

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA PETROQUÍMICA

ESTUDIO DE LA PRODUCCIÓN DE ÁCIDOS ORGÁNICOS Y POLISACÁRIDOS A PARTIR DE TRATAMIENTOS HIDROTERMALES EMPLEANDO AGUA DE MAR.

JONATAN ISRAEL GORDÓN SALGADO

CONTENIDO

INTRODUCCIÓN

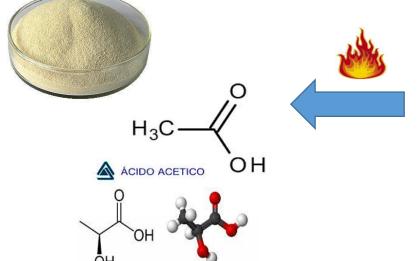
OBJETIVOS

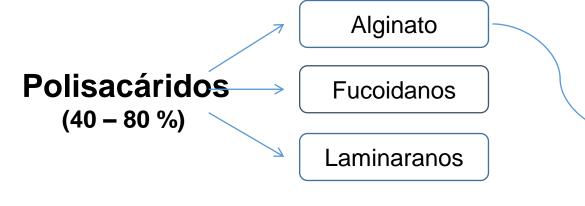
METODOLOGÍA

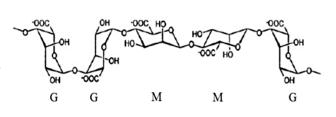
RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

INTRODUCCIÓN


BIOMASA





INTRODUCCIÓN

Bloque-M Bloque-G Bloque-MG Bloque-MG

Composición Agua de Mar

	Símbolo	g/Kg (Agua de Mar)	% (en peso)
Cationes	Na⁺	10,77	30,66
	K+	0,4	1,13
	Ca ⁺²	0,41	1,17
	Mg ⁺²	1,29	3,65
Aniones	Cl	19,35	55,02
	SO4 ⁻²	2,71	7,71
	HCO3 ⁻	0,12	0,3

Acido Láctico Acido Acético

OBJETIVOS

OBJETIVO GENERAL

• Estudiar la producción de ácidos orgánicos a partir de macroalgas y sus polisacáridos utilizando agua de mar.

OBJETIVOS

OBJETIVOS ESPECÍFICOS

- Realizar investigación bibliográfica sobre la obtención de ácidos orgánicos a partir de macroalgas y alginato derivado de las mismas, para poder establecer rutas alternativas en cuanto respecta a los procedimientos convencionales.
- Estudiar la producción de ácidos orgánicos a partir de la intervención directa de las algas con agua de mar así como también del alginato de sodio en presencia o no de CaO como catalizador de acuerdo al diseño experimental, para lograr optimizar e innovar el proceso.
- Estudiar la obtención de polisacáridos a partir del procedimiento de obtención de alginato de sodio de las macroalgas pardas ecuatorianas empleando como medio agua de mar para su posterior caracterización.

OBJETIVOS

OBJETIVOS ESPECÍFICOS

- Evaluar la producción de ácidos orgánicos empleando agua de mar en las rutas establecidas, utilizando como diseño experimental la Metodología de Superficie de Respuesta.
- Evaluar en forma analítica mediante cromatografía de movilidad iónica la presencia de ácidos orgánicos empleando el equipo GC- IMS con las muestras obtenidas en las experimentaciones del diseño experimental, así como también caracterizar los polisacáridos que se puedan llegar a obtener a través del Espectrómetro infrarrojo FT-IR accesorio de muestreo universal ATR-Perkin Elmer, modelo Frontier, el Analizador Termogravimétrico Perkin Elmer, modelo Pyris 1 TGA y el Calorímetro Diferencial de Barrido DSC- Mettler Toledo.

