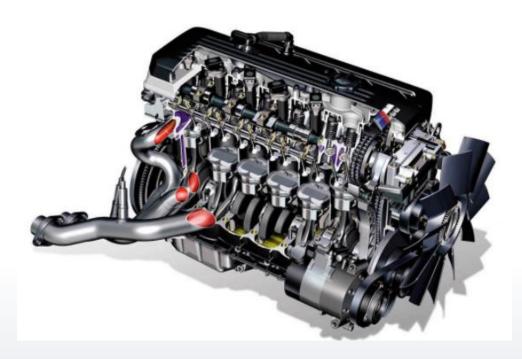


DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE SILENCIADOR DE SONIDO VARIABLE PARA SISTEMAS DE ESCAPE DE MOTORES DE COMBUSTIÓN INTERNA DE CUATRO TIEMPOS DE 200cc

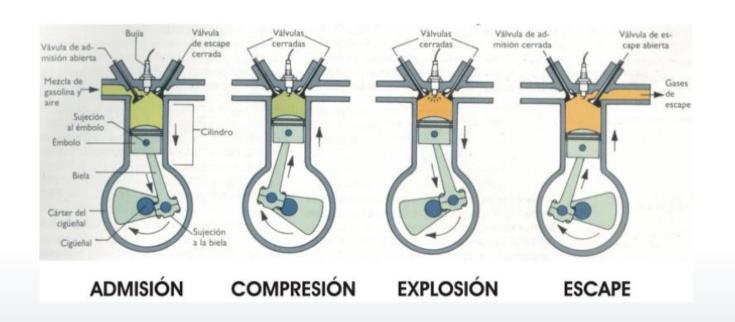
AUTORES: NURY ORTIZ SEBASTIÁN JÁCOME

DIRECTOR: ING. ALEXANDER IBARRA



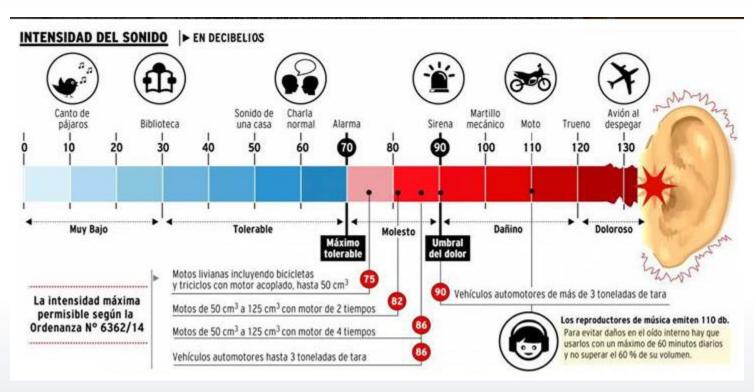
INTRODUCCION

MOTOR DE COMBUSTION INTERNA



FUNCIONAMIENTO DE UN MOTOR DE CUATRO TIEMPOS

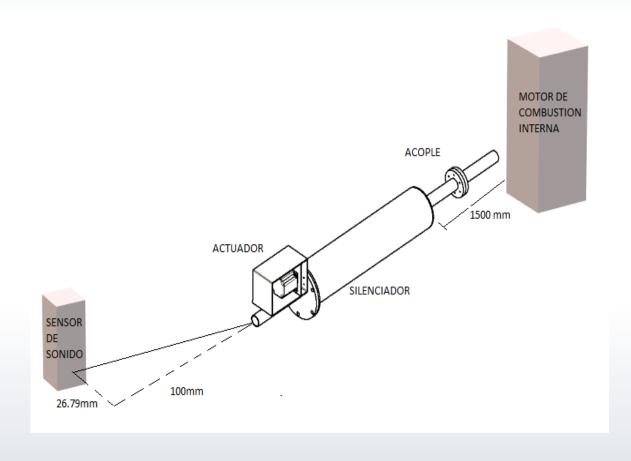
SISTEMAS DE ESCAPE



INTENSIDAD DE SONIDO

NIVELES DE RUIDO PERMITIDOS

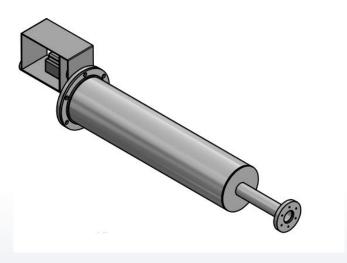
TIPO DE ZONA SEGÚN USO DE SUELO	NIVEL DE PRESIÓN SONORA EQUIVALENTE NPS eq [dB(A)]		
	DE 06H00 A 20H00	DE 20H00 A 06H00	
Zona hospitalaria y educativa	45	35	
Zona Residencial	50	40	
Zona Residencial mixta	55	45	
Zona Comercial	60	50	
Zona Comercial mixta	65	55	
Zona Industrial	70	65	



