

TEMA:

"Repotenciación de la Máquina Universal Time Shijin Serie Wan-600c utilizada para la realización de Ensayos Mecánicos para el Laboratorio de Resistencia de Materiales de la Universidad de las Fuerzas Armadas ESPE Extensión Latacunga"

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO EN INGENIERÍA EN MECATRÓNICA

AUTORES:

Mayra Maribel Moposita Caguana Tannia Gabriela Nuñez Valle

Latacunga 2016

AGENDA

- **➢** OBJETIVOS
- > MARCO TEÓRICO
- > DOCUMENTACIÓN DEL ESTADO DE LA MÁQUINA
- > SELECCIÓN DE ELEMENTOS
- > IMPLEMENTACIÓN DEL SISTEMA
- > PRUEBAS Y RESULTADOS
- **➢** CONCLUSIONES
- **▶** RECOMENDACIONES

OBJETIVOS

Objetivo General

 Realizar la repotenciación de la Máquina Universal Time Shijin Serie WAN-600C utilizada para la realización de ensayos mecánicos para el laboratorio de resistencia de materiales de la Universidad De Las Fuerzas Armadas ESPE Extensión Latacunga.

Objetivos Específicos

- Analizar y documentar el funcionamiento y operación de la Máquina Universal Time Shijin Serie WAN-600C.
- Investigar el acondicionamiento de señales necesarias para repotenciar la máquina universal de ensayos mecánicos.
- Repotenciar el sistema de adquisición de transformación de señales de la máquina universal de ensayos mecánicos.
- Realizar los ensayos mecánicos de tracción y compresión en muestras de materiales predeterminados utilizando tipos de probetas que ensaya las fábricas de Acero del Ecuador como: Adelca, Novacero.

MARCO TEÓRICO

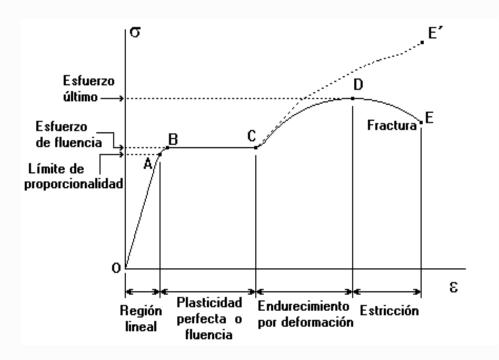
ESFUERZO

El esfuerzo es la resistencia interna dada por una unidad de área del material del cual está fabricado un miembro a una carga aplicada externamente.

DEFORMACIÓN

Se define como la relación existente entre la deformación total y la longitud inicial del elemento.

$$Esfuerzo\;(\sigma) = \frac{Fuerza\;aplicada}{Area\;sobre\;la\;cual\;se\;aplica\;la\;fuerza}$$

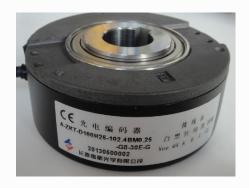

$$Deformación\ unitaria\ (\varepsilon) = \frac{Deformación\ total\ (\delta)}{Longitud\ inicial\ (L)}$$

MARCO TEÓRICO

DIAGRAMA ESFUERZO- DEFORMACIÓN

El esfuerzo es la resistencia interna dada por una unidad de área del material del cual está fabricado un miembro a una carga aplicada externamente.

MARCO TEÓRICO


SENSOR DE PRESIÓN

Los sensores de presión son muy habituales en cualquier proceso industrial o sistema de ensayo. Su objetivo es transformar una magnitud física en una eléctrica, en este caso transforman una fuerza por unidad de superficie en un voltaje equivalente a esa presión ejercida.

ENCODER

Los encoders son sensores que generan señales digitales en respuesta al movimiento. Para medir movimientos lineales, velocidad y posición se les usa en conjunto con dispositivos mecánicos tales como engranes, ruedas de medición o flechas de motores.

Máquina Universal Time Shijin Serie Wan-600c

El cilindro se fija en la base con el tornillo. El pistón se fija con la mesa de trabajo. La mesa de trabajo soporta columnas que tienen cuatro ranuras de círculos en la parte superior.