TRATAMIENTO ALGA

Recolección

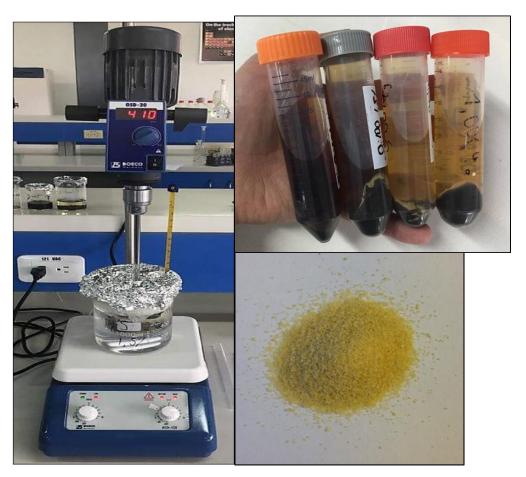
Lavado de Impurezas

Secado

Tamizado

EXTRACCIÓN DE POLISACÁRIDOS

Tratamiento ácido


→

Extracción Alcalina (76 °C, 3% Na2CO3, 3h)

Precipitación

Separación de Fases

Secado y reducción de tamaño

PRODUCCIÓN DE ÁCIDOS ORGÁNICOS

Alga

Alginato de Sodio

Remojo materia prima - agua de mar (24h)

Preparación Disoluciones

Reactor/ Microondas con 40 mL de solución y 0,6g de materia prima

Centrifugado Filtrado y Almacenamiento

DISEÑO EXPERIMENTAL

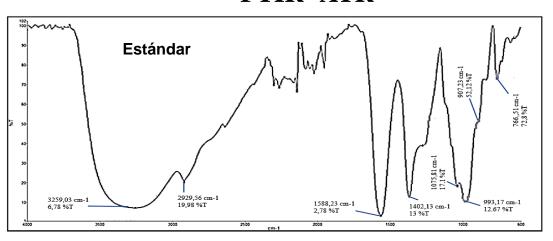
N° Experimento	Temperatura (°C)	Tiempo (h)	Salinidad (ppt)	CaO (g)
1	180	1,0	31,5	0,3
2	200	1,5	23,25	0,0
3	180	1,0	23,25	0,6
4	180	1,0	15,0	0,3
5	220	1,0	15,0	0,3
6	200	1,5	15,0	0,3
7	200	0,5	15,0	0,3
8	180	1,5	23,25	0,3
9	220	1,0	23,25	0,6
10	180	0,5	23,25	0,3
11	220	1,0	31,5	0,3
12	200	0,5	23,25	0,0
13	200	1,0	15,0	0,6
14	200	1,5	23,25	0,6
15	220	1,5	23,25	0,3
16	200	0,5	31,5	0,3
17	180	1,0	23,25	0,0
18	200	1,0	31,5	0,0
19	200	1,0	23,25	0,3
20	220	0,5	23,25	0,3
21	220	1,0	23,25	0,0
22	200	0,5	23,25	0,6
23	200	1,0	23,25	0,3
24	200	1,0	15,0	0,0
25	200	1,0	31,5	0,6
26	200	1,5	31,5	0,3
27	200	1,0	23,25	0,3

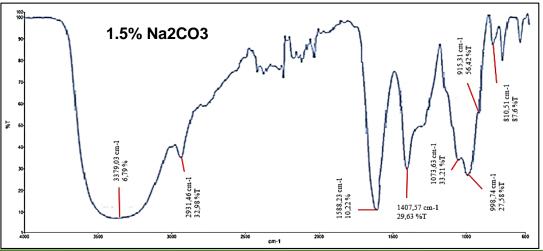
METODOS ANALÍTICOS

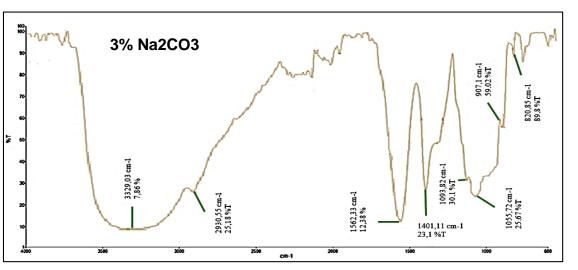
EXTRACCIÓN DE POLISACÁRIDOS (Alginato de Sodio)