NIVELES DE RUIDO PERMITIDOS

CATEGORÍA DE	DESCRIPCIÓN	NPS MAXIMO
VEHÍCULO		(dBA)
Motocicletas:	De hasta 200 centímetros cúbicos.	80
	Entre 200 y 500 c. c.	85
	Mayores a 500 c. c.	86
Vehículos:	Transporte de personas, nueve asientos, incluido el conductor.	80
	Transporte de personas, nueve asientos, incluido el conductor, y peso no mayor a	81
	3,5 toneladas.	
	Transporte de personas, nueve asientos, incluido el conductor, y peso mayor a 3,5	82
	toneladas.	
	Transporte de personas, nueve asientos, incluido el conductor, peso mayor a 3,5	85
	toneladas, y potencia de motor mayor a 200 HP.	

MEDICION DE RUIDO



OBJETIVOS

OBJETIVO GENERAL

 Diseñar y construir un prototipo de silenciador de sonido variable automatizado para tubos de escape de motores de combustión interna.

OBJETIVOS ESPECÍFICOS

- Diseñar la estructura del silenciador para obtener la variación de las emisiones sonoras de los gases de escape de un motor de cuatro tiempos de 200cc.
- Diseñar e implementar un algoritmo de control que permita modificar las variaciones sonoras medidas en decibeles del tubo de escape.
- Diseñar los circuitos de acondicionamiento que cumplan las condiciones necesarias para el correcto funcionamiento de los mecanismos móviles del silenciador.

DISEÑO

MOTOR

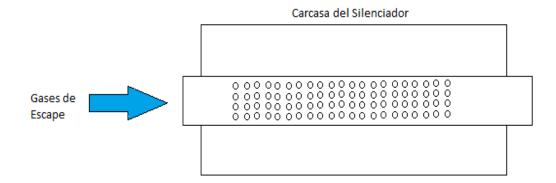
Marca	Villiers F. 15
Motor	4 tiempos
Carrera	44mm
Diámetro	65mm
Relación de compresión	8.5:1

DATOS OBTENIDOS DEL BANCO DE PRUEBAS

Carga	Fuerza	Tiempo	RPM	Torque	Potencia al Freno	Consumo másico de combustible	Decibeles
	[N]	[s]	[rpm]	[N.mm]	[W]	[cc/s]	[dB]
0	10,7	76	3567,63	2835,50	1059,35	246,71	112,64
2	11,8	81,3	3503,32	3127,00	1147,20	230,63	111,20
2	13,5	89,6	2988,62	3577,50	1119,64	209,26	106,10
3	11,7	90,5	3015,25	3100,50	979,00	207,18	104,10
2	14,9	107,8	2503,53	3948,50	1035,17	173,93	99,30
3	17,5	111,2	2498,20	4637,50	1213,22	168,62	97,10
2	15,3	138,6	2013,85	4054,50	855,06	135,28	93,90
3	17,11	140,5	2038,72	4534,15	968,02	133,45	93,60
4	16,7	137,5	1994,18	4425,50	924,18	136,36	93,10
3	16,1	214,8	1479,89	4266,50	661,20	87,29	82,60

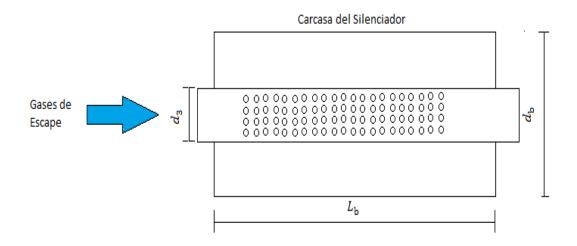
PARÁMETROS DE DISEÑO

Parámetros de diseño	
Rango de decibeles	20 dB
Tamaño máximo	0,5 m
Distancia mínima para colocar el silenciador	1,5 m