Entre la base y mesa de trabajo está provisto con el detector para el desplazamiento del pistón. Apoyos inamovibles están fijados en la base con tornillos, en los cuales está previsto el encoder, interruptor de posición del cilindro de trabajo y el límite superior del cilindro.

En la columna derecha se encuentra una de control para la sujeción de las mordazas y movilización del cabezal.

SENSOR DE PRESIÓN CYB-12SA WEST

Sensor que se encuentra instalado en la máquina de ensayos de procedencia China

Marca	CYB-12SA West
Precisión	0.1%
Alimentación	5-15 DCV
Salida Corriente	4-20mA
Rango de Presión	0-28 Mpa

EXTENSÓMETRO CHINO YYU

Deformímetro de tipo YYU conocida como galga extensométrica que en su interior consta de un puente de Weasthone.

Descripción	YYU
Longitud de Galga	500mm 250mm 200mm
	100mm 50mm 25mm
	20mm
Resistencia a la	350Ω
deformación	
Resolución de valor	2mV/V
de salida	
Rango de	5mm 10mm 25mm
deformación	
Voltaje de	≤6V
alimentación	
Precisión	+/-0.5% of FS

ENCODER LEC-500BM-G05E

La máquina de ensayos universal utiliza un encoder incremental de la serie LEC-500BM-G05E que genera un número definido de impulsos por revolución. Los mismos que indican la medida de la distancia angular y lineal recorrida.

Este tipo de encoder utiliza una alimentación de 5 voltios. El sentido de rotación se analiza debido al desplazamiento de fase entre las señales A y B (de aproximadamente 90 grados).

TARJETA PCI

Es un circuito de la medida y el control digital provista de carga, el desplazamiento y la deformación tienen diferente canal de medición. Cerca de control de bucle con sólo la configuración del software, está lista para utilizar.

REDISEÑO Y SELECCIÓN

Sensor de presión Turck PT5000

Marca	Turck PT1500
Precisión	0.3%
Alimentación	8-33 DCV
Salida Corriente	4-20mA
Rango de Presión	0-5000 PSI

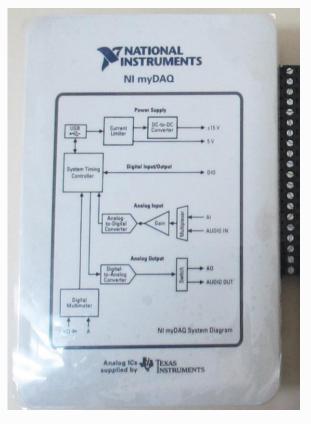
Sensor de presión CYB-12SA West

REDISEÑO Y SELECCIÓN

TARJETA DE ADQUISICIÓN DE DATOS

Elementos que envían señales necesarias para el control del sistema:

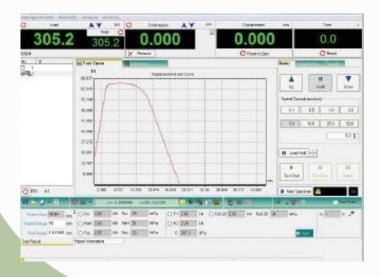
Elemento	Tipo de Señal	Alimentación
Sensor de Presión	Análoga	8 – 33 Vcc
Sensor de Desplazamiento	Digital	5 Vcc
Final de Carrera	Digital	5 Vcc


Elemento	Tipo de Señal
Válvula Proporcional	Análoga
Válvula de Retorno	Digital
Prender Bomba	Digital
Apagar Bomba	Digital

Elementos que reciben señales necesarias para el control del sistema:

REDISEÑO Y SELECCIÓN TARJETA DE ADQUISICIÓN DE DATOS NI MYDAQ

Entradas Analógicas	2 canales diferenciales		
	Tasa de muestreo: 200 kS/s		
	Resolución: 16 bits		
	Rango: +/- 10V		
Salidas Analógicas	2 canales referenciados (RSE)		
	Tasa de muestreo: 200 kS/s		
	Resolución: 16 bits		
	Rango: +/- 10V		
	Corriente de salida: 2 mA		
Entradas/Salidas digitales	Número de líneas: 8 de entrada/salida		
	Dirección: Cada línea individualmente		
	programable		
	Nivel lógico entrada: 5 V compatible LVTTL		
	Nivel lógico salida: 3.3 V compatible LVTTL		
	Máxima corriente de salida por línea: 4 mA		
Contadores/Temporizadores	Contador/temporizador		
	Resolución: 32 bits		
	Base de Reloj Interno: 100 MHz		
	Máxima frecuencia de medición y		
	generación: 1MHz		
	Compatible con PWM y Codificadores de		
	Cuadratura		



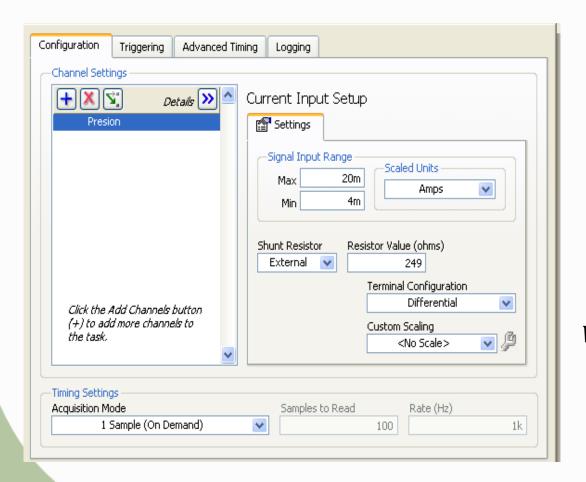
REDISEÑO Y SELECCIÓN

Software WINWAW

El software se basa en el sistema operativo Windows y fácil de operar el software puede mostrar la carga, la deformación y el desplazamiento.

El informe de la prueba se pueden modificar según las necesidades .

Software Labview


Un programa creado en Labview es considerado como un Interfaz Hombre-Máquina, el cual consta de tres partes a crear: el Panel frontal; el diagrama de bloques y flujo de datos entre las diferentes entradas y salidas, a través de líneas.

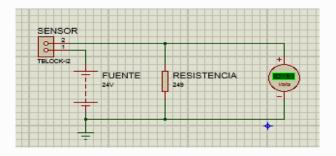
Implementación del Sistema de Medición de Presión

$$V = R.I$$

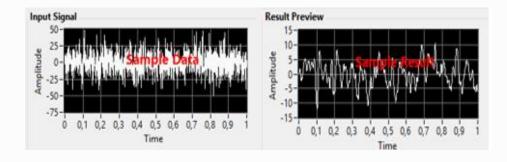
$$V = 249 \Omega(4mA)$$

$$V = 0.996 V$$

$$V = R.I$$


$$V = 249 \Omega(20mA)$$

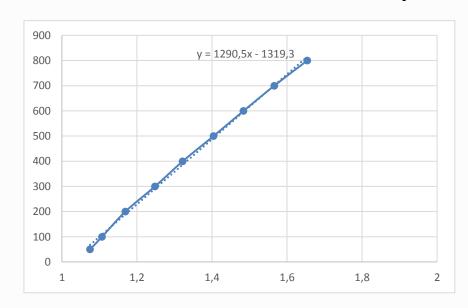
$$V = 4.98 V$$



Implementación del Sistema de Medición de Presión

Circuito electrónico conversor de Señal

Filtración de Señal


Implementación del Sistema de Medición de Presión

Voltaje Obtenido Experimentalmente

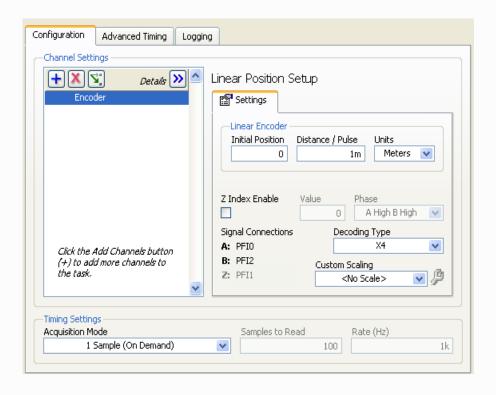
Presión (PSI)	Voltaje (V)
50	1,075
100	1,107
200	1,169
300	1,248
400	1,322
500	1,404
600	1,484
700	1,566
800	1,654

