

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA: "ANÁLISIS DE LA PÉRDIDA DE MASA Y EL CALOR GENERADO EN UN PAR DE FRICCIÓN BRONCE ACERO SOMETIDO A ENERGÍA MECÁNICA DE FRICCIÓN"

AUTORES: NÚÑEZ MORALES, JUAN SEBASTIÁN PAREDES PAREDES, LUIS FERNANDO

DIRECTOR ING. ANDRADE, VÍCTOR SANGOLQUÍ - ECUADOR 2016

CAPÍTULO 1 GENERALIDADES

INTRODUCCIÓN

Búsqueda de nuevas formas de energía.

La fricción es considerada pérdida de energía en aplicaciones varias.

Soldadura por fricción.

Pruebas de rozamiento por parte del Ingeniero José Guasumba.

DEFINICIÓN DEL PROBLEMA

No existe un análisis de la pérdida de masa y el calor generado en un par de fricción bronce acero sometido a energía mecánica de fricción.

OBJETIVOS

• GENERAL

Realizar el análisis la pérdida de masa y el calor generado en un par de fricción bronce acero sometido a energía mecánica de fricción.

- ESPECÍFICOS
 - Determinar la geometría de las probetas de bronce y de acero así como su dimensionamiento óptimo.
 - Diseñar la estructura de sujeción de las probetas al mecanismo de rotación.
 - Analizar los parámetros energéticos de los experimentos mediante los ensayos experimentales variando la fuerza de aplastamiento y la velocidad de rotación.

ALCANCE

Análisis del calor generado en un par de fricción bronce - acero a coste de una masa desgastada.

Conclusiones.

Recomendaciones.

enieria Mecánica)

JUSTIFICACIÓN

Universidad de las fuerzas Armadas - ESPE Primera en la generación de calor a partir de energía mecánica de fricción.

Aplicaciones futuras

Cuantificar el calor generado a coste de una masa perdida (desgastada).

CAPÍTULO 2 FUNDAMENTOS TEÓRICOS

CAPÍTULO 3

DISEÑO Y CONSTRUCCIÓN DE LAS PROBETAS

PARÁMETROS GENERALES MECÁNICOS DEL EXPERIMENTO

- Dos probetas de bronce y acero respectivamente se someterán a fricción mediante la potencia de rotación (torque) de un torno de 10CV.
- La probeta de bronce se mantendrá fija mediante una chaveta bloqueada en un anillo.
- El anillo se sujeta a una luneta (accesorio del torno) y esta a su vez a la bancada del torno.
- La probeta de acero rota en el mandril del torno, la forma de montaje se especificará al final de esta sección.
- Las dos probetas se friccionan mediante la fuerza de aplastamiento que proporciona el contra punto.
- La fuerza de aplastamiento que proporciona el punto a la probeta de bronce es medida mediante una celda de carga.

DISEÑO MECÁNICO DE LA PROBETA DE ACERO

- Los ensayos realizados a partir del año 2003 por el profesor José Guasumba determinaron que la dureza del material en la cara de rozamiento debe ser superior a 62HRC [J.S.Guasumba, 2004].
- Además, [Sato et al., 2001] establece que la dureza alta de los materiales transforma más calor para lograr la soldadura en aluminios.

Matriz de Decisión para Selección del Material de la Probeta de Acero.

	ALTERNATIVAS						
MODELO DE DECISIÓN		Acer	o DF2	Acer	o K100	Acer	o K412
CRITERIO	PESO	RF	А	RF	В	RF	С
Disponibilidad	0.4	10	3.4	5	2	5	2
Dureza > 50HRC	0.15	10	1.5	10	1.5	8	1.2
Res. Fluencia >2200 MPa	0.2	10	2	10	2	10	2
Maquinabilidad	0.1	8	0.8	8	0.8	10	1
Tratamiento Térmico	0.15	10	1.5	10	1.5	10	1.5
TOTAL	1		9.2		7.8		7.7
PRIORIDAD			1		2		3

CARACTERÍSTICAS ACERO ARNE DF2

- Buena combinación de dureza superficial y tenacidad tras el temple y revenido necesario para resistir la fricción del experimento, ver datos de templado en la subsección3.2.4.
- La dureza del acero es de 190 Brinell. Y, después del temple y revenido la probeta alcanza 63 HRC de dureza.
- Buena maquinabilidad lo que garantiza la fabricación de la probeta.
- Estabilidad dimensional después del temple, necesario para cumplir con las precisiones dimensionales que el experimento demanda. Ver planos en Anexo B
- Las aplicaciones de este material son: herramientas de corte, matrices, herramientas de medición, elementos y piezas de fricción.

Propiedades Mecánicas del Acero DF2.

Propiedad	Sistema SI
Resistencia a la compresión	3040MPa
Límite de rotura	2256MPa
Módulo de elasticidad a 20° C	190GPa
Densidad	7800kg/m ³
Fuente: [Uddeholm, 2002].	

• DISEÑO GEOMÉTRICO DE LA PROBETA DE ACERO

PARÁMETROS DE DISEÑO DE LA PROBETA DE ACERO

- La fricción entre el acero y el bronce en el caso más crítico pueden llegar a detenerse, producir rotura en la probeta, producir daños en la caja Norton del torno, daños en el motor eléctrico, o daños en los accesorios, como la luneta y sus pines, en el punto, o en las muelas del mandril mediante esfuerzos de torsión y aplastamiento.
- Las fuerzas de aplastamiento varían entre 110 kg y 500 kg medidos en la celda de carga.
- El tiempo promedio de fricción de los dos materiales es 4 horas.
- Para el diseño mecánico se tomará la temperatura máxima alcanzada en los experimentos anteriores. El valor es de 600 °C [J.S.Guasumba, 2004].
- La probeta será maquinada torneada.
- La probeta será tratada térmicamente.
- El torque máximo del torno depende de las especificaciones técnicas del mismo:
 - Potencia del torno a 2 velocidades 10-10 CV
 - Número de velocidades 18.
 - Valor de velocidades 20-1600 rpm.

Figura 23: Área Crítica de Diseño.