TIPOS DE SILENCIADORES

SILENCIADOR DE LADO RESONANTE

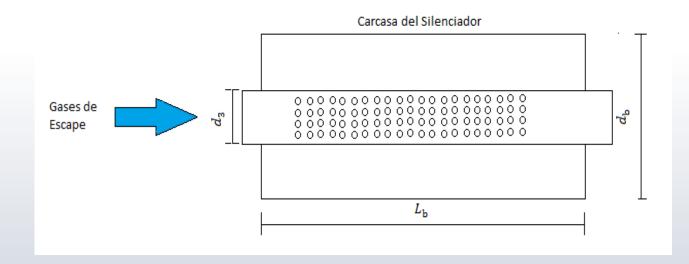


SILENCIADOR DE ABSORCIÓN

 d_3 que corresponde al diámetro de la tubería de escape,

 $L_{\rm b}$ que corresponde a la longitud del silenciador,

 $d_{\rm b}$ que corresponde al diámetro del silenciador.

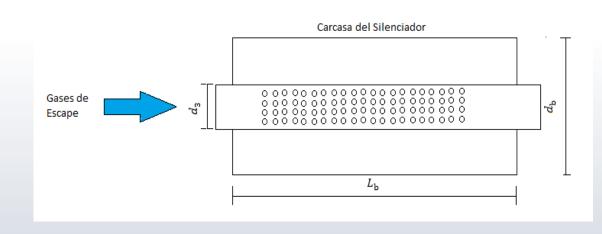


$$a_0 = \sqrt{\gamma R T_o} = \sqrt{\frac{\gamma P_0}{\rho_0}}$$

$$a_0 = 520.84 \frac{m}{s} = 20505.9 \frac{in}{s}$$

$$f_{\rm sr} = \frac{a_0}{2\pi} x \sqrt{\frac{K_h}{V_b}}$$

$$\frac{K_h}{V_b} = 0.3755$$


$$kle = \frac{2\pi * L_b * f}{a_0}$$

$$d_3 = 1\frac{1}{4}in$$

$$d_{\mathbf{b}} = d_3 \sqrt[2]{m}$$

$$L_{\rm b} = 18.24 \ in$$

$$d_{\rm b}=5\;\frac{1}{4}\;in$$

DISEÑO ELECTRÓNICO

SELECCIÓN DEL MOTOR

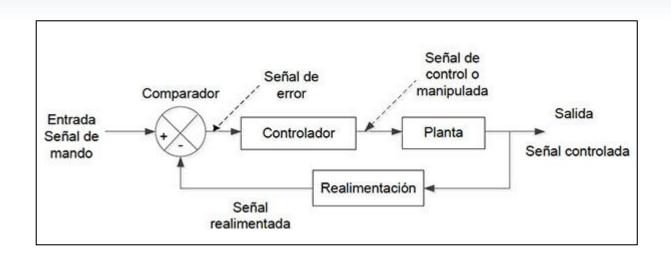
Imagen	Motor a Pasos	Servomotor
Nombre Comercial	Bipolar Nema 17	DY-S0213MG 13 KG
Torque	2,8 N.cm	13 Kg.cm
Amperaje	3 amperios	1,5 amperios
Voltaje	12 V	4,8 V - 7,2 V
Disponibilidad	Inmediata	Uno a dos meses
Costo	15	25,5

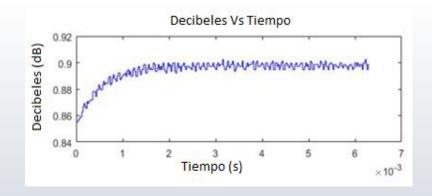
SELECCIÓN DEL DRIVER

Drive	
Corriente pico de operación	4 amperios
Corriente de operación constante	3 amperios
Voltaje de motor	12 - 24 V
Voltaje de activación	5 V
Costo	20

