTERÍSTICAS

	16F88	18F452	STM32F4
Reloj	20 MHz	40 MHz	168 MHz
Flash	7 Kb	32 Kb	1 Mb
RAM	368 byte	1536 byte	192 Kb

DIAGRAMAS

ÍNDICE

I INTRODUCCIÓN

- Manipulador CRS A255
- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

Posición 1: x =	(15); y = 0	(50); <i>z</i> =	(35)
-----------------	-------------	------------------	------

Posición	2: <i>x</i> =	(30); y =	= (46); z =	(21)
----------	---------------	-----------	-------------	------

Error medio Posicion1		o Posicion1 Error medio Posicion2		Promedio	
Cintura	0,6	Cintura	0,625	0,6125	
Hombro	1,3	Hombro		1,1375	
Codo	1,125	Codo	0,6		
Yaw	1,65	Yaw	2,075	1,8625	

	Posición 1: x =	= (15); y	= (50); z =	= (35)
--	-----------------	-----------	---------------	--------

Posición 2: x =	= (30); y = 1	(46); z =	(21)
-----------------	---------------	-----------	------

Error medio Posicion1		osicion1 Error medio Posicion2		Promedio
Cintura	0,6	Cintura	0,625	0,6125
Hombro	1,3	Hombro		1,1375
Codo	1,125	Codo	0,6	
Yaw	1,65	Yaw	2,075	1,8625

- Posición 1: x = (15); y = (50); z = (35)
- Posición 2: x = (30); y = (46); z = (21)

Error medio Posicion1		Error medio Posicion2		Promedio	
Cintura	0,6	Cintura	0,625	0,6125	
Hombro	1,3	Hombro		1,1375	
Codo	1,125	Codo	0,6		
Yaw	1,65	Yaw	2,075	1,8625	

- Posición 1: x = (15); y = (50); z = (35)
- Posición 2: x = (30); y = (46); z = (21)

	Error medio Posicion1		Error med	dio Posicion2	Promedio
	Cintura	0,6	Cintura	0,625	0,6125
•	Hombro	1,3	Hombro	0,975	1,1375
	Codo	1,125	Codo	0,6	0,8625
	Yaw	1,65	Yaw	2,075	1,8625

PARÁMETROS

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}} * Z_{\alpha/2}; \bar{x} + \frac{\sigma}{\sqrt{n}} * Z_{\alpha/2}\right)$$

x : es el valor de la media de la muestra

- lacksquare σ : es la desviación estándar de la muestra
- $z_{\alpha/2}$: es el valor de la tabla normal asociado al nivel de confianza
- n : tamaño de la muestra.

PARÁMETROS

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}} * z_{\alpha/2}; \bar{x} + \frac{\sigma}{\sqrt{n}} * z_{\alpha/2} \right)$$

x : es el valor de la media de la muestra

- lacksquare σ : es la desviación estándar de la muestra
- $z_{\alpha/2}$: es el valor de la tabla normal asociado al nivel de confianza
- n : tamaño de la muestra.

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}} * z_{\alpha/2}; \bar{x} + \frac{\sigma}{\sqrt{n}} * z_{\alpha/2} \right)$$

- x : es el valor de la media de la muestra
- lacksquare σ : es la desviación estándar de la muestra
- $z_{\alpha/2}$: es el valor de la tabla normal asociado al nivel de confianza
- n : tamaño de la muestra.

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}} * z_{\alpha/2}; \bar{x} + \frac{\sigma}{\sqrt{n}} * z_{\alpha/2} \right)$$

- x : es el valor de la media de la muestra
- lacksquare σ : es la desviación estándar de la muestra
- $z_{\alpha/2}$: es el valor de la tabla normal asociado al nivel de confianza
- n : tamaño de la muestra.

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}} * z_{\alpha/2}; \bar{x} + \frac{\sigma}{\sqrt{n}} * z_{\alpha/2} \right)$$

- x : es el valor de la media de la muestra
- lacksquare σ : es la desviación estándar de la muestra
- **z** $_{\alpha/2}$: es el valor de la tabla normal asociado al nivel de confianza
- n : tamaño de la muestra.

$$\left(\bar{x} - \frac{\sigma}{\sqrt{n}} * z_{\alpha/2}; \bar{x} + \frac{\sigma}{\sqrt{n}} * z_{\alpha/2} \right)$$

- x : es el valor de la media de la muestra
- lacksquare σ : es la desviación estándar de la muestra
- $z_{\alpha/2}$: es el valor de la tabla normal asociado al nivel de confianza
- n : tamaño de la muestra.

Si el nivel de confianza es 95% entonces $(1 - \alpha)$ tiene el valor de 0.95, por lo que α será 0.05 divido entre dos es 0.025, éste valor restamos de la unidad y buscamos en la tabla de distribución el valor correspondiente.

$$confianza = 99\%$$
 $z = 2,58$
 $confianza = 95\%$
 $z = 1,96$
 $confianza = 90\%$
 $z = 1,65$

CONTROLADOR FINAL

ÍNDICE

I INTRODUCCIÓN

- Manipulador CRS A255
- 2 MODELO CINEMÁTICO
 - Matrices de trasformación homogénea
 - Cinemática
- **3** SISTEMA DE CONTROL
- 4 IMPLEMENTACIÓN
 - Rediseño controlador CAD
 - Pruebas

 El Producto de exponenciales simplifica considerablemente el análisis del modelo cinemático

- La implementación del método de Newton-Raphson junto con el Jacobiano espacial facilita el cálculo de la cinemática inversa
- El uso de un control difuso, las funciones de pertenencia y las bases de reglas permitieron generar el movimiento deseado y alcanzar el objetivo de control.
- El rediseño del controlador CAD permite una alternativa válida para poder sustituir al controlador original, además de que permite mejoras sobre su sistema de control

- El Producto de exponenciales simplifica considerablemente el análisis del modelo cinemático
- La implementación del método de Newton-Raphson junto con el Jacobiano espacial facilita el cálculo de la cinemática inversa
- El uso de un control difuso, las funciones de pertenencia y las bases de reglas permitieron generar el movimiento deseado y alcanzar el objetivo de control.
- El rediseño del controlador CAD permite una alternativa válida para poder sustituir al controlador original, además de que permite mejoras sobre su sistema de control

- El Producto de exponenciales simplifica considerablemente el análisis del modelo cinemático
- La implementación del método de Newton-Raphson junto con el Jacobiano espacial facilita el cálculo de la cinemática inversa
- El uso de un control difuso, las funciones de pertenencia y las bases de reglas permitieron generar el movimiento deseado y alcanzar el objetivo de control.
- El rediseño del controlador CAD permite una alternativa válida para poder sustituir al controlador original, además de que permite mejoras sobre su sistema de control

- El Producto de exponenciales simplifica considerablemente el análisis del modelo cinemático
- La implementación del método de Newton-Raphson junto con el Jacobiano espacial facilita el cálculo de la cinemática inversa
- El uso de un control difuso, las funciones de pertenencia y las bases de reglas permitieron generar el movimiento deseado y alcanzar el objetivo de control.
- El rediseño del controlador CAD permite una alternativa válida para poder sustituir al controlador original, además de que permite mejoras sobre su sistema de control

GRACIAS POR LA ATENCIÓN