• DISEÑO MECÁNICO: CÁLCULOS

$$P = 10 \text{ [CV]} \frac{0.73549875 \text{ [kW]}}{1 \text{ [CV]}} = 7.35498 \text{ [kW]},$$

$$T_{max} = \frac{7.3549(9550)}{130} = 540.26 \text{ [Nm]}$$

$$J = \frac{\pi}{32} (40^4 - 24^4)$$

$$J = 2.188 \times 10^{-7} \text{ [m^4]},$$

 $\begin{aligned} \tau &= \frac{540.26 \, [\text{Nm}] 18 \, [\text{mm}]}{2.188 \times 10^{-7} \, [\text{m}^{4}]} \frac{1 \, [\text{m}]}{1000 \, [\text{mm}]} \\ \tau &= 49.394 \, [\text{MPa}], \end{aligned}$

$$\sigma_{b} = -E_{b}\alpha\Delta T(x) + \frac{1}{2c}\int_{0}^{c}E_{b}\alpha\left(T_{f} + \frac{\dot{q}}{2k}(x_{1}^{2} - x^{2}) - T_{a}\right)dx + \frac{3x}{2c^{2}}\int_{0}^{c}E_{b}\alpha\left(T_{f} + \frac{\dot{q}}{2k}(x_{1}^{2} - x^{2}) - T_{a}\Delta T(x)\right)xdx \sigma_{b} = -62\text{GPa} \cdot 20.9\mu\text{m/mK} \cdot 570^{\circ}\text{C} + 362.389\text{MPa} + 541.431\text{MPa} \sigma_{b} = 190.523\text{MPa}$$

$$\varepsilon = \frac{\sigma_b}{E_b}$$

$$\varepsilon = \frac{190.523 \text{MPa}}{62 \text{GPa}}, \qquad F_c = 59690 \text{N}$$

$$\varepsilon = 3.07 \times 10^{-3}$$

$$L_f = \varepsilon \cdot L_b + L_b = 0.22067 \text{m}$$

 $\Delta L = L_f - L_b = 0.657 \text{mm}$

• DISEÑO MECÁNICO: CÁLCULOS

$$\sigma_{aplas} = \frac{F + F_c}{A}$$

$$\sigma_{aplas} = \frac{64690 \text{ [N]}}{804.248 \text{ [mm^2]}}$$

$$\sigma_{aplas} = 80.44 \text{ [MPa]},$$

$$\sigma = \sqrt{\sigma_{aplas}^2 - 3\tau^2}$$

$$\sigma = \sqrt{80.44^2 - 3(49.394)^2}$$

$$\sigma = 117.428 \text{ [MPa]}$$

 $Se_{nm} = 700 \text{[MPa]} S_{ut} > 1400 \text{[MPa]}$ $Se = Se_{nm}k_ak_bk_ck_dk_e$

Se = 700 [MPa](0.583)(0.925)(0.557)(0.549)(1)Se = 119.53 [MPa]

DISEÑO MECÁNICO: SIMULACIÓN DE LA PROBETA DE ACERO

Factor de carga

1.678e+004

1.525e+004

1.220e+004

1.068e+004

9.154e+003

6.103e+003

4.578e+003

3.052e+003

1.922e+000

DISEÑO MECÁNICO: SIMULACIÓN DE LA PROBETA DE ACERO

$\sigma = 117.428$ [MPa]

TRATAMIENTO TÉRMICO DE LA PROBETA DE ACERO

Tempering graph

Diagrama de revenido para ASSAB DF-2

Valores aproximados. Probeta de 349 mm. Enfriado en Tiempo de mantenimiento 2 horas. aceite.

Temperatura de revenido

DISEÑO MECÁNICO DE LA PROBETA DE BRONCE selección del material

Matriz de Decisión para Selección del Material de la Probeta de Bronce.

			ALTERNATIVAS			
MODELO DE		Bronce	Bronce Dulce		Bronce Fosfórico	
DECISIÓN		UNS	35800	SA	E 640	
CRITERIO	PESO	RF	(A)	RF	(B)	
Disponibilidad	0,5	10	5	9	4.5	
Dureza ≤75 Rockwell B	0,2	9	1,8	8,5	1,7	
Res. Fluencia > 140 MPa	0,2	10	2	10	2	
Maquinabilidad	0,1	8	0,8	6	0,6	
TOTAL	1		9,6		8.8	
PRIORIDAD			1		2	

PROPIEDADES MECÁNICAS DE LA PROBETA DE BRONCE

Propiedades Mecánicas del Bronce UNS C35800.

Propiedad	Sistema SI
Resistencia a la tensión	140MPa
Límite de rotura	415MPa
Módulo de elasticidad a 20° C	97GPa
Densidad	8470kg/m ³
Fuente: [Davis et al., 2001].	

• DISEÑO GEOMÉTRICO DE LA PROBETA DE BRONCE

$$\sigma_{(c)} = -\frac{3\alpha(\Delta T)E}{1-\nu},$$

 $\sigma_{bronce(c)} = -\frac{3(18.7 * 10^{-6} [1/^{\circ}C])(580 - 30) [^{\circ}C](82740 [MPa])}{1 - 0.31}$ $\sigma_{bronce(c)} = -3700 [MPa],$

 $\begin{aligned} \sigma_{acero(c)} &= -\frac{3(10.8*10^{-6} [1/^{\circ}C])(520-30) [^{\circ}C](170000 [MPa])}{1-0.31} \\ \sigma_{acero(c)} &= -3775 [MPa] \end{aligned}$

$$\begin{aligned} \sigma_{com} &= \sigma_{bronce(c)} - \sigma_{acero(c)} \\ \sigma_{com} &= -3700 - (-3775) \end{aligned}$$

 $\sigma_{com} = -75 [\text{MPa}]$

$$FS_{bronce} = \frac{Sy_{bronce}}{\sigma_{com}}$$

$$FS_{bronce} = \frac{140 \text{ [MPa]}}{75 \text{ [MPa]}}$$

$$FS_{bronce} = 1.86$$

DISEÑO MECÁNICO DEL ANILLO DE SUJECIÓN

MATERIAL SELECCIONADO

- Disponibilidad en el mercado en tubería sin costura y con los diámetros requeridos
- De fácil maquinado y fabricación.
- Se selecciona un SAE 1024 en barra perforada con las siguientes características:

Propiedades Mecánicas del Acero SAE 1024.

Propiedad	Sistema SI
Resistencia a la tensión	804MPa
Límite de rotura	843.3MPa
Módulo de elasticidad a 20° C	200GPa
Densidad	7800kg/m ³
Fuente: [Bohman, 2016].	