Corriente	Voltaje	Presión
4mA	1 V	0 Psi
20mA	5 V	5000Psi

Ecuación de Presión en función de Voltaje

Presión (PSI)= 1290,5 (voltaje)-1319,3 Presión (MPa)= Presion (PSI)*0,00689475

Implementación del Sistema de Medición de Desplazamiento


ENCODER LEC-500BM-G05E

Alimentación: 5V

Canales A y B

Valores adquiridos

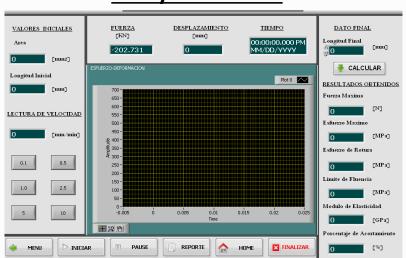
Distancia (mm)	Distancia/ Pulso		
0	0		
50	6,385		
100	13,052		
150	19,597		
200	26,232		
250	32,102		

Ecuación de Distancia en función de Distancia/pulso Distancia (mm) = 7,6814 (distancia/pulso)+ 0,7937

Diseño y Construcción del Interfaz Hombre-Máquina

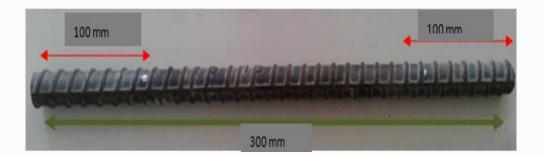
Página de Inicio

<u>Ingreso de Longitud inicial</u>



Diseño y Construcción del Interfaz Hombre-Máquina

Ensayo Mecánico


Reporte

Colocación de la Probeta

Muestra de barrilla de construcción marca Novacero Medición de la Probeta Lo= 200mm Diámetro de la probeta d=16 mm

Realización de Ensayo Mecánico

Realización de Ensayo Mecánico

Valores obtenidos durante el ensayo

Longitud Inicial [mm]	200.000000
Esfuerzo máximo [MPa]	614.026832
Esfuerzo de Ruptura [MPa]	503.532825
Límite de Fluencia Sy [MPa]	458.644143
Módulo de Elasticidad [GPa]	206.228659
Porcentaje de Alargamiento [%]	17.500000

NOVACERO

ADELCA

PROPIEDADES MECÁNICAS	MPa	kgf/mm2
Límite de fluencia mínimo	420	42
Límite de fluencia máximo	540	55
Resistencia a la tracción mínima	550	56
ALARGAMIENTO (%) MÍNIMO CO	N PROBETA I	.o=200mm
Dlámetro nominal (mm) %		
8-20	14	
22-32		12

ESPEC	IFICACIOI	NES DE ACER	O MIC	KOALEADO		
NORMA DE PRO	DUCTO			NTE INEN TM A - 706		
PROPIEDAD MECANICA		VALORES		VALORES		UNIDADES
GRADO DEL A	CERO	60 (42)		klb/plg² (kgf/mm²)		
Limite de	Min	420 [4200] 540 [5400]		MPa (kgf/cm²)		
Fluencia (Fy)	Max			MPa (kgf/cm²)		
Resistencia a la Tracción (Fu)	Min	550 (5500)		MPa (kgf/cm²)		
	orgamiento Según 22 s o	d ≤20	14			
		22 s d s 36	12	%		
	diámetro	d>40	10			

Realización de Ensayo Mecánico

Valores obtenidos durante el ensayo

Longitud Inicial [mm]	200.000000	
Esfuerzo máximo [MPa]	614.026832	
Esfuerzo de Ruptura [MPa]	503.532825	
Límite de Fluencia Sy [MPa]	458.644143	
Módulo de Elasticidad [GPa]	206.228659	
Porcentaje de Alargamiento [%]	17.500000	

