

## DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

TRABAJO DE INVESTIGACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO
AUTOMOTRIZ

TEMA: "ANÁLISIS DE LA EFICIENCIA ENERGÉTICA Y RENOVACIÓN DEL CAUDAL DE AIRE DEL SISTEMA DE CLIMATIZACIÓN EN VEHÍCULOS HÍBRIDOS POR MEDIO DE ELEMENTOS FINITOS."

**AUTOR:** HENRY DANIEL PAUCAR JARRIN VÍCTOR ALFONSO YUPA LOJA

**DIRECTOR:** ING. GERMAN ERAZO

**LATACUNGA** 

2017



#### **Antecedentes**

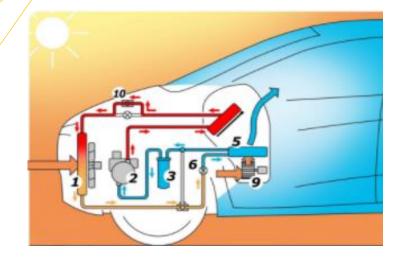
- El sistema A/C se convirtió en el mayor consumidor de energía para un vehículo híbrido altamente eficiente y el sistema A/C tiene un alto impacto en el consumo total de combustible del vehículo.
- La importancia del sistema de A/C en términos de necesidades energéticas invita a considerar nuevas tecnologías y oportunidades para mejorar su eficiencia, desde el punto de vista termodinámico.
- El manejo diario es afectado al rendimiento del vehículo un 35% de su funcionamiento por el uso del aire acondicionado por las condiciones térmicas, el mal uso del A/C afecta al rendimiento del motor incrementando el uso de combustible en un 20%.



#### **OBJETIVOS**

#### Objetivo general

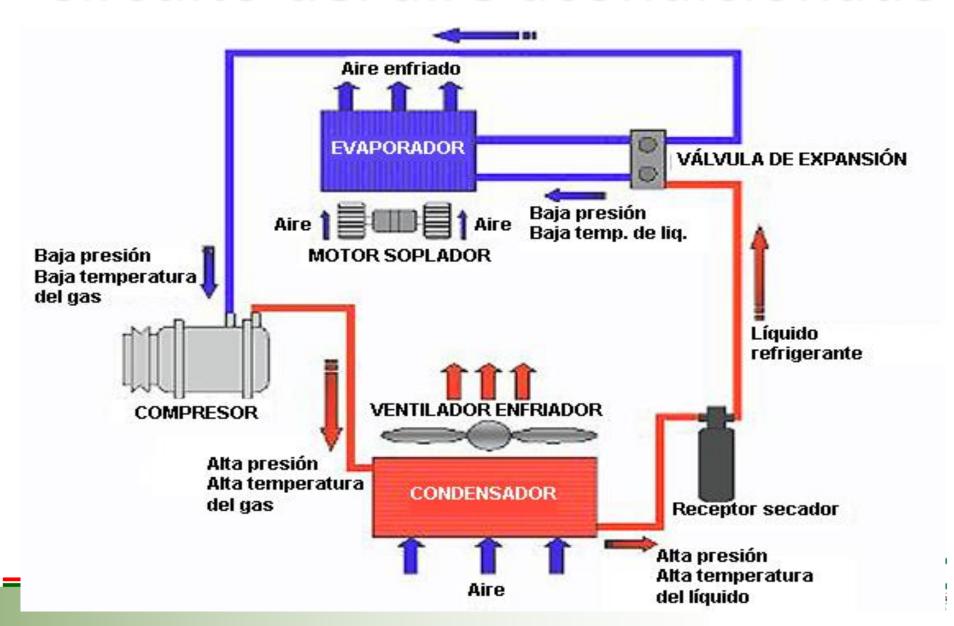
Analizar la eficiencia energética y renovación de caudal de aire del sistema de climatización en vehículos híbridos para reducir el impacto ambiental.




## MARCO TEÓRICO

Al salir del condensador, el líquido pasa por el presos-tato, para eliminar humedad e impurezas, una vez que sale del filtro se dirige hacia la válvula de expansión

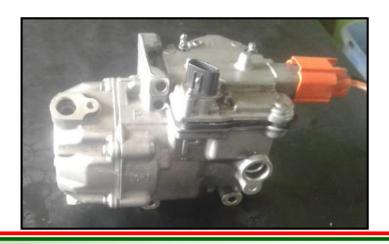
El líquido se encuentra circulando por el evaporador, el ventilador empuja aire frio filtrado hacia la cabina para culminar el ciclo.


El compresor empuja el gas, a presión al condensador. El gas, al pasar por el condensador baja su temperatura y presión








## Circuito del aire acondicionado



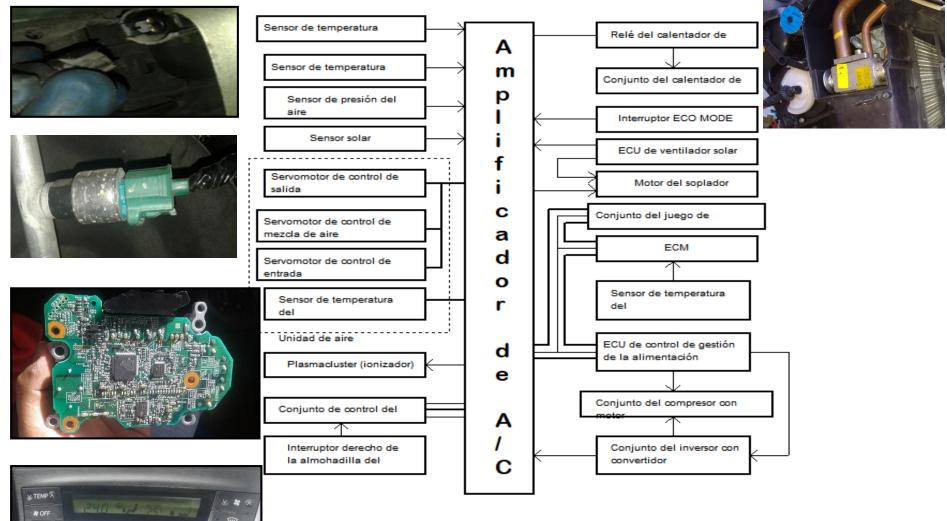
## Componentes

## Compresor

Los sistemas de aire acondicionado en vehículos híbridos, pueden venir equipados con compresores accionados mediante una correa impulsada por el motor de combustión interna o accionado por un motor eléctrico integrando en el cuerpo del mismo compresor es eléctrico que tiene interiormente un inversor para su funcionamiento.

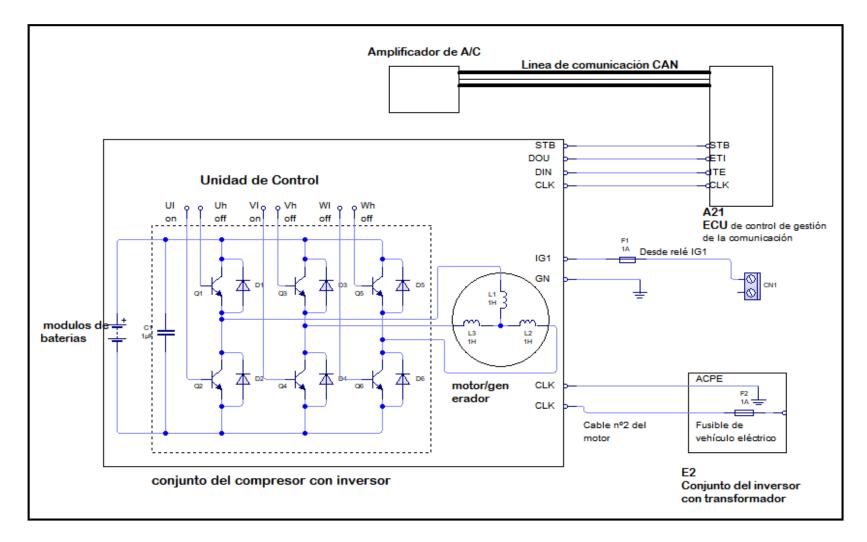





### Inversor conductor

Este componente es fundamental en el vehículo hibrido, incorpora gran cantidad de elementos eléctricos y electrónicos pero el funcionamiento es controlado por la unidad de control del sistema hibrido ECU (HV). Este sistema se encarga de controlar al inversor y generalmente cualquier tipo de diagnóstico del mismo incluidos el DTC.

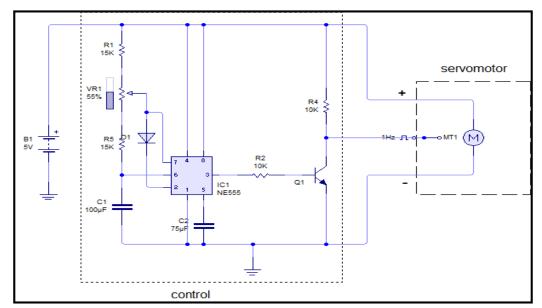





## Amplificador del A/C



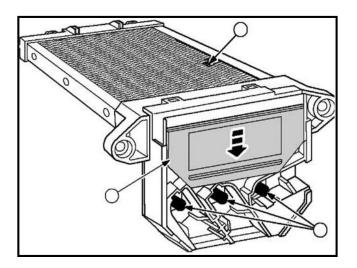
UNIVERSIDAD DE LAS FUERZAS ARMADAS


#### Comunicación del compresor del vehículo híbrido





## Servomotor de impulsos


Conformada por una placa de circuito impreso y un servomotor. Esta placa consta de tres puntos de contacto y transmite dos señales ON-OFF al amplificador A/C. El conector BUS es capaz de detectar la posición y dirección de movimiento del regulador con estas señales.