• DISEÑO MECÁNICO: CÁLCULOS

$$\begin{aligned} \sigma tan_{anillo} &= \frac{ri^2 p_i}{ro^2 - ri^2} (1 + \frac{ro^2}{ri^2}), \\ \sigma tan_{anillo} &= \frac{37^2 [\text{mm}^2](75 [\text{MPa}])}{55^2 [\text{mm}^2] - 37^2 [\text{mm}^2]} (1 + \frac{55^2 [\text{mm}^2]}{37^2 [\text{mm}^2]}) \\ \sigma tan_{anillo} &= -198.809 [\text{MPa}] \\ \sigma r_{anillo} &= \frac{ri^2 p_i}{ro^2 - ri^2} (1 - \frac{ro^2}{ri^2}), \\ \sigma r_{anillo} &= \frac{37^2 [\text{mm}^2](75 [\text{MPa}])}{55^2 [\text{mm}^2] - 37^2 [\text{mm}^2]} (1 - \frac{55^2 [\text{mm}^2]}{37^2 [\text{mm}^2]}) \\ \sigma r_{anillo} &= -74.92 [\text{MPa}] \\ \sigma r_{anillo} &= -74.92 [\text{MPa}] \\ \sigma r_{anillo} &= -74.92 [\text{MPa}] \end{aligned}$$

 $\sigma t_{a(real)}$

DISEÑO MECÁNICO DE LA CHAVETA

MATERIAL SELECCIONADO

- Se selecciona un material propio de chavetas disponible en el mercado y con las dimensiones estándar.
- Acero AISI 1018 estirado en frío con las siguientes propiedades:

Propiedad	Sistema SI
Resistencia a la tensión	370MPa
Límite de rotura	440MPa
Módulo de elasticidad a 20° C	200GPa
Densidad	7800kg/m ³
Fuente: [Bohman, 2016].	

DISEÑO GEOMÉTRICO

- La chaveta será el elemento de bloqueo entre el anillo y la probeta de bronce. Evita el giro de estos elementos. La longitud de la chaveta debe ser del largo de la probeta de bronce para que este se deslice y se pueda modificar la fuerza de aplastamiento.
- La sección de la chaveta es de 3/8 in, dimensión estándar.
- La longitud es la necesaria para que la probeta de bronce se deslice.
- En el diseño mecánico se establece el factor de seguridad de la misma.

DISEÑO MECÁNICO: CÁLCULOS-CHAVETA

 $Ft_{chav} = \frac{T_{max}}{\frac{d_b}{2}}$ $Ft_{chav} = \frac{540.26 \text{ [Nm]}}{37 \text{ [mm]}} \frac{1000 \text{ [mm]}}{1 \text{ [m]}}$ $Ft_{chav} = 14600 \text{ [N]}$

Ssy_{real} = 253.8[MPa]*0.549=139.138 [MPa]

$$\sigma_A = \frac{Ssy_{real}}{FS_{chav}} = \frac{Ft_{chav}}{\frac{h}{2}L}$$

$$FS_{chav} = \frac{Ssy_{real}(h)(L)}{2Ft}$$

$$FS_{chav} = \frac{139.38 \text{ [MPa]}(3/8 \text{ [in]})(50 \text{ [mm]})}{(2)(14600 \text{ [N]})} \frac{\frac{24.5 \text{ [mm]}}{1 \text{ [in]}}}{1} = 2.2$$

 $\sigma_A = \frac{Ft_{chav}}{\frac{h}{2}L}$

 $S_{sy} = 0.577(S_y)$ $S_{sy} = 0.577(440 \text{[MPa]})$ $S_{sy} = 253.8 \text{[MPa]}$

DISEÑO MECÁNICO: SIMULACIÓN DE LA CHAVETA

DETERMINACIÓN DEL FACTOR DE SEGURIDAD DE LOS PINES DE LA LUNETA

FS _{pin} =	$=\frac{Ss}{2}$	$\frac{u_{pin}(A_{pin})}{2Ft_{anillo}}$
Ft _{anillo}	=	$\frac{T_{max}}{3\frac{de_{anillo}}{2}}$
Ft _{anillo}	=	$\frac{540.262 \text{ [Nm]}}{3 * \frac{110 \text{ [mm]}}{2} \frac{1 \text{ [m]}}{1000 \text{ [mm]}}}$
Ft _{anillo}	=	3274 [N]

$$Ssu_{pin} = 0.9Sut_{bronce}$$

$$Ssu_{pin} = 0.9(274.6 \text{ [MPa]})$$

$$Ssu_{pin} = 247.13 \text{ [MPa]}$$

$$A_{pin} = \frac{\pi}{4} d_{pin} = \frac{\pi}{4} (15^2) = 0.1767 \text{ [m^2]}$$

 $FS_{pin} = \frac{247.13 \text{ [MPa]}(0.1767 \text{ [m^2]})}{2(3274 \text{ [N]})} \frac{10^6 \text{ [Pa]}}{1 \text{ [MPa]}} \frac{1 \text{ [N/m^2]}}{1 \text{ [Pa]}} = 6.67$

DISEÑO MECÁNICO: SIMULACIÓN

DE LOS PINES DE LA LUNETA

Nombre	Тіро	Mín.	Máx.
Factor de seguridad6	Automático	1.98888	45.4583
		Nodo: 6999	Nodo: 7225
Nombre de modelo:DISEÑODEL BNSAMBLE Nombre de estudio:Copia de [Estudio2] Tipo de resultado:Factor de seguridad Facto Criteriα Automático Distribución de factor de seguridad:FDSmín	EXPERIMENTO or de seguridad6 = 2		
			FDS
			45.46
			. 41.84
			. 38.21
			. 34.59
			. 30.97
			. 27.35
	AN		. 23.72
			. 20.10
	AN		. 16.48
	9	5	<mark>.</mark> 12.86
			. 9.23
			. 5.61
			1.99

SELECCIÓN DE LA CELDA DE CARGA

- El ambiente de operación.
- La capacidad máxima es de 5000 N.
- El tipo de celda de carga es en forma de S ya que esta funciona con 4 galgas extensiométricas proporcionando estabilidad en las mediciones.
- La sensibilidad es de 0:02 [mV/V] con una salida de 5 a 12 DC o AC. Por lo que la celda necesita un amplificador de señal.