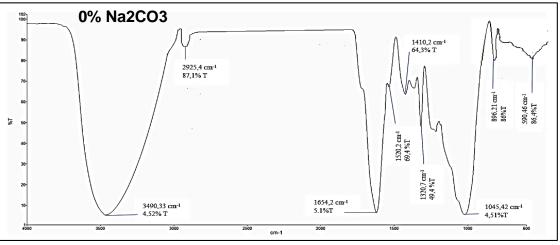
Experimento	Concentración Na2CO3	Proporción Agua de Mar: Agua Destilada	Rendimiento (%)
1	0%	100 - 0	15,75
2	0%	75 - 25	14,05
3	0%	50 - 50	10,51
4	0%	0 - 100	1,0736
5	1.5%	100 - 0	25,46
6	1.5%	75 - 25	23,7
7	1.5%	50 - 50	22,16
8	1.5%	0 - 100	20,73
9	3%	100 - 0	27,34
10	3%	75 - 25	25,64
11	3%	50 - 50	24,72
12	3%	0 - 100	22,12

$$\% \ \ Rendimiento = \frac{masa \ de \ producto \ extraído \ seco}{masa \ de \ alga \ seca} *100$$



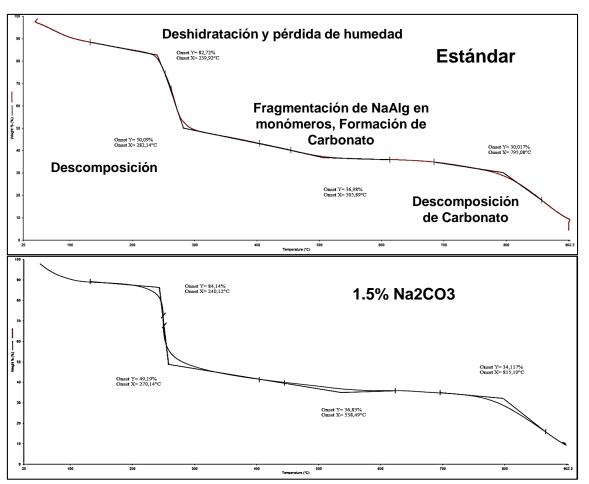


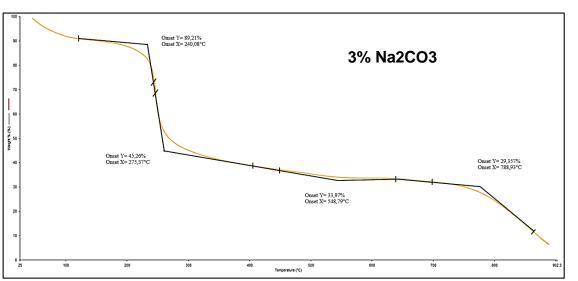


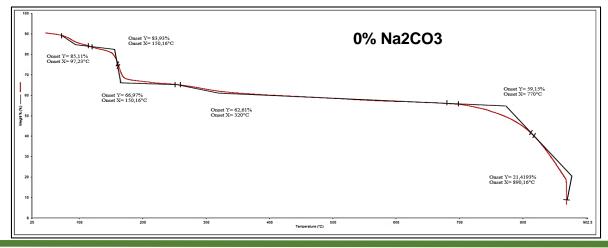


FTIR -ATR

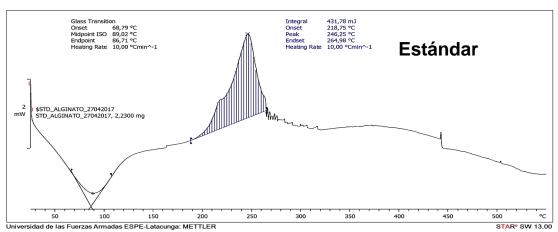
RELACIÓN M/G

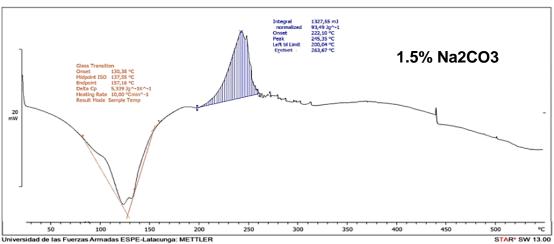

Muestra	MoG	Longitud de Onda (cm ⁻)	Absorbancia	Relación M/G
Alginato	M	993,17	0,897	1,169491525
Referencia	G	1075,81	0,767	
Alginato al 1,5%	M	998,74	0,559	1,169456067
Na2CO3	G	1073,63	0,478	
Alginato al 3%	M	1055,72	0,59	1,13243762
Na2CO3	G	1093,82	0,521	