### Calentador de TPC

Este se encuentra montado sobre una base de cerámica encima del núcleo de la calefacción, en la unidad de aire acondicionado, la unidad calentadora PTC se activa y desactiva mediante señales enviadas por el amplificador del A/C en función de la temperatura ambiente.





#### Sensores del sistema de climatización en vehículos híbridos

 Detecta la temperatura exterior basándose en los cambios de resistencia del termistor integrado y como resultado envía una señal al amplificador del A/C.



Temperatura ambiente

 Detecta la temperatura del habitáculo basándose en los cambios de resistencia de su termistor integrado y envía una señal al amplificador del A/C

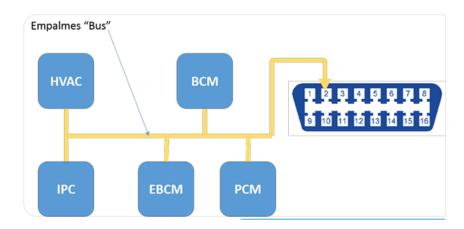
Temperatura interior





 Detecta la presión del refrigerante y la transmite al amplificador del A/C en forma de cambios de tensión. Presión del aire acondicionado

Temperatura del evaporador




 Detecta la temperatura del aire frío basándose en los cambios de resistencia, con los resultados obtenidos envía una señal al amplificador del A/C.



### Conexión BUS

Este protocolo de comunicación permite conectar el servomotor al amplificador de A/C, este conector dispone de un IC propulsor de comunicación el cual va a unir, accionar y detectar la posición de los servomotores. Además, permite comunicar un bus para el mazo de cables del dicho servomotor, con ello se obtiene una estructura menos pesada y un número reducido de cables.





#### SIMULADOR DE CLIMATIZACIÓN DEL VEHÍCULO HÍBRIDO

#### Selección de elementos sistema de aire acondicionado

#### Compresor eléctrico

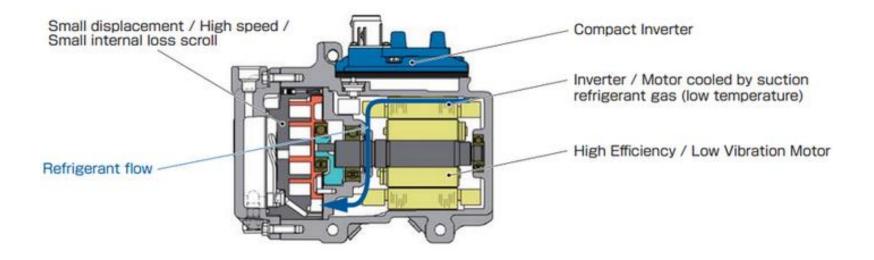
$$Q_r = Q_s + Q_l$$

#### Dónde:

 $Q_r$ = potencia térmica de refrigeración.

 $Q_s$ =Carga térmica sensible

 $Q_l$ =Carga térmica latente




| Carga térmica sensible            | 1928,56  |
|-----------------------------------|----------|
| Carga térmica latente             | 1128, 01 |
| Potencia térmica de refrigeración | 3056,58  |



#### Características del compresor







## Evaporador



#### **Características**

Serpentín de tubo de aluminio

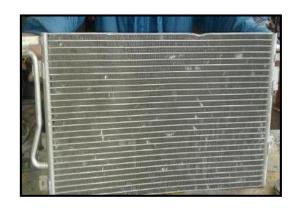
Tiro forzado con un ventilador de tipo propulsor

Un circuito refrigerante continuo

Refrigerante R-134a

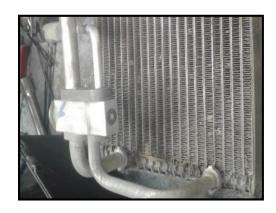
Mantener la temperatura del espacio de confort.

Evaporador limpio y en buenas condiciones de funcionamiento.


20 tubos de aluminio

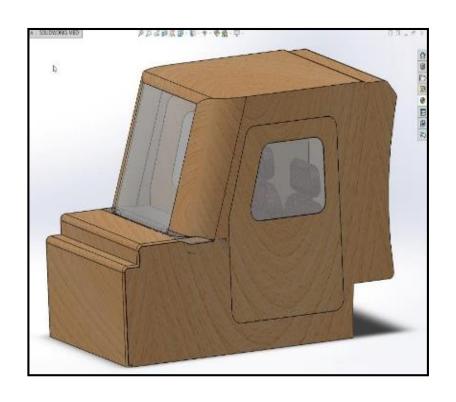
Potencia térmica de absorción 6 kW

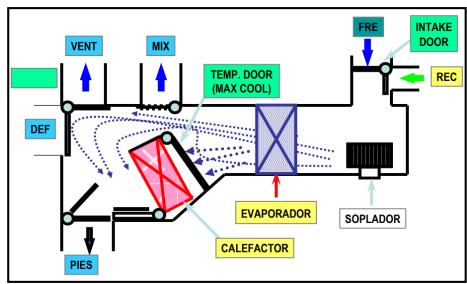



#### Condensador

| Elemento           | Datos                        |
|--------------------|------------------------------|
| Condensador        | 42 tubos de aluminio         |
|                    | 7 aletas                     |
|                    | 12 V                         |
| Electro-ventilador | 250 rpm                      |
|                    | 6 kW de disipación           |
|                    | Velocidad del aire a 70 km/h |

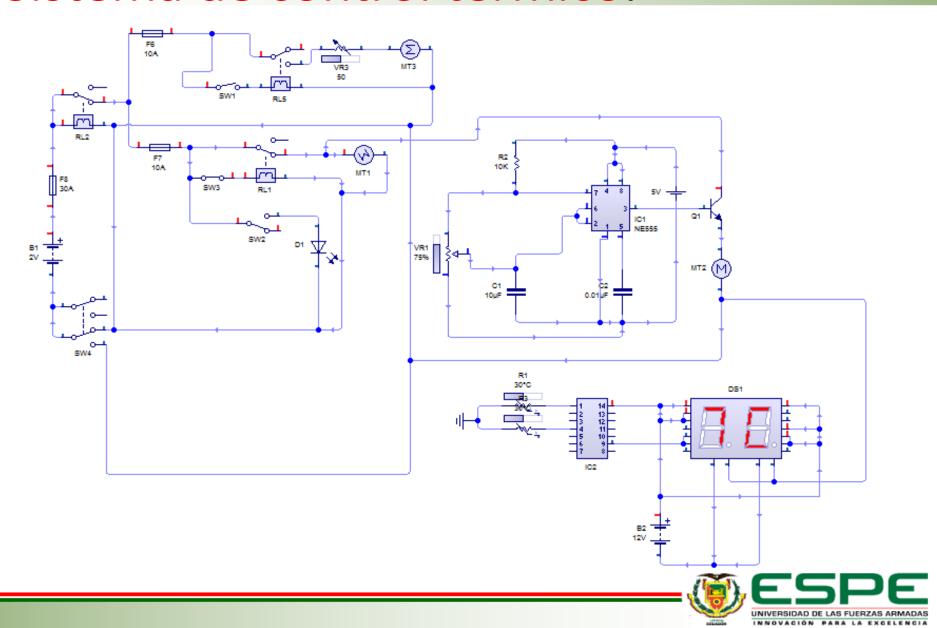



#### Válvula de control de flujo


| Referencia                          | Detalle              |
|-------------------------------------|----------------------|
| Tipo                                | Válvula termostática |
| Marca                               | Fujikoki             |
| Rango de temperatura del evaporador | -5 º C a 10 º C      |
| Presión que soporta                 | 4.5 MPa              |
| Resistencia al calor                | 120 º C              |
| Máxima presión de trabajo           | 1.47 MPa             |
| Sistema de compensación             | Externa              |
| Sistema de sellado                  | Carga de Gas/Carga   |
|                                     | cruzada de gas       |
| Conexión                            | Brida                |
| Peso                                | 125 g                |