INSTRUMENTACIÓN DE LA CELDA DE CARGA

PEE PROGRAMA DE ADQUISICIÓN DE DATOS

FORMA DE MONTAJE

FORMA DE MONTAJE

CAPÍTULO 4

ANÁLISIS ENERGÉTICO DEL SISTEMA DE FRICCIÓN

ANÁLISIS ENERGÉTICO DEL SISTEMA DE FRICCIÓN

PARÁMETROS GENERALES TÉRMICOS DEL EXPERIMENTO

PROPIEDADES TÉRMICAS DE LOS MATERIALES

Propiedades Térmicas del Acero DF2.

Propiedad	Sistema SI	Temperatura
CET Lineal	11.7µm/m.°C	$20^{\circ}\text{C} - 200^{\circ}\text{C}$
CET Lineal	11.4µm/m.°C	400°C
Calor Específico	$460 \text{J/kg} \cdot \text{K}$	_
Conductividad Térmica	$32 \text{W/m} \cdot \text{K}$	20°C
Punto de Fusión	1538°C	_
Densidad	7800kg/m ³	20°C
Densidad	7700kg/m^3	400°C
Fuente: [Uddeholm, 2002].		

Propiedades Térmicas del Bronce Dulce UNS C38500.

Propiedad	Sistema SI	Temperatura
CET Lineal	20.9µm/m.°C	$20^{\circ}C - 300^{\circ}C$
Calor Específico	$380 \text{ J/kg} \cdot \text{K}$	—
Conductividad Térmica	123 W/m·K	20°C
Punto de Fusión	875°C – 890°C	_
Densidad	8470kg/m^3	25°C
Fuente: [Davis et al., 2001].	

CALOR GENERADO POR FRICCIÓN

$$P^{\circ} = \frac{F_{a}}{Ac}$$

$$P^{\circ} = \frac{200.63 \text{kg} \cdot 9, 8 \text{m/s}^{2}}{\pi (R_{o}^{2} - R_{i}^{2})}$$

$$P^{\circ} = \frac{1966 \text{N}}{1.71 \times 10^{-3} \text{m}^{2}}$$

$$P^{\circ} = 1, 15 \times 10^{6} \text{Pa},$$

$$q_{Gf} = \frac{2}{3} \omega P^o \pi \left[R_o^3 - R_i^3 \right]$$

$$q_{Gf} = \frac{2}{3} (231 \,\mathrm{rpm}) \left(1.15 \times 10^6 \,\mathrm{Pa} \right) \pi \left[(24.5 \,\mathrm{mm})^3 - (7.5 \,\mathrm{mm})^3 \right]$$

$$q_{Gf} = 832.59 \,\mathrm{W},$$

$$A_b = \frac{\pi (D_b)^2}{4} = 4.30 \times 10^{-3} \,\mathrm{m}^2$$
$$A_{ob} = \pi D_b L_b = 0.04 \,\mathrm{m}^2,$$

CALOR GENERADO POR FRICCIÓN

$$h_{c,b-a} = 2,8 + 3v_{aire}$$
$$h_{c,b-a} = 4.51 \frac{W}{m^2 K}$$

COEFICIENTE DE CONVENCIÓN FORZADA FLUJO EXTERNO

$$T_{m,b-a} = \frac{Ts_b + T_a}{2} = 377 \text{ K},$$

$$h_{r,b-a} = 4\varepsilon_b \sigma T_{m,b-a}^3$$
COEFICIENTE DE RADIACIÓN

$$h_{r,b-a} = 6.684 \frac{\text{W}}{\text{m}^2 \text{K}}$$

BALANCE ENERGÉTICO PARA EL BRONCE

- $T_b = 452 \,\mathrm{K}$ es la temperatura más elevada en el bronce.
- $T_a = 302 \text{ K}$ es la temperatura ambiente.
- $M_b = 7.6774$ kg es la masa inicial del bronce.
- $cp_b = 380 \frac{J}{kg \cdot K}$ es la capacidad calorífica del bronce en el ambiente
- $t_{calent} = 10 \text{ min es el intervalo de tiempo.}$
- $T_{b1} = 302.4 \,\mathrm{K}$ temperatura inicial.

 $T_{b2} = 330.8 \text{ K}$ temperatura final después de t_{calent} .

BALANCE ENERGÉTICO PARA EL BRONCE

$$q_{p_c,b-a} = h_{c,b-a}A_{ob}(T_b - T_a) = 26.74\,\mathrm{W},$$

Calor perdido por convección

$$q_{p_r,b-a} = h_{r,b-a} A_{ob} (T_b - T_a) = 39.62 \,\mathrm{W}$$

Calor perdido por radiación

 $q_{acc,b} = \frac{M_b}{t_{calent}} c p_b (T_{b2} - T_{b1}) = 138.09 \,\mathrm{W}$

Calor acumulado en el bronce

$$q_{p_d,b-s} = q_{p_{cd},b-s} + q_{p_c,s-a} + q_{p_r,s-a}$$

$$q_{p_{cd},b-s} = -2\pi \cdot L_{anillo} \cdot k_{ac} \cdot \frac{\left(T_{pf} - T_{pi}\right)}{\ln\left(\frac{r_2}{r_1}\right)}$$

$$q_{cd,b-s} = -2\pi \cdot 0.05 \text{m} \cdot 51.9 \text{W/mK} \cdot \frac{\left(433.1 \text{K} - 441.6 \text{K}\right)}{\ln\left(\frac{0.055 \text{m}}{0.037 \text{m}}\right)}$$

$$q_{p_{cd},b-s} = 349.61 \text{W}$$

Calor perdido por conducción

BALANCE ENERGÉTICO PARA EL BRONCE

$$A_{s,an} = 2\left\{\frac{\pi}{4}\left[(0.110\text{m})^2 - (0.074\text{m})^2\right]\right\} + 2\pi r_2 L_{anillo} = 0.028\text{m}^2$$
$$h_{c,b-a} = 4.51\frac{\text{W}}{\text{m}^2\text{K}}$$

$$q_{p_c s-a} = h_{c,b-a} \cdot As_{an} \cdot (T_{pf} - T_a)$$

$$q_{p_c,s-a} = 4.51 \frac{W}{m^2 K} \cdot 0.028 m^2 \cdot (433.1 K - 302 K)$$

$$q_{p_c,s-a} = 16.37 W$$

Calor perdido por convección

$$T_{ms} = \frac{T_{pf} + T_a}{2} = 367.55 \text{K}$$

$$h_{r,b-s} = 4 \cdot \varepsilon_{anillo} \cdot \sigma \cdot T_{ms}^{3} = 10.14 \frac{\text{W}}{\text{m}^2 \text{K}}$$

$$q_{p_r,s-a} = h_{r,b-s} \cdot As_{an} \cdot (T_{pf} - T_a)$$

$$q_{p_r,s-a} = 10.14 \frac{\text{W}}{\text{m}^2 \text{K}} \cdot 0.028 \text{m}^2 \cdot (433.1 \text{K} - 302 \text{K})$$

$$q_{p_r,s-a} = 36.78 \text{W}$$

Calor perdido por radiación.