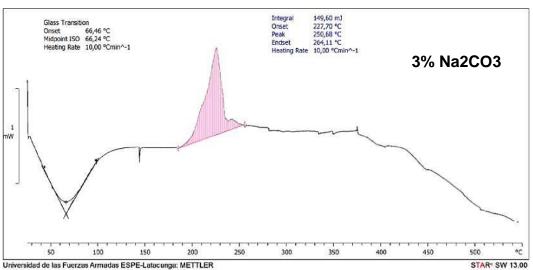


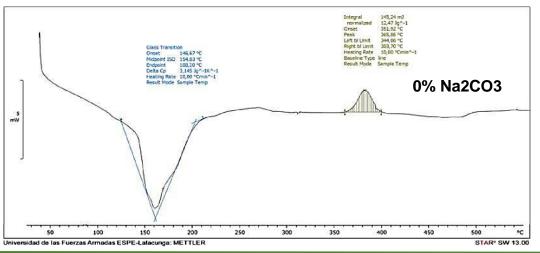


TGA

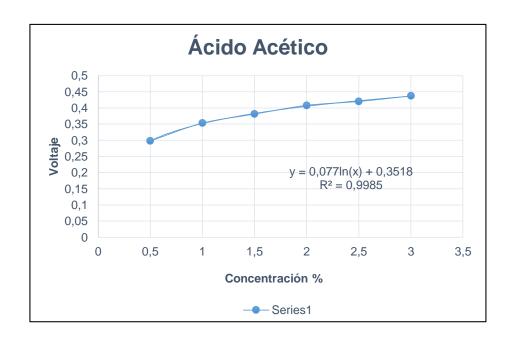


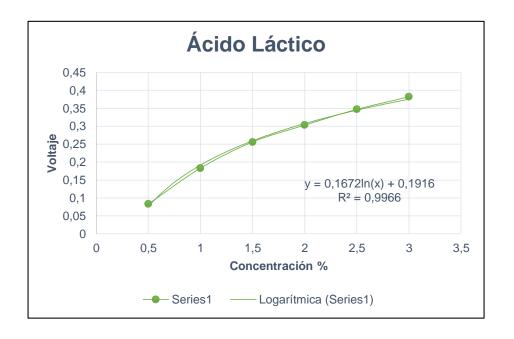






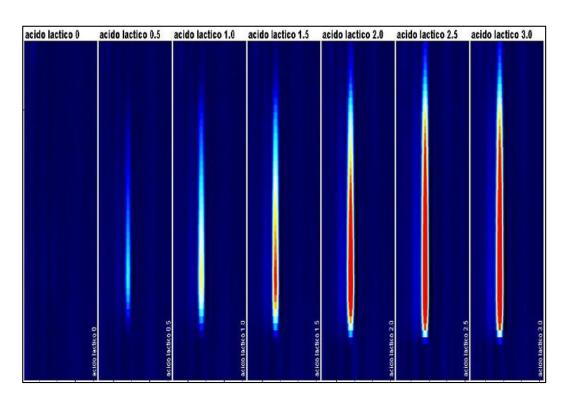
DSC





PRODUCCIÓN DE ÁCIDOS ORGÁNICOS





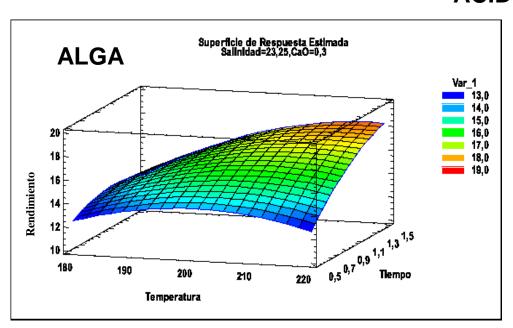
Curvas de Calibración

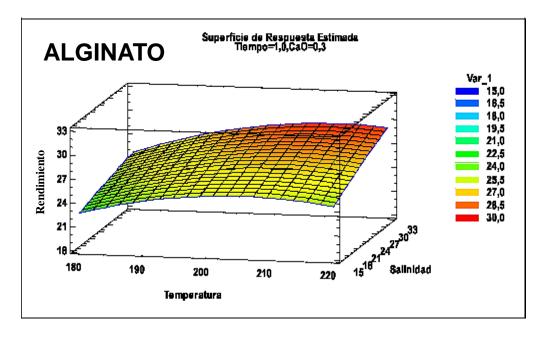
Señales reportadas por GC-IMS para cada punto de la curva de calibración

Tablas de valores para los diseños experimentales de cada ácido

Tratamiento	Voltaje	Concentración	Rendimiento	Tratamiento	Voltaje	Concentración	Rendimiento
Alga	ácido	del ácido	(ml ácido	Alginato	ácido	del ácido	(ml ácido
	láctico	láctico (%)	láctico/ml	_	láctico	láctico (%)	láctico/ml sol)
		` ,	sol)	G1	0,519	7,085	23,615
GO1	0,427	4,085	13,615	G2	0,507	6,599	21,996
GO2	0,406	3,599	11,996	G3	0,535	7,794	25,98
GO3	0,454	4,794	15,98	G4	0,542	8,108	27,025
GO4	0,458	4,930	16,434	G5	0,516	6,975	23,251
GO5	0,422	3,975	13,251	G6	0,543	8,156	27,187