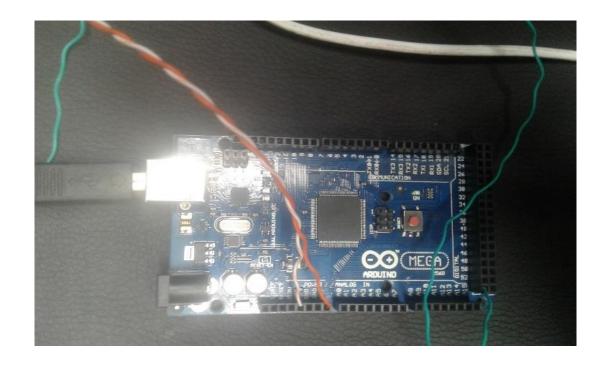





## Diseño del habitáculo

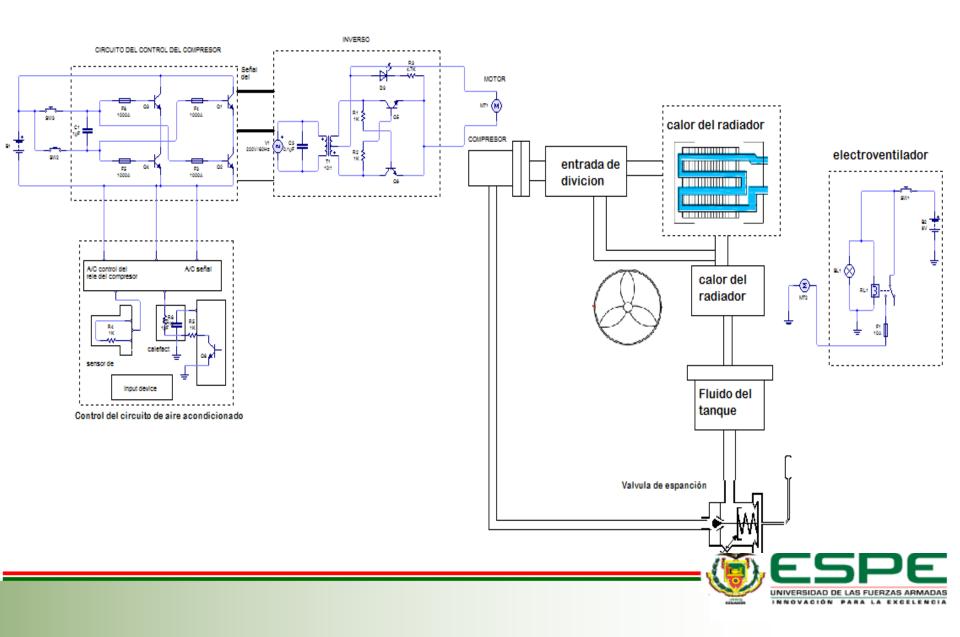




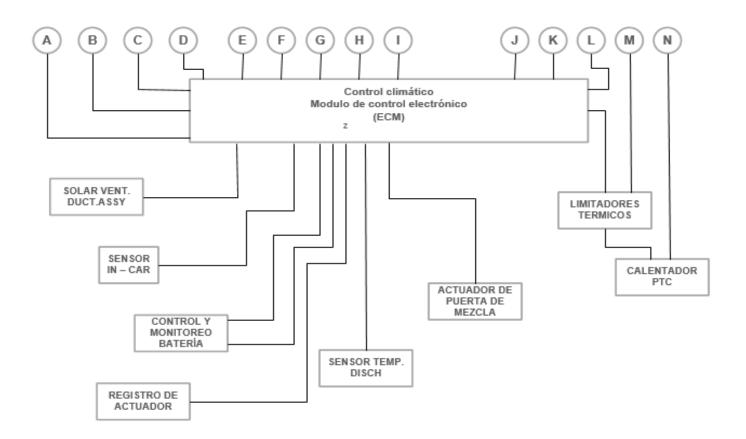



## Sistema de control térmico.




## Programación

#### SENSOR DE HUMEDAD DHT 11, EN EL HABITÁCULO

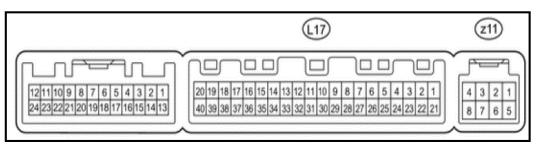





## Circuito del banco de simulación



#### Comprobaciones de climatización de un vehículo Híbrido

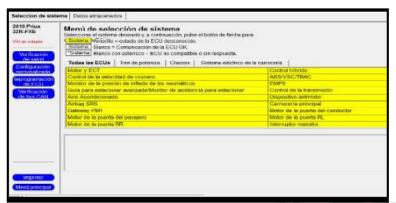



Módulo de control de aire acondicionado (1)



## Protocolo de pruebas

Distribución de pines de comunicación




Conexión del interface



Menú de selección de sistema







## Comprobación de sensores

| Elemento                                                     | Rangos de medición                                                | Estado   | Diagnostico |
|--------------------------------------------------------------|-------------------------------------------------------------------|----------|-------------|
| Sensor de temperatura interior                               | Min.: -6.5 °C (20.3 °F)<br>Max.: 57.25 °C (135. 05°F)             | 29 °C    | Funcionando |
| Sensor de<br>temperatura<br>ambiente                         | Min.: -23.3 °C (-9.94 °F)<br>Max.: 65.95 °C (150.71°F)            | 22.55 °C | Funcionando |
| Sensor de<br>temperatura<br>del<br>evaporador                | Min.: -29.7 °C (-21.46 °F)  Max.: 59.55 °C (139.19°F)             | 5.65 °C  | Funcionando |
| Sensor solar                                                 | Min: 0<br>Max: 255                                                | 62       | Funcionando |
| Sensor de<br>temperatura<br>del<br>refrigerante<br>del motor | Min: 1.3<br>Max: 90.55                                            | 89.50    | Funcionando |
| Sensor de<br>presión de<br>aire<br>acondicionado             | Min: -66.22 Lb/pulg <sup>2</sup> Max: 477.68 Lb/pulg <sup>2</sup> | 155.61   | Funcionando |

| Room Temperature Sensor<br>Ambient Temp Sensor | 29.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                               | Compressor Mode               | Auto   | _                                                        |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|--------|----------------------------------------------------------|
| mbient Temo Sensor                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                               |        |                                                          |
|                                                | 22.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                               | Noise and Vibration Reduction | OFF    |                                                          |
| Adjusted Ambient Temp                          | 22.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                               | ECO MODE Cancel               | OFF    |                                                          |
| Evaporator Fin Thermistor                      | 5.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                               | ECO Switch                    | OFF    |                                                          |
| Evaporator Target Temp                         | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                               | Foot/DEF Auto Mode            | ON     |                                                          |
| Solar Sensor (D Side)                          | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | Foot/DEF Auto Blow Up         | ON     |                                                          |
| Engine Coolant Temp                            | 89.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                               | Ambient Temperature Shift     | Normal |                                                          |
| Set Temperature (D Side)                       | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                               | Pls Servo Test Sts            | Wait   |                                                          |
| Blower Motor Speed Level                       | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | Compressor Drive Check        | NG     |                                                          |
| Regulator Pressure Sensor                      | 155.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | psi(gau<br>ge)                  | Number of Trouble Codes       | 0      |                                                          |
| ur Mix Servo Targ Pulse(D)                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |        |                                                          |
| Air Mix Servo Actual Pulse(D)                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |        |                                                          |
| Air Outlet Servo Pulse (D)                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |        |                                                          |
| Air Outlet Servo Actu Pulse(D)                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |        |                                                          |
| Air Inlet Damper Targ Pulse                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                               |        |                                                          |
| Air Inlet Damper Actual Pulse                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                               |        |                                                          |
| Compressor Speed                               | 4891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rpm                             |                               |        |                                                          |
| Compressor Target Speed                        | 4942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rpm                             |                               |        |                                                          |
| Shift Set Temperature                          | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                            |                               |        |                                                          |
| Air Inlet Mode                                 | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                               |        |                                                          |
|                                                | vaporator Fin Thermistor vaporator Tengel Temp vaporator Tengel Temp dictal Sensor (O Side) trapine Codent Temp et Temperature (D Side) itiwer Motor Speed Level legulator Pressure Sensor in Mx Senor Artual Pulse(I) in fulx Senor Artual Pulse(II) in Outet Senor Artual Pulse(II) in Fulter Senor Artual Pulse(III) in Fulter Senor Artual Pulse(III) in Fulter Demperature in Intel Demperature senorpressor Speed | Separator Fin Thormistor   5 65 |                               |        | Separator Fin Thermistor   S. 6.5   C   ECO Switch   OFF |



## Inspección de los sensores

Extracción del sensor



Extracción del sensor



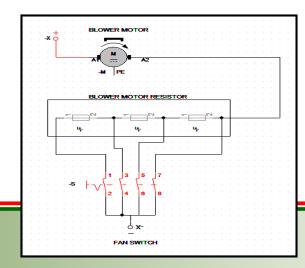
Comprobación de datos





| Elemento              | Conexión | Estado        | Estado especifico |
|-----------------------|----------|---------------|-------------------|
| Sensor de temperatura | 1 - 2    | 15 °C (59 °F) | 2.76 kΩ           |
| ambiente              | 1 - 2    | 60°C (140 °F) | 0.41 kΩ           |
| Sensor de temperatura | 1 – 2    | 15 °C (59 °F) | 2.81 kΩ           |
| interior              | 1 – 2    | 60°C (140 °F) | 0.49 kΩ           |
| Sensor de temperatura | 1 – 2    | -5 °C (23 °F) | 6.45 kΩ           |
| del evaporador        | 1 – 2    | 25°C (77 °F)  | 3.58 Ω            |




## Motor del soplador

#### Datos almacenados Aire Acondicionado En vivo Unida Room Temperature Sensor Compressor Mode Ambient Temp Sensor Noise and Vibration Reduction ECO MODE Cancel Adjusted Ambient Temp 22.00 Evaporator Fin Thermisto 4.60 ECO Switch Evaporator Target Temp Foot/DEF Auto Mode ON Foot/DEF Auto Blow Up Solar Sensor (D Side) Ambient Temperature Shift Engine Coolant Temp Set Temperature (D Side) Normal 18.0 Pls Servo Test Sts Wait Blower Motor Speed Level Compressor Drive Check psi(gau Number of Trouble Codes Regulator Pressure Sensor 153.48 Air Mix Servo Targ Pulse(D) Air Mix Servo Actual Pulse(D) Air Outlet Servo Pulse (D) Air Outlet Servo Actu Pulse(D) Air Inlet Damper Targ Pulse Air Inlet Damper Actual Pulse Compressor Speed 3995 Compressor Target Speed 4037 rpm Shift Set Temperature Normal Air Inlet Mode

|                               |       |      |      | •     |       |      |      |      |
|-------------------------------|-------|------|------|-------|-------|------|------|------|
| Elemento                      | Unid. |      |      | V. de | prueb | а    |      |      |
| Velocidad del<br>soplador     |       | 1    | 5    | 9     | 13    | 18   | 24   | 31   |
| Velocidad<br>del<br>compresor | Rpm   | 2583 | 2913 | 3261  | 3678  | 3995 | 4351 | 4891 |
| Velocidad<br>deseada          | Rpm   | 2584 | 2927 | 3290  | 3670  | 4037 | 4394 | 4942 |