$$q_{p_d,b-s} = q_{p_{cd},b-s} + q_{p_c,s-a} + q_{p_r,s-a} = 402.76$$
W

$$q_b = q_{p_c,b-a} + q_{p_r,b-a} + q_{acc,b} + q_{p_d,b-s} = 607.21$$
W

CALOR TRANSFERIDO AL ACERO

ANÁLISIS DE TRANSFERENCIA DE CALOR PARA EJES ROTATORIOS

$$A_{ac} = \frac{\pi (d_{ac})^2}{4} = 1.886 \times 10^{-3} \,\mathrm{m}^2$$

$$A_{oac} = \pi d_{ac} L_{ac} = 0.015 \,\mathrm{m}^2$$

$$\frac{h_{c,ac-a}D_o}{k} = 0,11 \left(0,5Re_{\omega}^2 + Gr_D Pr\right)^{0,35}$$

$$Gr_D = \frac{\rho^2 \beta g \left(T_s - T_a\right) D^3}{\mu^2}$$

$$T_a = 302 \text{ K}$$

$$Re_{\omega} = \frac{\rho \pi D^2 \omega}{\mu}$$

$$T_{sac} = 450.7 \text{ K}$$

$$\omega = 231 \text{ rpm} = 24.19 \frac{1}{\text{s}}$$

$$T_f = \frac{T_a + T_{sac}}{2} = 376.35 \text{ K}$$

$$g = 9.8 \frac{\text{m}}{\text{s}^2}$$

CALOR TRANSFERIDO AL ACERO

$$\begin{split} \rho_{aire} &= 0.9458 \, \frac{\text{kg}}{\text{m}^3} \\ \mu_{aire} &= 2.181 \times 10^{-5} \, \frac{\text{kg}}{\text{m} \cdot \text{s}} \end{split}$$
 $k_{aire} = 0.03095 \frac{W}{m \cdot K}$ Pr = 0.7111

$$\beta = \frac{1}{T_f} = 2.657 \times 10^{-3} \frac{1}{\text{K}}$$
$$Re_{\omega} = \frac{\rho_{aire} \cdot \pi \cdot d_{ac}^2 \omega}{\mu_{aire}} = 7912.73$$

1

$$\begin{aligned} & \epsilon_{ac} = 0.9 \ . \\ & T_a = 302 \,\mathrm{K} \\ & T_{s_{ac}} = 450.7 \,\mathrm{K} \quad T_{m,ac-a} = \frac{T s_{ac} + T_a}{2} = 376.35 \,\mathrm{K} \\ & h_{r,ac-a} = 4 \epsilon_{ac} \sigma T_{m,ac-a}^3 \\ & h_{r,ac-a} = 10.88 \,\frac{\mathrm{W}}{\mathrm{m}^2 \mathrm{K}} \end{aligned}$$

COEFICIENTE DE RADIACIÓN

$$Gr_{D} = \frac{\rho_{aire}^{2} \cdot \beta \cdot g \cdot (T_{oac} - T_{a}) d_{ac}^{3}}{\mu_{aire}^{2}} = 857262.31$$
$$h_{c,ac-a} = \left[0, 11 \left(0, 5Re_{\omega}^{2} + Gr_{D}Pr\right)^{0,35}\right] \frac{k_{aire}}{d_{ac}}$$
$$h_{c,ac-a} = 29.39 \frac{W}{m^{2}K}$$

BALANCE ENERGÉTICO PARA EL ACERO

 $T_{ac} = 452 \text{ K es la temperatura del acero.}$ $T_a = 302 \text{ K es la temperatura ambiente.}$ $m_{ac} = 2.9271 \text{ kg es la masa inicial del acero.}$ $cp_{ac} = 460 \frac{\text{J}}{\text{kg} \cdot \text{K}} \text{ es el calor específico del acero DF2.}$ $t_{calent} = 10 \text{ min es el intervalo de tiempo.}$ $T_{ac1} = 330.8 \text{ K temperatura inicial.}$ $T_{ac2} = 301.4 \text{ K temperatura final después de } t_{calent}.$

Calor perdido por convención $q_{p_c,ac-a} = h_{c,ac-a}A_{oac}(T_{ac}-T_a) = 67.87 \text{ W}$

Calor perdido por radiación

$$q_{p_r,ac-a} = h_{r,ac-a}A_{oac}(T_{ac}-T_a) = 25.125 \text{ W}$$

Calor acumulado en el acero

$$q_{acc,ac} = \frac{m_{ac}}{t_{calent}} c p_{ac} \left(T_{2ac} - T_{1ac} \right) = 65.98 \mathrm{W}$$

$$q_{ac} = q_{p_c,ac-a} + q_{p_r,ac-a} + q_{acc,ac} = 158.97 \,\mathrm{W}$$

CALOR TOTAL PERDIDO EN EL ACERO

CALOR TOTAL PERDIDO EN EL SISTEMA

 $q_{tp} = q_b + q_{ac}$ $q_{tp} = 766.19W$ $q_{Gf} = 832.59W$

TEMPERATURA DE CONTACTO

$$T_{ac} = 179.2 \,^{\circ}\text{C} \, a \, x_{ac} = 0.02 \text{m}$$

 $T_b = 175.8 \,^{\circ}\text{C} \, a \, x_b = 0.015 \text{m}$
 $k_{ac} = 32 \, \frac{\text{W}}{\text{m} \cdot \text{K}}$
 $k_b = 123 \, \frac{\text{W}}{\text{m} \cdot \text{K}}$
 $R_o = 25 \, \text{mm}$

$$T_{c} = \frac{x_{ac}x_{b}\left[\frac{\frac{2}{3}\omega F_{a}[R_{o}^{3}-R_{i}^{3}]}{\pi (R_{o}^{2}-R_{i}^{2})^{2}}\right] + k_{ac}T_{ac}x_{b} + k_{b}T_{b}x_{ac}}{k_{ac}x_{b} + k_{b}x_{ac}}$$