SELECCIÓN DEL SENSOR

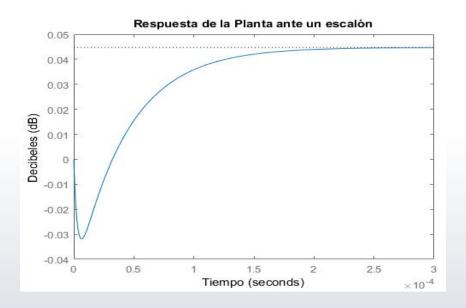
Sensor de sonido	KY-038	LM324	JTS1357
Imagen			
Tipo de sensor	Analógico y digital	Analógico	Analógico
V de salida	0 - 5 V	0-5	0- 1,3V
Voltaje de entrada	0 - 6 V	0-24 V	6V
Costo	5	4,5	95
Temperatura	15 - 100 °C	15- 60 °C	8-125 °C


DISEÑO DE CONTROL



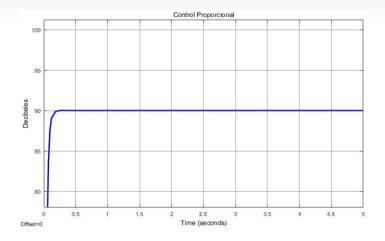
CONTROL EXPERIMENTAL

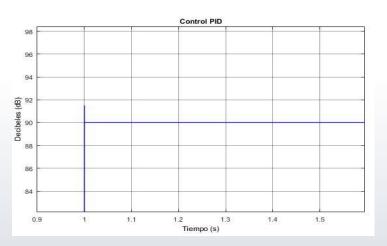
METODO CLASICO ZIEGER - NICOLS



FUNCIÓN DE TRANSFERENCIA DE LA PLANTA

$$Gplanta(s) = \frac{-0.04474 \, s + 1065}{3.004 e^{-6} \, s^2 + 1.072 \, s + 2.381 e^4}$$