Valores del soplador

#### Inspección



| Conexión        | Estado                   | V. especifico |
|-----------------|--------------------------|---------------|
| 1 (amarillo y   | Interruptor de encendido | 12 V          |
| lila)(+) – Masa | desactivado              |               |
| 2(amarillo y    | Siempre                  | 0.79 Ω        |
| verde) (-) –    |                          |               |
| Masa            |                          |               |

UNIVERSIDAD DE LAS FUERZAS ARMADAS

## Compresor

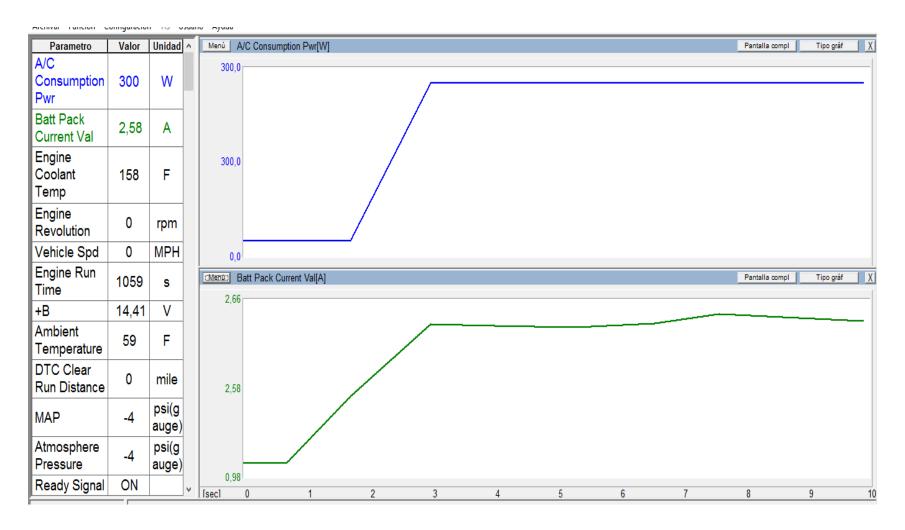
Extracción del compresor



Placa de control del compresor



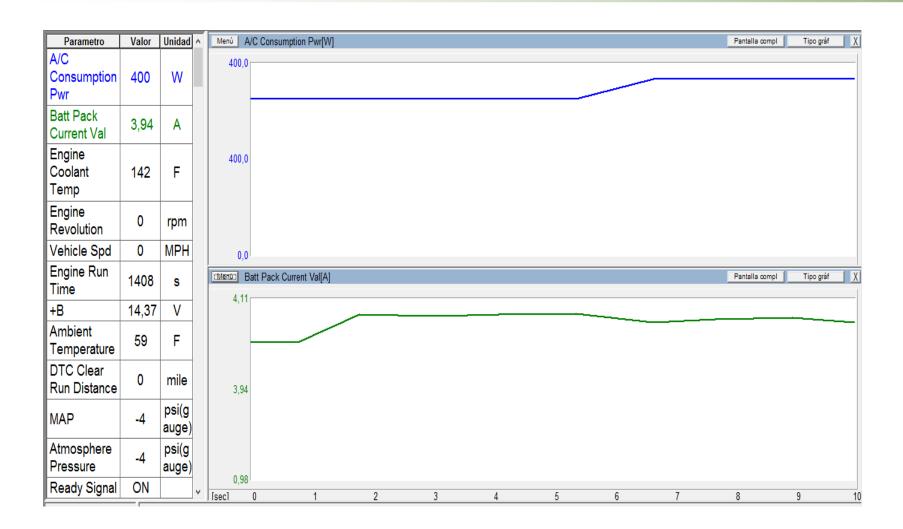
Verificación de valores



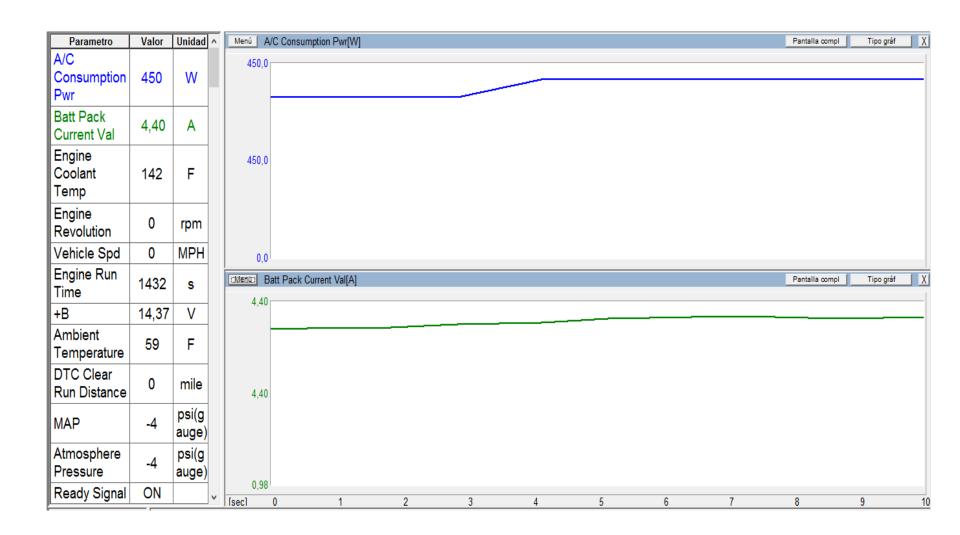



| Conexión   | Estado  | Estado especifico |
|------------|---------|-------------------|
| PE1 – Masa | Siempre | 2.5 ΜΩ            |
| PB2- Masa  | Siempre | 2.6 ΜΩ            |



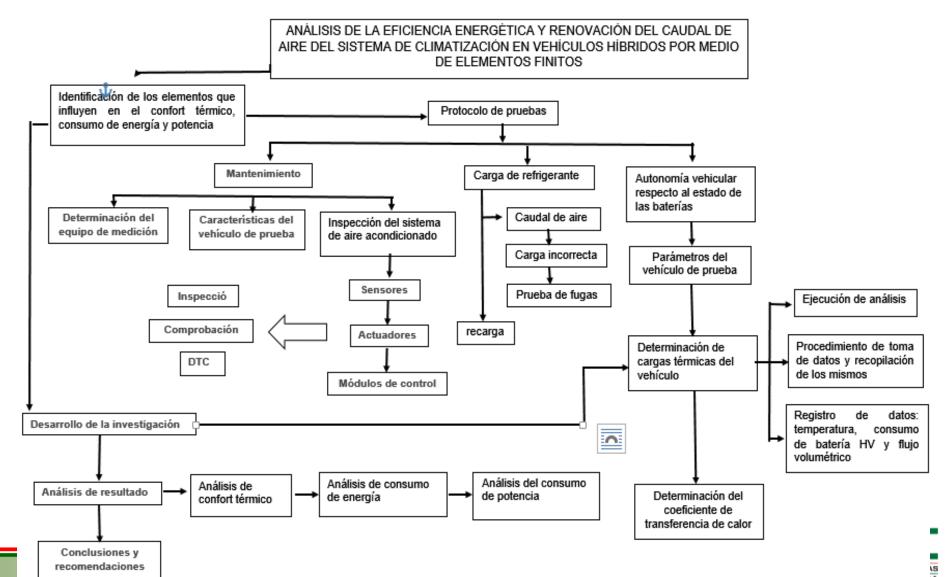

## Consumo de energía del compresor






| Parametro                 | Valor | Unidad ^       | Menú A/C Consump    | otion Pwr[W] |   |   |   |   |   |   | Pantalla compl | Tipo gráf X |
|---------------------------|-------|----------------|---------------------|--------------|---|---|---|---|---|---|----------------|-------------|
| A/C                       | 050   |                | 350,0               |              |   |   |   |   |   |   |                |             |
| Consumption<br>Pwr        | 350   | W              |                     |              |   |   |   |   |   |   |                |             |
| Batt Pack<br>Current Val  | 3,51  | Α              |                     |              |   |   |   |   |   |   |                |             |
| Engine<br>Coolant<br>Temp | 144   | F              | 350,0               |              |   |   |   |   |   |   |                |             |
| Engine<br>Revolution      | 0     | rpm            |                     |              |   |   |   |   |   |   |                |             |
| Vehicle Spd               | 0     | MPH            | 0,0                 |              |   |   |   |   |   |   |                |             |
| Engine Run<br>Time        | 1386  | s              | SMENCO Batt Pack Cu | rrent Val[A] |   |   |   |   |   |   | Pantalla compl | Tipo gráf X |
| +B                        | 14,37 | V              | 3,01                |              |   |   |   |   |   |   |                |             |
| Ambient<br>Temperature    | 59    | F              |                     |              |   | _ |   |   |   |   |                |             |
| DTC Clear<br>Run Distance | 0     | mile           | 3,51                |              |   |   |   |   |   |   |                |             |
| MAP                       | -4    | psi(g<br>auge) |                     |              |   |   |   |   |   |   |                |             |
| Atmosphere<br>Pressure    | -4    | psi(g<br>auge) | 0,98                |              |   |   |   |   |   |   |                |             |
| Ready Signal              | ON    | <u> </u>       | Isecl 0             | 1            | 2 | 3 | 4 | 5 | 6 | 7 | 8              | 9 10        |