 $R_i = 7.5 \text{ mm}$ $F_a = 220 \text{kg} \cdot 9.8 \text{m/s}^2 = 2156 \text{ N}$ $\omega = 235 \text{ rpm}$

$$T_{c} = \frac{x_{ac}x_{b}\left[\frac{\frac{2}{3}\omega F_{a}[R_{o}^{3}-R_{i}^{3}]}{\pi(R_{o}^{2}-R_{i}^{2})^{2}}\right] + k_{ac}T_{ac}x_{b} + k_{b}T_{b}x_{ac}}{k_{ac}x_{b} + k_{b}x_{ac}}$$
$$T_{c} = 231.50^{\circ}\text{C}$$

SIMULACIÓN TÉRMICA BRONCE-ANILLO

SIMULACIÓN TÉRMICA PROBETA DE ACERO

CAPÍTULO 5 ANÁLISIS DE RESULTADOS

A

COMBINACIÓN DE PARÁMETROS

Arregio Ortogonal	L9.	
	А	В
Experimento: 1	1	1
Experimento: 2	1	2

1 T O

Experimento: 3	1	3
Experimento: 4	2	1
Experimento: 5	2	2
Experimento: 6	2	3
Experimento: 7	3	1
Experimento: 8	3	2
Experimento: 9	3	3

Arreglo L9 con Datos del Experimento.

	А	В
Experimento: 1	150 kg	500 rpm
Experimento: 2	350 kg	250 rpm
Experimento: 3	150 kg	250 rpm
Experimento: 4	250 kg	250 rpm
Experimento: 5	250 kg	1000 rpm
Experimento: 6	350 kg	1000 rpm
Experimento: 7	350 kg	500 rpm
Experimento: 8	250 kg	500 rpm
Experimento: 9	150 kg	1000 rpm

VALORES OBTENIDOS EXPERIMENTO 1

DATOS DE TEMPERATURA DEL BRONCE:

Р	Time	$T1(^{\circ}C)$	T2(°C)	T3(°C)	T4(°C)	$T5(^{\circ}C)$	$T6(^{\circ}C)$	Ta(°C)
1	11:08:00	24.4	24.5	24.3	24.4	24.3	24.2	22.0
2	11:13:00	39.9	40.1	37.7	35.5	32.0	30.4	22.3
3	11:18:00	54.3	54.6	51.4	48.2	45.0	40.8	21.6
4	11:23:00	64.7	65.1	62.1	58.6	54.0	51.2	21.8
5	11:28:00	72.4	72.8	70.0	66.4	63.0	59.7	21.4
6	11:33:00	78.6	79.0	76.9	73.0	71.3	66.8	21.4
7	11:38:00	90.4	90.8	87.6	83.0	79.8	76.1	21.8
8	11:43:00	95.3	95.7	93.2	89.3	84.8	83.3	21.8

44	14:43:00	142.0	140.8	139.6	137.7	133.9	133.5	21.4
45	14:48:00	141.5	140.9	139.8	137.8	134.1	133.7	21.0
46	14:53:00	141.5	141.0	139.8	138.2	134.9	134.3	21.6
47	14:58:00	141.3	140.7	139.6	138.5	134.9	134.4	21.9
48	15:03:00	140.5	139.2	139.1	138.6	135.2	134.3	21.0

FU	JERZA DE	APLAS	IAMIENTO	REVOLUCIONES
#	TIEMPO	(Kg)	(N)	REV (rpm)
1	11:08:00	80.24	786.352	139
2	12:08:00	110.31	1081.038	138
3	13:08:00	126.27	1237.446	136
4	14:08:00	130.5	1278.9	135
5	15:08:00	136.48	1337.504	133
F	Promedio	116.76	1144.248	136.2
V	elocidad de	l viento	$0.02^{m/s}$	

PERFIL DE TEMPERATURAS DE LA PROBETA DE BRONCE EN EL EXPERIMENTO 1

(EXPERIMENTAL)

PERFIL DE TEMPERATURAS E LA PROBETA DE ACERO EN EL EXPERIMENTO 1

(EXPERIMENTAL)

Trial	T_{pf}	T_{pi}	Vaire	$h_{c,b-a}$	T_a	$h_{r,b-s}$	$q_{p_{cd},b-s}$	$q_{p_c,s-a}$	$q_{p_r,s-a}$	$q_{p_d,b-s}$
#	[K]	[K]	$\left[m/s^{2} \right]$	$\left[\frac{W}{m^2K}\right]$	[K]	$\left[\frac{W}{m^2K}\right]$	[W]	[W]	[W]	[W]
1	400.9	402.5	0.02	2.86	294.4	8.58	65.81	8.43	25.29	99.53
2	590.6	598.4	0.54	4.42	297.3	17.90	320.82	35.82	145.01	501.65
3	391.2	396.8	0.59	4.57	302.8	8.52	230.33	11.18	20.87	262.39
4	433.1	441.6	0.57	4.51	302.0	10.135	349.61	16.37	36.78	402.76
5	522.6	535.9	1.57	7.51	295.3	13.96	547.04	47.26	87.85	682.14
6	487.6	504.0	1.6	7.6	299.9	12.46	674.54	39.49	64.75	778.79
7	673.4	684.4	1.49	7.27	302.6	23.72	452.44	74.63	243.51	770.57
8	757	768.2	1.47	7.21	298.4	29.99	460.66	91.53	380.81	933.01
9	485.2	492.1	1.61	7.63	298.3	12.27	283.8	39.48	63.5	386.78