Valores Novacero

Identificación	VC16-4552	
Diámetro nominal o Calibre	16	mm
Área Nominal	201,06	mm ²
Área Equivalente	188,70	mm ²
Peso de la muestra	1,02	Kg
Longitud de la muestra	690	mm
Peso por metro real	1,48	Kg/m
Peso por metro nominal	1,58	Kg/m
Variación Peso/Metro	-6,15	%
Temperatura	25	°C
Humedad	38	%
DATOS DEL ENSAYO MECÁNICO		
Longitud Calibrada	200	mm
Alargamiento	20,80	%
PSF_ Carga 0,2%/ FS	91,72	KN
PIF_ Carga	91,51	KN
Carga Máxima	124,29	KN
Límite de Fluencia	456,18	MPa
PIF_ Esfuerzo	484,94	MPa
Esfuerzo Máximo	658,68	MPa
Resistencia Máxima	618,17	MPa

CONCLUSIONES

- Se efectuó la repotenciación de la Máquina Time Shijin Serie WAN-600C utilizada para la realización de ensayos mecánicos que se encuentra en el laboratorio de resistencia de materiales de la Universidad De Las Fuerzas Armadas ESPE Extensión Latacunga, que por mucho tiempo estuvo fuera de servicio, siendo ahora un equipo disponible para reforzar los conocimientos académicos de los estudiantes.
- Se realizó ingeniería inversa para analizar el funcionamiento y operación original de la Máquina Universal, además se documentó cada factor importante encontrado durante este proceso, la máquina y sus sistema eléctrico se encontró detallado y conectado cumpliendo una secuencia ordenado lo que hiso fácil su entendimiento.
- Se realizó el acondicionamiento de señales al sensor de presión debido a que su dato de salida está en el rango de 4 a 20 m.a. y los datos de entrada a la tarjeta necesariamente es de o a 10 V. no se efectuó la disminución de ruido ya que no se hiso un circuito que filtre estas señales, por lo que esto se llevó a cabo en la programación del HMI.

CONCLUSIONES

- Se optó por no utilizar el deformímetro para la obtención del módulo de elasticidad, esto en virtud que las probetas no se rompen en la el punto medio de instalación del sensor, lo que no permite medir de una forma correcta la deformación del material de prueba; además existe un inconveniente al retira este dispositivo durante la ejecución de los ensayos, siendo necesario realizar una pausa al proceso.
- El proceso del ensayo es continuo, solo se realiza una pausa en el momento que se realiza la ruptura en la probeta, además que no es necesario realizar pruebas con probetas normalizadas sino que también se realizan con muestras de materiales disponibles en el mercado.
- El ensayo de compresión se condicionó para que únicamente se pueda hacer una demostración del proceso con una probeta y tipo de material específico se consideró la probeta con la que se hacía el ensayo de compresión cuando la maquina estaba funcionando correctamente, esto debido a que no existen normas que avalen el tipo de probeta a utilizar.

RECOMENDACIONES

- Se recomienda revisar el sistema mecánico antes de proceder a realizar el control de la máquina y de ser necesario realizar el mantenimiento correctivo, ya que dichos errores pueden afectar los resultados finales.
- Previo a la realización del ensayo revisar el manual de operación, considerando que primero se debe encender la computadora y posteriormente la máquina de ensayos, esto por seguridad para la tarjeta de adquisición de datos.
- Revisar las conexiones eléctricas y el sistema hidráulico, para evitar inconvenientes durante la realización del ensayo mecánico. Además de realizar una revisión continua sobre el nivel de aceite por si este ya no fuese suficiente para el correcto funcionamiento del equipo.
- Antes de regresar la máquina a su estado de reposo se debe asegurar de retirar la probeta de ensayo, debido a que su permanencia puede causar choques entre las mordazas al momento que la mesa de trabajo regrese.
- Realizar periódicamente la calibración de los equipos electrónicos para asegurar el correcto funcionamiento del sistema de control de la máquina.
- Para evitar accidentes en la manipulación de probetas y mordazas es necesario la utilización de Equipos de Protección Personal.

GRACIAS