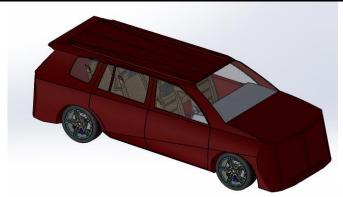





# ANÁLISIS DE LA EFICIENCIA ENERGÉTICA Y RENOVACIÓN DE CAUDAL DE AIRE.



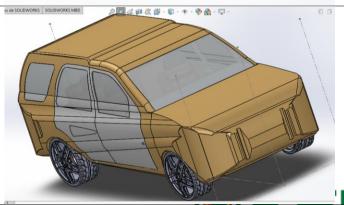
## **Equipos**


#### **Vehículos**

| Vehículo<br>Característica | Toyota Highlander                                          | Toyota Prius                                               | Ford Scape                                           |
|----------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|
| Tipo                       | SUV                                                        | Sedan                                                      | Jeep                                                 |
| Año                        | 2010                                                       | 2010                                                       | 2010                                                 |
| Fabrica del compresor      | Denso                                                      | Denso                                                      | FoMoco (Denso)                                       |
| Voltaje de batería (HV)    | 201.6                                                      | 300                                                        | 300                                                  |
| Tipo de compresor          | Compresor eléctrico                                        | Compresor eléctrico                                        | Compresor eléctrico                                  |
| Tipo de sistema de A/C     | Válvula de expansión                                       | Válvula de<br>expansión                                    | Tubo de Orifico                                      |
| Componentes                | Compresor<br>Evaporador<br>Condensador<br>Depósito-secador | Compresor<br>Evaporador<br>Condensador<br>Depósito-secador | Compresor<br>Evaporador<br>Condensador<br>Acumulador |
| Número de difusores        | Frontal: 6<br>Pies:4                                       | Frontal: 4<br>Pies:4                                       | Frontal: 4<br>Pies:2                                 |



Vehículo Diseño

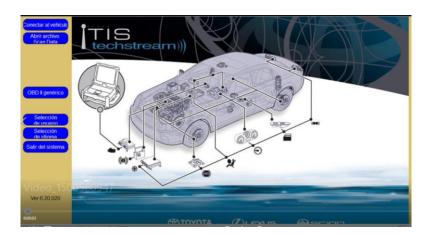

#### **Toyota Highlander**



#### **Toyota Prius**

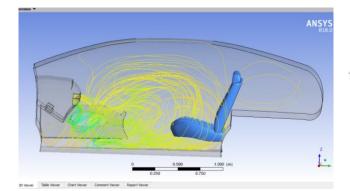


#### **Ford Scape**

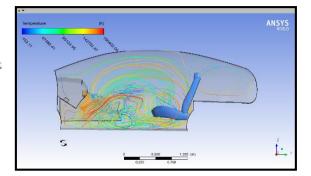





#### **Anemómetro Smart Electric**




#### **Scanner**



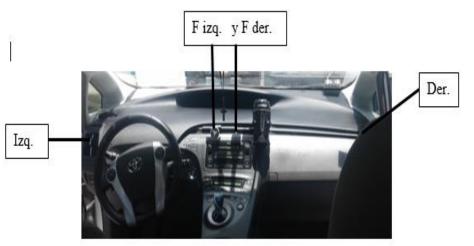







Volúmen del habitáculo



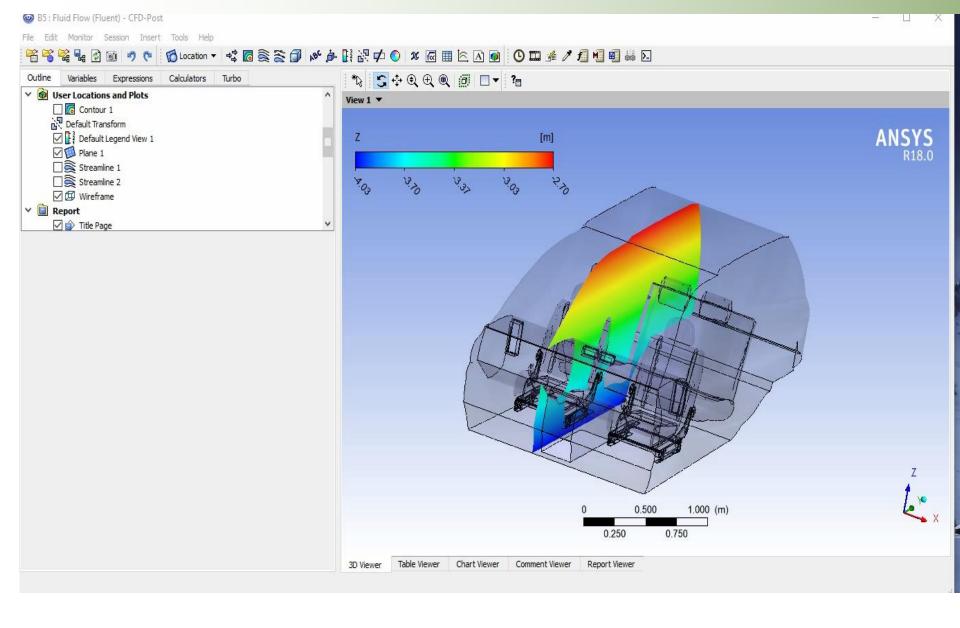

Presión del habitáculo

Temperatura del habitáculo

Cálculo de volúmenes finitos

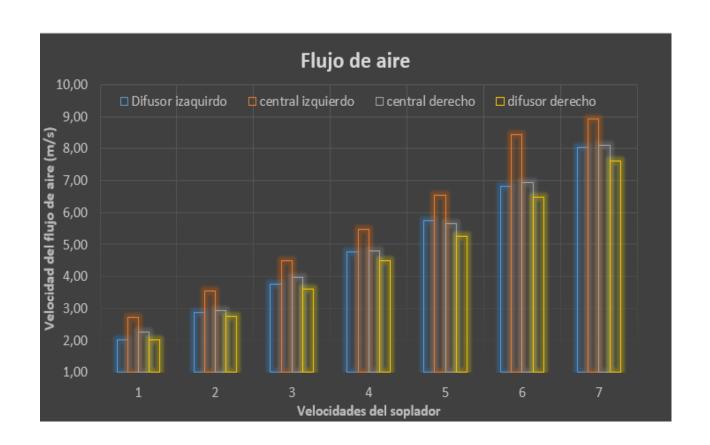


# Pruebas de flujo de aire en el Toyota Prius




#### Flujo de aire

| Velocidad |       | Difusores |        |       |  |  |  |  |  |
|-----------|-------|-----------|--------|-------|--|--|--|--|--|
| soplador  | Izq.  | F izq.    | F der. | Der.  |  |  |  |  |  |
|           | (m/s) | (m/s)     | (m/s)  | (m/s) |  |  |  |  |  |
| 1         | 1,44  | 1,81      | 1,67   | 1,75  |  |  |  |  |  |
| 2         | 2,47  | 2,69      | 2,56   | 2,28  |  |  |  |  |  |
| 3         | 3,17  | 3,67      | 3,31   | 3,06  |  |  |  |  |  |
| 4         | 3,86  | 4,36      | 3,83   | 3,78  |  |  |  |  |  |
| 5         | 5,14  | 5,44      | 4,72   | 4,67  |  |  |  |  |  |
| 6         | 5,8   | 6,72      | 5,89   | 5,97  |  |  |  |  |  |
| 7         | 7,47  | 7,58      | 6,97   | 6,97  |  |  |  |  |  |

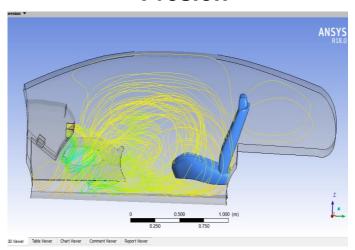




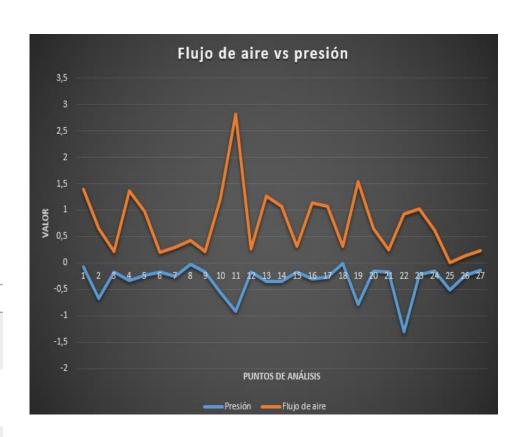





#### Flujo de aire con relación a la velocidad del soplador

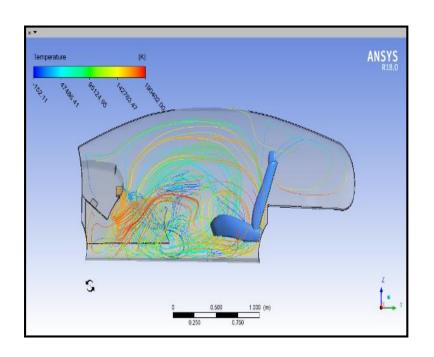


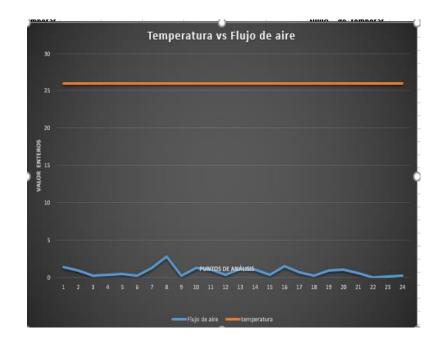



# ANÁLISIS DE LA PRESIÓN

#### **Presión**





| límites del volúmen |          |       |       |       |      |  |  |  |
|---------------------|----------|-------|-------|-------|------|--|--|--|
| Ancho<br>(frente)   |          | Largo |       | Alto  |      |  |  |  |
| Izq.                | Der      | Del.  | Atrás | Techo | piso |  |  |  |
| 1,6                 | 3,4<br>2 | -0,11 | 3,08  | 0,02  | 1,32 |  |  |  |