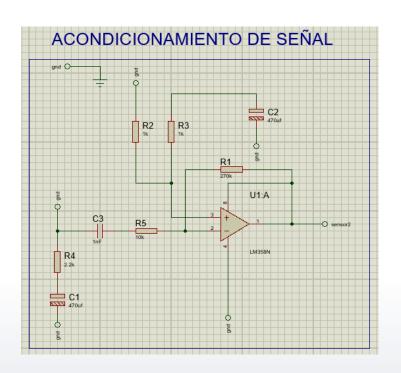

PARAMETROS DE CONTROL

Parámetros de rendimiento

Parámetro	Valor
Mp	5%
Iss	Menor que 3s
Ess	2dB

SELECCIÓN DE CONTROL

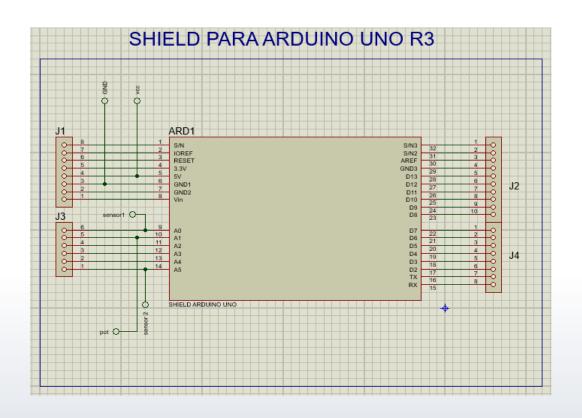
Selección de controlador

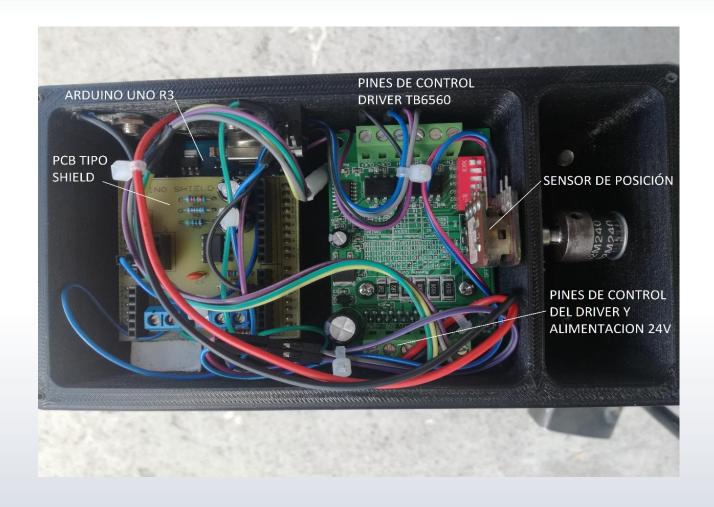

	Control Clásico	Control Moderno
Característica	Este tipo de control puede implementarse en sistemas en los cuales la oscilación propia del controlador no afecta al elemento de control final	Tienen grandes ventajas de control ante un control clásico por tener mejor tiempo de respuesta y ser más robustos. Ocupan más recursos de control
Implementación	Aplicable a sistemas de poca exactitud	Recomendado para sistemas de alta exactitud
Actuador	Apto para el control en un motor a pasos	No apto para un motor a pasos por la operatividad propia de dicho motor

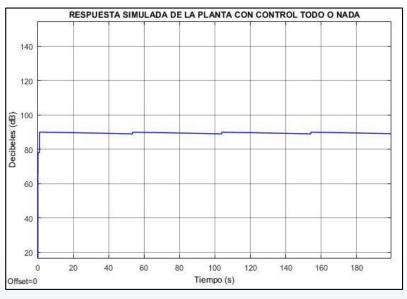
Fuente: (Ogata, 2010) (Ibarra, Subsistema Sensorial, 2016)