RESULTADOS

PARÁMETROS DE LA PROBETA DE BRONCE

Trial	Vaire	$h_{c,b-a}$	Ts_b	T_a	$T_{m,b-a}$	$h_{r,b-a}$	M_b	T_{b1}	T_{b2}
#	$\left[m/s^2 \right]$	$\left[\frac{W}{m^2K}\right]$	[K]	[K]	[K]	$\left[\frac{W}{m^2K}\right]$	[g]	[K]	[K]
1	0.02	2.86	413.5	294.4	353.95	5.53	7677.9	297.2	313.8
2	0.54	4.42	626.1	297.9	462.3	12.32	7677.8	298.2	339.4
3	0.59	4.57	418.6	302.8	360.7	5.85	7677.5	305.7	323.3
4	0.57	4.51	452.0	302.0	377.0	6.68	7677.4	302.4	330.8
5	1.57	7.51	538.9	295.3	417.1	9.05	7676.1	299.2	349.9
6	1.6	7.6	524	299.9	411.94	8.72	7674.8	298.4	348.6
7	1.49	7.27	850.2	302.6	576.4	23.88	7674.2	298.5	389.3
8	1.47	7.21	704.4	298.2	501.40	15.72	7672.8	298.2	378.1
9	1.61	7.63	517.7	298.3	408.0	8.47	7672.6	298.5	344.2

CALOR PERDIDO EN LA PROBETA DE BRONCE

Trial	$q_{p_c,b-a}$	$q_{p_r,b-a}$	$q_{acc,b}$	$q_{p_d,b-s}$	q_b
#	[W]	[W]	[W]	[W]	[W]
1	13.46	26.04	80.72	99.53	219.75
2	57.33	159.86	200.34	501.65	919.18
3	20.91	26.79	85.58	262.39	395.67
4	26.74	39.62	138.09	402.76	607.2
5	72.3	87.142	246.48	682.14	1088.07
6	67.31	77.22	244.01	778.79	1167.3
7	157.34	516.97	441.32	770.57	1886.20
8	115.69	252.30	388.27	933.01	1689.27
9	66.16	73.46	222.1	386.78	748.47

RESULTADOS

PARÁMETROS DEL LA PROBETA DE ACERO

Trial	T_a	T_{sac}	T_f	ω	β	Re_{ω}	Gr_D	$h_{c,ac-a}$	$h_{r,ac-a}$
#	[K]	[K]	[K]	rad/s				$\left[\frac{W}{m^2K}\right]$	$\left[\frac{W}{m^2K}\right]$
1	294.4	416.9	355.65	14.55	0.0028	5235.20	903788	21.2	9.18
2	297.9	609.5	453.7	24.69	0.0022	5793.03	766777.13	27.96	19.06
3	302.8	409.8	356.3	26	0.0028	9349.92	787991.14	31.45	9.23
4	302.0	450.7	376.35	24.19	0.0027	7912.73	857558.16	29.39	10.88
5	295.3	538.5	416.9	106.98	0.0024	29394.65	893351.48	79.8	14.79
6	299.9	511.9	405.88	106.97	0.0025	30678.95	871287.02	80.54	13.65
7	302.6	837.7	570.15	53.51	0.0018	8471.71	477158.01	43.86	37.83
8	298.4	700.6	499.5	53.77	0.002	8768.22	434274.54	44.27	25.44
9	298.5	503.0	400.65	107.74	0.0025	30898.19	852457.67	80.93	13.13

RESULTADOS

CALOR PERDIDO EN LA PROBETA DE ACERO

Trial	m _{ac}	T_{ac1}	T_{ac2}	$q_{p_c,ac-a}$	$q_{p_r,ac-a}$	$q_{acc,ac}$	q_{ac}
#	[g]	[K]	[K]	[W]	[W]	[W]	[W]
1	2927.3	313.8	296.2	39.59	17.15	39.50	96.24
2	2927.2	339.4	297.2	141.71	96.64	94.70	333.05
3	2927.2	323.3	304.7	56.06	16.46	41.74	114.26
4	2927.1	330.8	301.4	67.87	25.12	65.98	158.98
5	2927.0	349.9	298.2	298.26	55.28	116.02	469.56
6	2927.0	348.6	297.4	277.81	47.07	114.90	439.79
7	2926.9	389.3	297.5	369.70	318.91	206.00	894.62
8	2926.8	378.1	297.2	387.46	222.63	181.55	791.64
9	2926.8	344.2	297.5	270.50	43.87	104.80	419.2

Trial	$F_a(\mathbf{N})$	$\rho^o(MPa)$	$\omega(\text{rpm})$	$\omega(\text{rad}/\text{s})$	$q_{Gf}(\mathbf{W})$
1	1338	0.78	139	14.56	340.80
2	3024	1.77	235.8	24.69	1307.27
3	1168.6	0.68	248.25	25.997	531.80
4	1966	1.15	231	24.19	833.59
5	2315.8	1.36	1021.6	106.98	4336.85
6	2699.8	1.58	1021.5	106.97	5055.59
7	3249	1.90	511	53.51	3043.17
8	2920	1.71	513	53.77	2749.03
9	1368	0.8	10288.8	107.74	2579.96

RESULTADOS DE CADA EXPERIMENTO

Resultados Experimento 1.

TABLA DE RESULTADOS				
Calor Generado por Fricción	340.80W			
Calor Perdido en el Bronce	219.75W			
Calor Perdido en el Acero	96.23W			
Calor Total Perdido	315.98W			
Error	7.3%			
Masa de Bronce Inicial	7677.9 g			
Masa de Bronce Final	7677.8 g			
Pérdida de Masa	0.1 g			
Temperatura de Contacto	157.68°C			

Resultados Experimento 2.

TABLA DE RESULTADOS				
Calor Generado por Fricción	1307.27W			
Calor Perdido en el Bronce	919.18W			
Calor Perdido en el Acero	333.05W			
Calor Total Perdido	1184.20W			
Error	4.2%			
Masa de Bronce Inicial	7677.8 g			
Masa de Bronce Final	7677.5 g			
Pérdida de Masa	0.3 g			
Temperatura de Contacto	426.44°C			

Resultados Experimento 3.

TABLA DE RESULTADOS				
Calor Generado por Fricción	531.80W			
Calor Perdido en el Bronce	395.67W			
Calor Perdido en el Acero	114.26W			
Calor Total Perdido	509.93W			
Error	4.11%			
Masa de Bronce Inicial	7677.5 g			
Masa de Bronce Final	7677.4 g			
Pérdida de Masa	0.1 g			
Temperatura de Contacto	175.10°C			

RESULTADOS DE CADA EXPERIMENTO

Resultados Experimento 4.