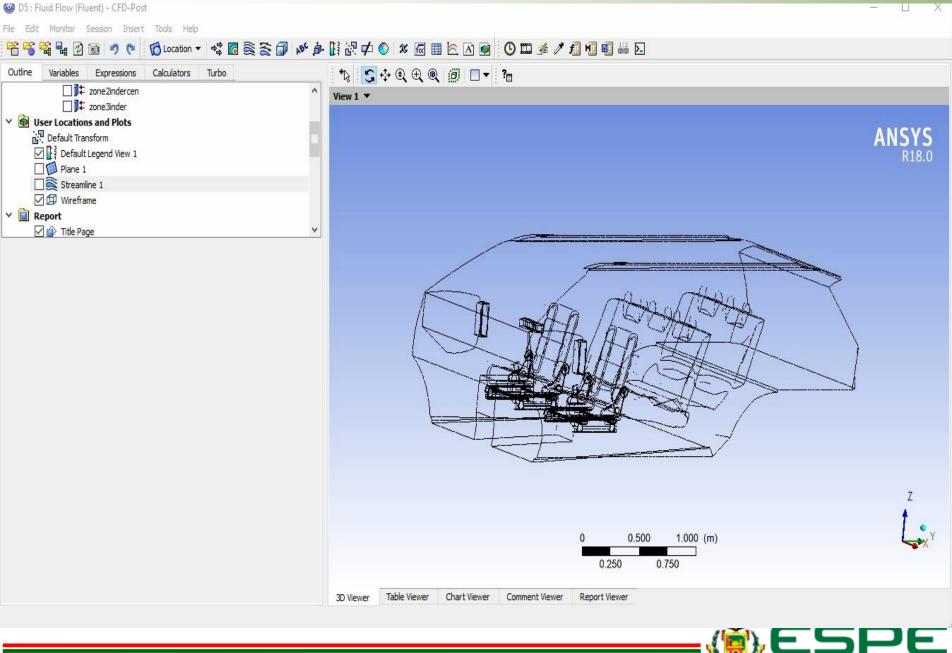
# ANÁLISIS DE TEMPERATURA





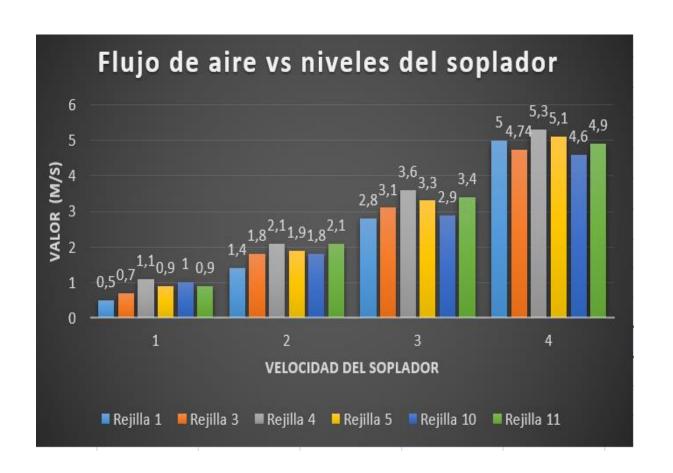


#### Pruebas de flujo de aire en el Toyota Highlander




#### Prueba de flujo de aire con anemómetro

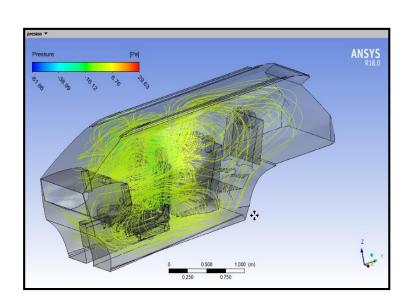
|       |      | Dif    | Difusores | asientos |            |            |
|-------|------|--------|-----------|----------|------------|------------|
| Nivel | Izq. | F izq. | F der.    | Der.     | rejilla 10 | rejilla 11 |
| Lo    | 0,5  | 0,7    | 1,1       | 0,9      | 1,0        | 0,9        |
| L1    | 1,4  | 1,8    | 2,1       | 1,9      | 1,8        | 2,1        |
| 12    | 2,8  | 3,1    | 3,6       | 3,3      | 2,9        | 3,4        |
| Hi    | 5,0  | 4,74   | 5,3       | 5,1      | 4,6        | 4,9        |

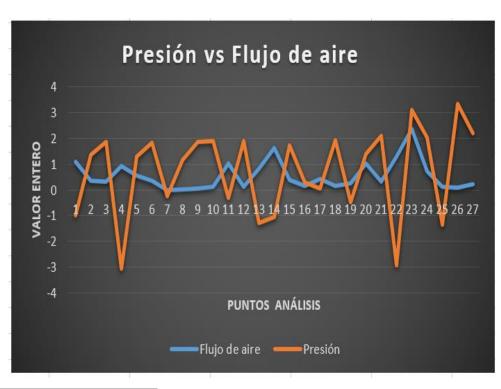








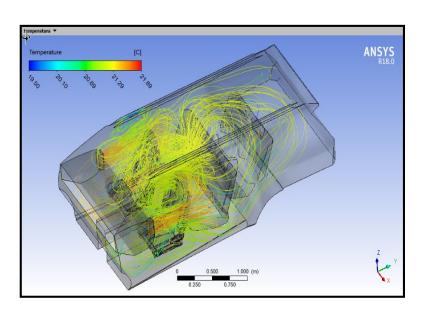


# Flujo de aire con anemómetro








# ANÁLISIS DE LA PRESIÓN







| límites del volúmen |         |         |       |       |      |  |  |  |
|---------------------|---------|---------|-------|-------|------|--|--|--|
| ancho (frer         | nte)    | largo   |       | alto  |      |  |  |  |
| izquierda           | derecha | delante | Atrás | techo | Piso |  |  |  |
| -0,77               | 1,07    | -0,96   | 2,62  | 6,95  | 5,54 |  |  |  |