ACONDICIONAMIETO DE SEÑAL

SHIELD DE ARDUINO




SHIELD DE ARDUINO


IMPLEMENTACIÓN ELECTRÓNICA

COMPARACIÓN DE CONTROLADOR REAL VS SIMULADO

HMI

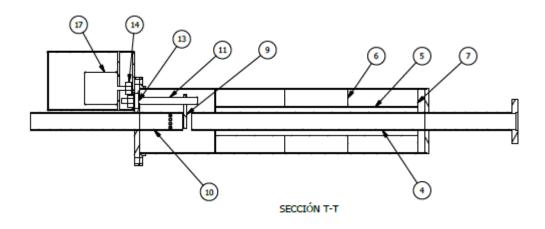
HMI MODO EXPERIMENTAL

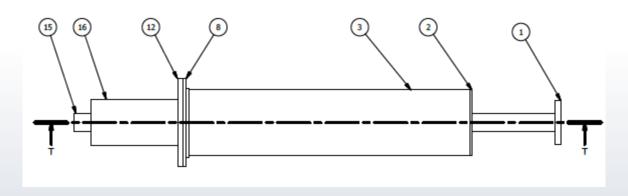
HMI MODO REAL

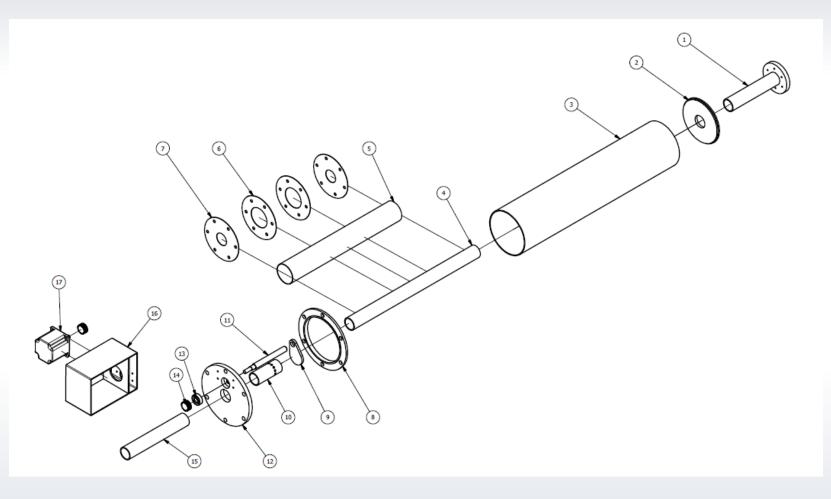
CONSTRUCCIÓN

BRIDAS Y ELEMENTOS MECANICOS

SILENCIADOR


ACTUADOR Y COMPONENTES DE CONTROL




FUNCIONAMIENTO

IMPLEMENTACIÓN

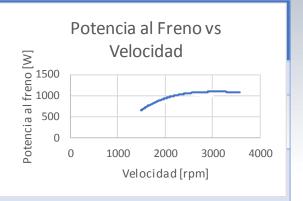
PRUEBAS Y RESULTADOS

SIN SILENCIADOR

Carga	Fuerza	Tiempo	RPM	Torque	Potencia al Freno	Consumo másico de combustible	Decibeles
	[N]	[s]	[rpm]	[N.mm]	[W]	[cc/s]	[dB]
0	10,7	76	3567,63	2835,50	1059,35	246,71	112,64
2	11,8	81,3	3503,32	3127,00	1147,20	230,63	111,20
2	13,5	89,6	2988,62	3577,50	1119,64	209,26	106,10
3	11,7	90,5	3015,25	3100,50	979,00	207,18	104,10
2	14,9	107,8	2503,53	3948,50	1035,17	173,93	99,30
3	17,5	111,2	2498,20	4637,50	1213,22	168,62	97,10
2	15,3	138,6	2013,85	4054,50	855,06	135,28	93,90
3	17,11	140,5	2038,72	4534,15	968,02	133,45	93,60
4	16,7	137,5	1994,18	4425,50	924,18	136,36	93,10
3	16,1	214,8	1479,89	4266,50	661,20	87,29	82,60
4	16,4	200,9	1524,64	4346,00	693,88	93,33	82,20

SILENCIADOR MODO ABIERTO

Carga	Fuerza	Tiempo	RPM	Torque	Potencia al Freno	Consumo másico de combustible	Decibeles
	[N]	[s]	[rpm]	[N.mm]	[W]	[cc/s]	[dB]
0	10	52,9	4620,79	2650	1282,31	354,44	100,6
2	15,2	54,7	4002,56	4028	1688,33	342,78	99,9
0	16,4	53,2	3983,46	4346	1812,92	352,44	99,7
3	10,9	59,6	3510,40	2888,5	1061,84	314,60	92,5
2	10,2	60	3506,00	2703	992,40	312,50	93,3
3	14,1	71,4	3026,05	3736,5	1184,05	262,61	88,1
3	15,9	80	2538,75	4213,5	1120,19	234,38	80,2
4	16,1	101,8	2071,71	4266,5	925,61	184,18	78,3
3	16,3	105,3	2023,93	4319,5	915,50	178,06	77,9
4	15,9	158,5	1496,40	4213,5	660,27	118,30	75,3
4	12,7	252,4	1003,65	3365,5	353,72	74,29	70,8



SILENCIADOR MODO CERRADO


Carga	Fuerza	Tiempo	RPM	Torque	Potencia al Freno	Consumo másico de combustible	Decibeles
	[N]	[s]	[rpm]	[N.mm]	[W]	[cc/s]	[dB]
0	9,6	51,9	4070,52	2544	1084,42	361,27	81,1
2	9,5	54,4	4047,79	2517,5	1067,13	344,67	81,1
3	9,8	55	3945,82	2597	1073,10	340,91	80,5
2	10,6	59,8	3522,74	2809	1036,24	313,55	77,4
3	10,8	58,9	3505,26	2862	1050,56	318,34	76,3
4	11,1	60,7	3523,89	2941,5	1085,48	308,90	77,4
3	14,1	69,6	2990,52	3736,5	1170,15	269,40	74,9
4	14,3	70,5	3005,11	3789,5	1192,54	265,96	75,4
3	15,7	82,1	2468,70	4160,5	1075,58	228,38	73,1
4	15,7	85,5	2501,05	4160,5	1089,68	219,30	71,7
3	16,5	113,2	1927,74	4372,5	882,69	165,64	70,6
4	16,3	109,3	1958,65	4319,5	885,97	171,55	70,5
4	15,5	163,5	1482,57	4107,5	637,71	114,68	68,4
4	17,3	260,3	1041,41	4584,5	499,97	72,03	64,8

Sin Silenciador	Potencia al freno	Revoluciones	
	[W]	[rpm]	
Potencia al freno máximo	1059,35	3500	
Potencia al freno mínima	661,19	1500	

Con Silenciador en ciclo abierto	Potencia al freno	Revoluciones	
	[W]	[rpm]	
Potencia al freno máximo	1282,31	4500	
Potencia al freno mínima	353,7	1000	