TABLA DE RESULTADOS				
Calor Generado por Fricción	832.59W			
Calor Perdido en el Bronce	607.21W			
Calor Perdido en el Acero	158.98W			
Calor Total Perdido	766.19W			
Error	7.97%			
Masa de Bronce Inicial	7677.4 g			
Masa de Bronce Final	7676.1 g			
Pérdida de Masa	1.3 g			
Temperatura de Contacto	228.96°C			

Resultados Experimento 5.

TABLA DE RESULTADOS				
Calor Generado por Fricción	4336.85W			
Calor Perdido en el Bronce	1088.07W			
Calor Perdido en el Acero	469.56W			
Calor Total Perdido	1557.63W			
Error	64%			
Masa de Bronce Inicial	7676.1 g			
Masa de Bronce Final	7674.8 g			
Pérdida de Masa	1.3 g			
Temperatura de Contacto	356.66°C			

Resultados Experimento 6.

TABLA DE RESULTADOS				
Calor Generado por Fricción	5055.6W			
Calor Perdido en el Bronce	1167.3W			
Calor Perdido en el Acero	439.79W			
Calor Total Perdido	1607.12W			
Error	77 %			
Masa de Bronce Inicial	7674.8 g			
Masa de Bronce Final	7674.2 g			
Pérdida de Masa	0.6 g			
Temperatura de Contacto	324.13°C			

RESULTADOS DE CADA EXPERIMENTO

Resultados Experimento 7.

TABLA DE RESULTADOS				
Calor Generado por Fricción	3043.17W			
Calor Perdido en el Bronce	1886.20W			
Calor Perdido en el Acero	894.62W			
Calor Total Perdido	2780.8W			
Error	8.6%			
Masa de Bronce Inicial	7674.2 g			
Masa de Bronce Final	7673.9 g			
Pérdida de Masa	0.3 g			
Temperatura de Contacto	752.20°C			

Resultados Experimento 8.

TABLA DE RESULTADOS				
Calor Generado por Fricción	2749.03W			
Calor Perdido en el Bronce	1689.27W			
Calor Perdido en el Acero	791.64W			
Calor Total Perdido	2480.9W			
Error	9.8%			
Masa de Bronce Inicial	7672.8 g			
Masa de Bronce Final	7672.6 g			
Pérdida de Masa	0.2 g			
Temperatura de Contacto	747.17			

Resultados Experimento 9.

TABLA DE RESULTADOS				
Calor Generado por Fricción	2579.69W			
Calor Perdido en el Bronce	748.47W			
Calor Perdido en el Acero	419.17W			
Calor Total Perdido	1167.6W			
Error	54.8%			
Masa de Bronce Inicial	7672.6 g			
Masa de Bronce Final	7672.2 g			
Pérdida de Masa	0.4 g			
Temperatura de Contacto	387°C			

DATOS QUE SERÁN ANALIZADOS CON TABLA ANOVA

VARIABLES Y RESULTADOS DE LOS EXPERIMENTOS

N°	PARÁMETROS DEL		MASA	CALOR	RESULTADO
	EXPERIMENTO		PERDIDA	GENERADO	Tasa de masa perdida por
	Fuerza de aplas-	Velocidad de	(2)		unidad de calor generado
	tamiento (kg)	rotación (rpm)	(g)	(\mathbf{w})	(W/g)
1	150	100	0,1	219.8	2198
2	350	250	0,3	919.2	3064
3	150	250	0,1	395.7	3957
4	250	250	1,3	607.2	467
5	250	1000	1,3	1088.1	837
6	350	1000	0,6	1167.3	1946
7	350	500	0,3	1886.2	6287
8	250	500	0,2	1689.3	8446
9	150	1000	0,4	748.5	1871

ANÁLISIS DE VARIANZA: TABLA ANOVA

- Para la velocidad de rotación:
 - H0: La velocidad de rotación no afecta a la generación de calor.
- Para la fuerza de aplastamiento:
 - H1: La fuerza si afecta a la generación de calor.

Análisis de Resultados para el Calor Generado.

		ANOVA			
FUENTES DE	GRADOS DE	SUMA DE	CUADRADO	F EXP	F TAB
VARIACIÓN	LIBERTAD	CUADRADOS	MEDIO		
	gl	SC	СМ	_	
v. factores				3,85	0,117
F2: fuerza de aplast.	2	1248222	624111	-	
F1: v de rotación.	2	589498	294749		
V.error	4	647848	161962	1,82	0,274
V.total	8	2485569		-	

RESULTADOS TABLA ANOVA

RESULTADOS TABLA ANOVA

RESULTADOS TABLA ANOVA

ANÁLISIS DE VARIANZA: TABLA ANOVA

- Para la velocidad de rotación:
 - H0: La velocidad de rotación no afecta a la pérdida de masa.
- Para la fuerza de aplastamiento:
 - H1: La fuerza si afecta a la pérdida de masa.

Análisis de Resultados para Pérdida de Masa.

ANOVA					
FUENTES DE	GRADOS DE	SUMA DE	CUADRADO	F EXP	F TAB
VARIACIÓN	LIBERTAD	CUADRAD	MEDIO		
	gl	SC	СМ	_	
v. factores				4,00	0,111
F2: fuerza de aplast.	2	0,8622	0,4311	-	
F1: v de rotación.	2	0,4956	0,2478		
V.error	4	0,4311	0,1078	2,30	0,216
V.total	8	1,7889		_	

RESULTADOS TABLA ANOVA

ANÁLISIS FINAL DE RESULTADOS

CAPÍTULO 5 CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Geometría óptima.
- Factor de seguridad de las probetas adecuados.
- Tolerancias óptimas adecuadas.
- Tipo de desgaste después de los ensayos.
 - En el acero.
 - En el bronce.
- Sistema de sujeción.
 - Anillo
 - Chaveta
- Temperaturas alcanzadas.
- Crecimiento homogéneo de temperaturas.
- Conclusión general.

RECOMENDACIONES

- Sobre la temperatura máxima alcanzada.
- Deformaciones permanentes.
- Disminución de la resistencia de los materiales.
- Descentramiento y alineación.

RECOMENDACIONES

- Sobre la temperatura máxima alcanzada.
- Deformaciones permanentes.
- Disminución de la resistencia de los materiales.
- Descentramiento y alineación.

FIN