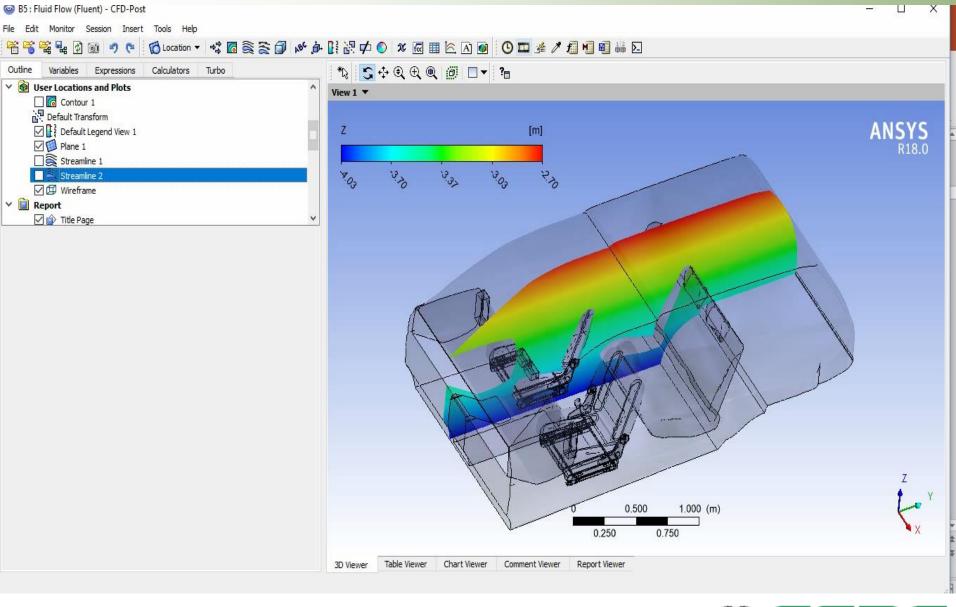


#### Análisis de temperatura



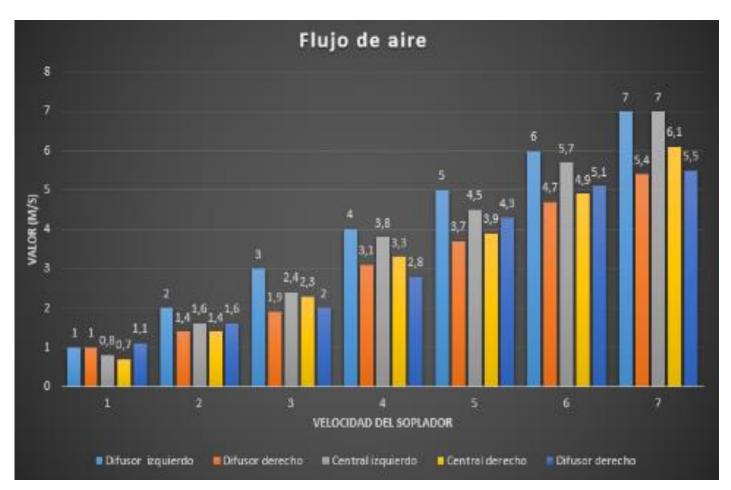





#### PRUEBAS DE FLUJO DE AIRE EN FORD SCAPE

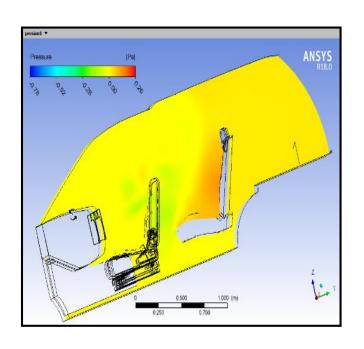


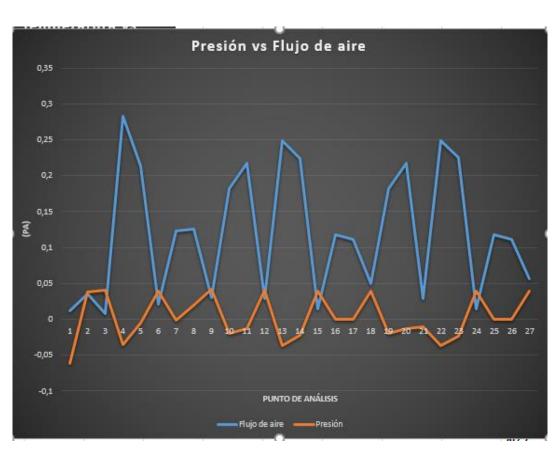
#### Flujo de aire con anemómetro


| 1           | 1    | Izquierdo | Derecho | 2    | Temp. |
|-------------|------|-----------|---------|------|-------|
| velocidad 1 | 1    | 0,8       | 0,7     | 1,1  | 21,7  |
| Temp 1:     | 22,4 | 20,5      | 21,9    | 20,6 |       |
| velocidad 2 | 1,4  | 1,6       | 1,4     | 1,6  | 24,7  |
| Temp 2:     | 24,8 | 23,9      | 25,3    | 24,2 |       |
| velocidad 3 | 1,9  | 2,4       | 2,3     | 2    | 25,4  |
| Temp 3:     | 26,5 | 25,5      | 27,3    | 25,6 |       |
| velocidad 4 | 3,1  | 3,8       | 3,3     | 2,8  | 26,5  |
| Temp 4:     | 24,6 | 21,5      | 21,5    | 21,8 |       |
| velocidad 5 | 3,7  | 4,5       | 3,9     | 4,3  | 23,4  |
| Temp 5:     | 23,5 | 21,5      | 23,5    | 21,6 |       |
| velocidad 6 | 4,7  | 5,7       | 4,9     | 5,1  | 23,7  |
| Temp 6:     | 23,7 | 21,7      | 22,2    | 22   |       |
| velocidad 7 | 5,4  | 7         | 6,1     | 5,5  | 22,1  |
| Temp 7:     | 21,1 | 20,6      | 20      | 20,3 |       |





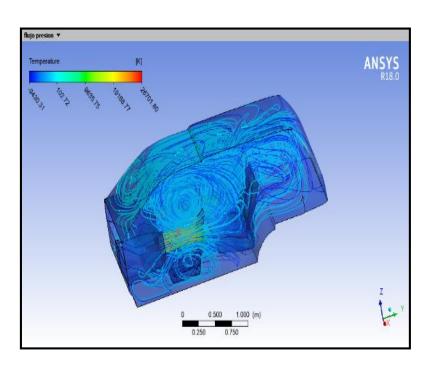


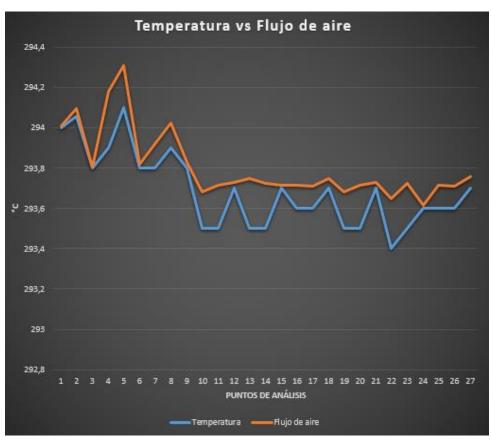


# Flujo de aire con anemómetro





#### ANÁLISIS DE LA PRESIÓN







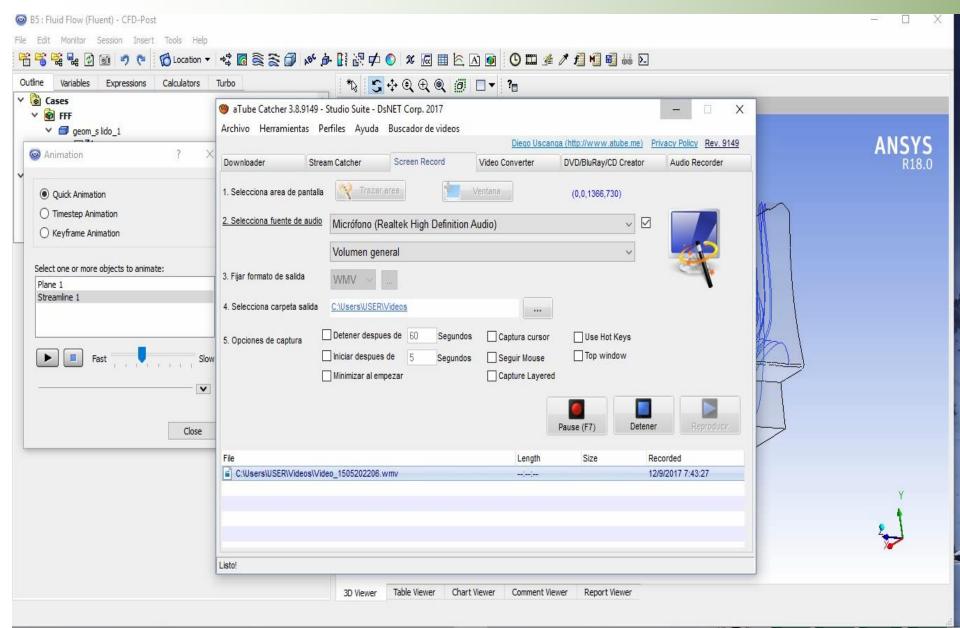

# ANÁLISIS DE TEMPERATURA





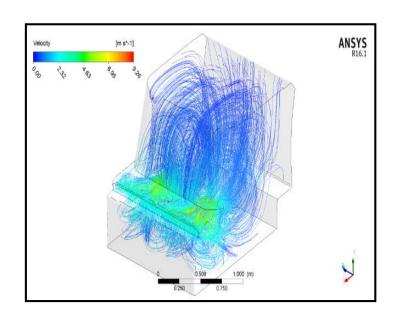


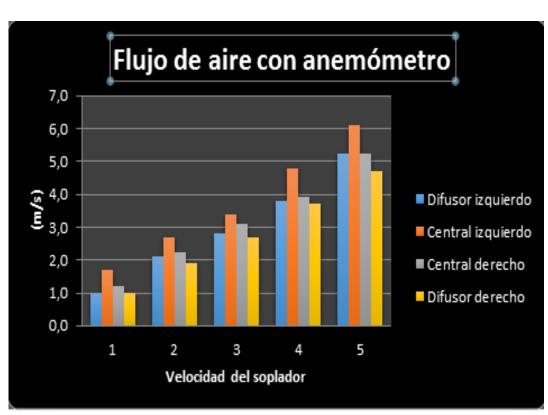



# Pruebas de flujo de aire del banco simulador con anemómetro



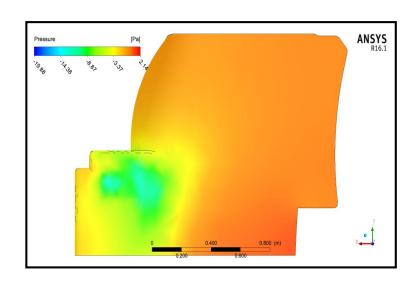
Flujo de aire con anemómetro

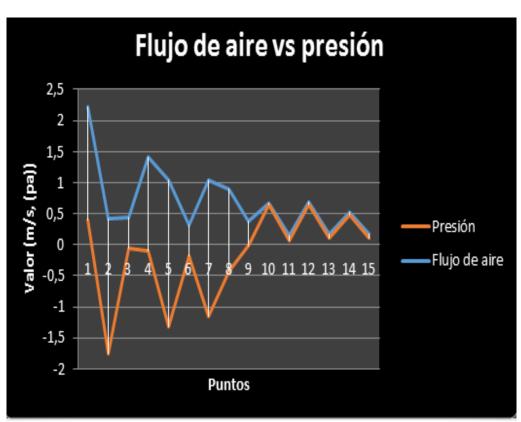

| Velocidad | Difusor<br>izquierda<br>(m/s) | Frontal<br>Izq.<br>(m/s) | Frontal<br>der.<br>(m/s) | Difusor<br>izquierda<br>(m/s) |
|-----------|-------------------------------|--------------------------|--------------------------|-------------------------------|
| 1         | 1,0                           | 1,7                      | 1,2                      | 1,0                           |
| 2         | 2,1                           | 2,7                      | 2,3                      | 1,9                           |
| 3         | 2,8                           | 3,4                      | 3,1                      | 2,7                           |
| 4         | 3,8                           | 4,8                      | 3,9                      | 3,7                           |
| 5         | 5,3                           | 6,1                      | 5,3                      | 4,7                           |