Con silenciador en ciclo cerrado	Potencia al freno	Revoluciones	
	[W]	[rpm]	
Potencia al freno máximo	1192,54	3500	
Potencia al freno mínima	449,97	1000	

Sin Silenciador	Torque	Revoluciones	Torque Vs Velocidad		
	[N.mm]	[rpm]			
Torque máximo	4533,4	2000	WE 4000 2000 0		
Torque mínimo	2835,5	3500	0 1000 2000 3000 4000 Velocidad [rpm]		
Con Silenciador en ciclo abierto	Torque Revoluciones		Torque Vs Velocidad		
	[N.mm]	[rpm]			
Torque máximo	4319,5	2000	W. 3000 2000 1000 0		
Torque mínimo	2650	4000	0 1000 2000 3000 4000 5000 Velocidad [rpm]		
Con silenciador Torque Revoluci		Revoluciones	Torque Vs Velocidad		
	[N.mm]	[rpm]	5000 E 4000 3000		
Torque máximo	4584,5	1500	2000 3000 2000 3000 0		
Torque mínimo	2544	4000	0 1000 2000 3000 4000 5000 Velocidad [rpm]		

combustible

Sin Silenciador	Consumo másico de combustible	Revoluciones	Consumo másico de combustible Vs Velocidad
	[cc/s]	[rpm]	o de (%) 300
Consumo másico de combustible	246,71	3500	COmbustion described from the control of the contro
Consumo másico de combustible	87,29	1500	0 1000 2000 3000 4000 Velocidad [rpm]
Con Silenciador en ciclo abierto	Consumo másico de combustible	Revoluciones	Consumo másico de combustible Vs Velocidad
	[cc/s]	[rpm]	00
Consumo másico de combustible	354,44	4500	Consumo másico de consumo mási
Consumo másico de combustible	74,28	1000	ලි රි 0 2000 4000 6000 Velocidad [rpm]
Con silenciador en ciclo cerrado	Consumo másico de combustible	Revoluciones	Consumo másico de combustible Vs Velocidad
	[cc/s]	[rpm]	9 5 400 9 5 300
Consumo másico de combustible	361,3	4000	ounstroop our strip of the stri
Consumo másico de	72,03	1000	0 2000 4000 6000 Velocidad [rpm]

CONCLUSIONES

CONCLUSIONES

- La estructura diseñada para el silenciador de tubo de escape de sonido variable para un motor de cuatro tiempos de 200cc construido, es capaz de variar hasta 20 dB a 4500 rpm (altas revoluciones) y hasta 6dB a 2000 rpm (bajas revoluciones).
- Se implementó un algoritmo de control para el funcionamiento experimental el mismo que controla los decibeles de salida de acuerdo a las lecturas del sensor utilizando el método de control clásico todo o nada de banda muerta, estabilizándose a los 10 segundos de ingresado el set point.
- Para el acondicionamiento de la señal del sensor de sonido se utilizó un amplificador operacional LM385 el mismo que permite tener una ganancia de fase de 100dB.

CONCLUSIONES

- La diferencia entre las pruebas realizadas en campo y el modelo matemático de la planta es notable ya que en campo la planta se estabiliza en 10 segundos y el modelo matemático presenta una estabilización en 3milisegundos, esto se debe a que la tarjeta de adquisición de datos y la comunicación con la HMI es de 9600 Hz.
- En los resultados se demostró que la planta se estabiliza en 2 milisegundos en lazo abierto por lo que es necesario tener una tarjeta de adquisición de datos de mínimo 48Ks/s para realizar el modelamiento matemático de la planta.
- Al realizar las pruebas mecánicas se obtuvo que el motor consume un 43% más de combustible solamente colocando el silenciador lo que disminuye la eficiencia del mismo.

RECOMENDACIONES

RECOMENDACIONES

- Se recomienda la implementación de pulsadores en lugar de una HMI para la implementación en un automotor ya que el control del mismo puede ocasionar distracciones y por ende accidentes de tránsito.
- Para futuros proyectos se recomienda también realizar el control del motor de 4 tiempos ya que esto haría que los dos sistemas tanto de del silenciador como el del motor se sincronicen y se muevan acorde a los decibeles seleccionados.