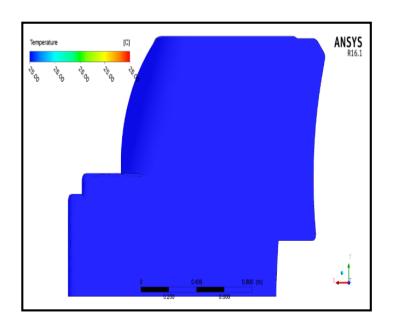


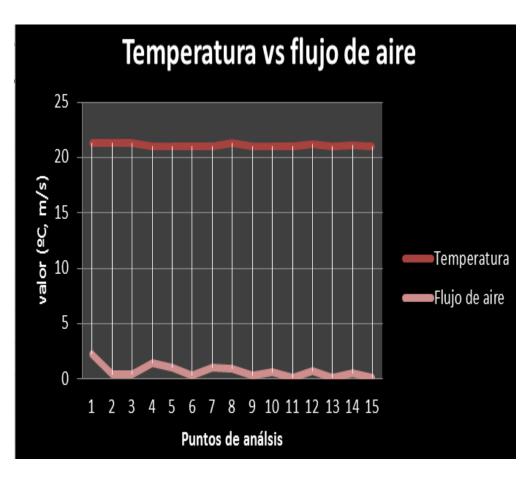


#### Flujo de aire del banco simulador









#### Análisis de la presión



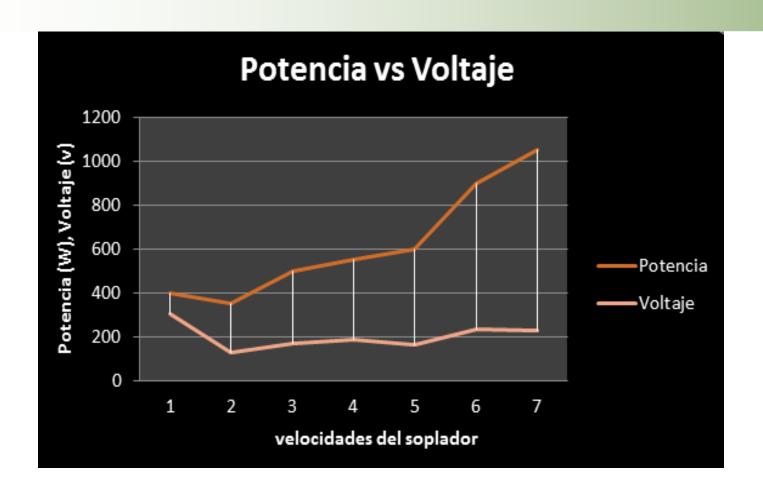





#### Análisis de temperatura





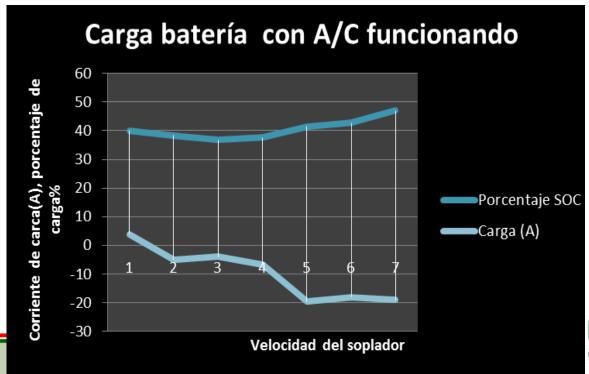



# CONSUMO DE ENERGÍA

#### Potencia en un vehículo híbrido

| Velocidad del<br>motor del soplador    |   | 1    | 5    | 9    | 13   | 18   | 24   | 31   |
|----------------------------------------|---|------|------|------|------|------|------|------|
| Estado de cambio<br>(All Bat)          | % | 42.7 | 43.9 | 47.0 | 47.8 | 49.0 | 50.1 | 53.0 |
| VH – Voltaje<br>después de<br>impulsar | V | 207  | 217  | 218  | 500  | 221  | 464  | 219  |
| A/C Potencia de consumo                | W | 400  | 350  | 500  | 550  | 600  | 900  | 1050 |
| Black pack<br>corriente                | Α | 1.31 | 2.81 | 2.93 | 2.93 | 3.73 | 3,91 | 4.60 |

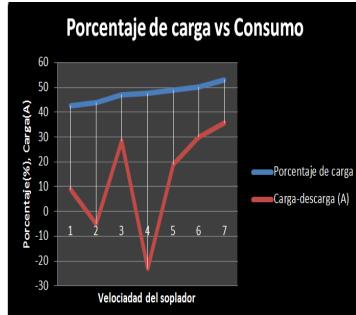





$$Pc = V_b + I_B$$



#### Carga de batería (HV), vehículo en reposo


| Elemento                  | Unid. | V. de prueba |       |       |       |        |        |        |
|---------------------------|-------|--------------|-------|-------|-------|--------|--------|--------|
| Velocidad del soplador    |       | 1            | 5     | 9     | 13    | 18     | 24     | 31     |
| Generador MG1             | rpm   | 0            | 4665  | 4665  | 4668  | 4140   | 4148   | 4124   |
| Carga total de la batería | %     | 40           | 38.4  | 36.8  | 37.6  | 41,5   | 42,7   | 47     |
| Power VB                  | V     | 212          | 216   | 215   | 225   | 236    | 239    | 248    |
| Power IB                  | Α     | 3.91         | -4.89 | -3.91 | -6.84 | -19,55 | -18.08 | -19.06 |





#### Carga de la batería en movimiento del vehículo

| Elemento                             | Unid. | V. de prue | ba    |       |        |       |       |       |
|--------------------------------------|-------|------------|-------|-------|--------|-------|-------|-------|
| Velocidad del motor<br>del soplador  |       | 1          | 5     | 9     | 13     | 18    | 24    | 31    |
| Estado de cambio<br>(All Bat)        | %     | 42.7       | 43.9  | 47.0  | 47.8   | 49.0  | 50.1  | 53.0  |
| Recursos de energía<br>VB            | V     | 208.0      | 216.0 | 221.0 | 235.0  | 224.0 | 219.0 | 222.0 |
| Recursos de energía<br>IB            | Α     | 8.80       | -4.89 | 28.35 | -22.97 | 19.06 | 29.86 | 35.68 |
| VL-Voltaje antes del<br>Impulso      | V     | 207        | 216   | 219   | 237    | 222   | 203   | 219   |
| VH – Voltaje<br>después de impulsar  | V     | 207        | 217   | 218   | 500    | 221   | 464   | 219   |
| A/C Potencia de consumo              | W     | 400        | 350   | 500   | 550    | 600   | 900   | 1050  |
| Inversor W/P<br>Revolución           | RPM   | 3500       | 3500  | 3500  | 3500   | 3500  | 3500  | 3500  |
| Presión de<br>atmosfera              | PSI   | -4         | -4    | -4    | -4     | -4    | -4    | -4    |
| SOC después de IG-<br>ON             | %     | 10.5       | 10.5  | 10.5  | 10.5   | 10.5  | 10.5  | 10.5  |
| Par de generación                    | Nm    | -10.9      | -25.3 | -28.0 | -24,0  | -29.5 | -28.8 | -17   |
| Vol. Auxiliar batt                   | V     | 14.22      | 14.20 | 14.24 | 14.22  | 14.22 | 14.20 | 14.22 |
| Valor de control de<br>carga         | KW    | -25.0      | -25.0 | -25.0 | -25.0  | -25.0 | -25.0 | -25.0 |
| Valor de control de descarga         | KW    | 21.0       | 21.0  | 21.0  | 21.0   | 21.0  | 21.0  | 21.0  |
| Número de block<br>batt              |       | 14         | 14    | 14    | 14     | 14    | 14    | 14    |
| Vol. Min del block<br>batt           | V     | 16.33      | 16.80 | 17.19 | 16.67  | 16.77 | 16.31 | 17.55 |
| Vol. Max del bock                    | V     | 16.48      | 16.98 | 17.28 | 16.84  | 16.77 | 16.48 | 17.77 |
| batt<br>Convertidor de<br>frecuencia | kHz   | 9.55       | 9.55  | 9.55  | 9.55   | 9.55  | 9.55  | 9.55  |





# Habitáculo de climatización







#### CONCLUSIONES

Se construyó el banco simulador de aire acondicionado

 Se elaboró un protocolo de pruebas para el vehículo híbrido Toyota con su modelo Prius, para establecer la eficiencia energética y renovación del caudal de aire bajo diferentes condiciones de operación y funcionamiento.



Pa, estas presiones negativas producen infiltraciones en el habitáculo lo cual esto afecta en las cargas térmicas del habitáculo.

Las corrientes de aire con turbulencias altas proporcionan un rápido intercambio de calor con la piel, si hay un aumento exagerado de turbulencias en el habitáculo este proporcionara un estado de des confort e incluso puede afectar su salud.



 El compresor eléctrico consume un total de 1050 KW de potencia en la máxima capacidad, a diferencia de los compresores habituales con accionamiento mecánico que su consumo está entre los 3 a 4KW, notándose una diferencia entre el 50% al 60% en relación al consumo de potencia del compresor convencional.



#### RECOMENDACIONES

 Cumplir con todas las medidas de precaución para realizar las pruebas al sistema de climatización y seguir el manual del fabricante.

 Durante la toma de datos del aire acondicionado, evitar el ingreso del aire exterior ya que esto provocaría una variación en los resultados dando así un aumento en el consumo de energía erróneo.



- Realizar la prueba de autonomía vehicular respecto al estado de la batería HV con y sin aire acondicionado se la realice bajo las mismas condiciones para la toma de datos que sean lo más estables posibles.
- Colocar los componentes del sistema de aire acondicionado en un lugar con buena ventilación, para que de esta manera se pueda disipar el calor de forma correcta y rápida que emiten estos.



 Realizar la carga de refrigerante R-134a tomar todas las precauciones respectivas ya que es muy nocivo para la salud



"Nunca consideres el estudio como una obligación, sino como una oportunidad para penetrar en el bello y maravilloso mundo del saber."

Albert Einstein