GO6	0,460	4,979	16,596	G7	0,343	5,719	19,064
G07	0,392	3,319	11,064	_		,	26,189
GO8	0,456	4,857	16,189	G8	0,536	7,857	
GO9	0,472	5,365	17,884	G9	0,550	8,543	28,475
GO10	0,475	5,456	18,188	G10	0,552	8,634	28,779
GO11	0,487	5,869	19,563	G11	0,560	9,046	30,154
GO12	0,465	5,134	17,114	G12	0,546	8,312	27,705
GO13	0,378	3,049	10,163	G13	0,475	5,449	18,163
GO14	0,466	5,162	17,207	G14	0,546	8,339	27,798
GO15	0,450	4,692	15,639	G15	0,533	7,692	25,639
GO16	0,416	3,829	12,764	G16	0,513	6,829	22,764
GO17	0,462	5,030	16,765	G17	0,544	8,207	27,356
GO18	0,415	3,794	12,648	G18	0,512	6,794	22,648
GO19	0,395	3,375	11,249	G19	0,501	6,375	21,249
GO20	0,458	4,931	16,438	G20	0,542	8,109	27,029
GO21	0,404	3,571	11,903	G21	0,506	6,571	21,903
GO22	0,442	4,483	14,943	G22	0,528	7,483	24,943
GO23	0,416	3,826	12,753	G23	0,513	6,826	22,753
GO24	0,435	4,289	14,295	G24	0,524	7,289	24,295
GO25	0,461	5,008	16,692	G25	0,543	8,185	27,283
GO26	0,459	4,940	16,467	G26	0,542	8,117	27,058
GO27	0,467	5,196	17,319	G27	0.547	8,373	27,91
				JL.	-,	-,	, -

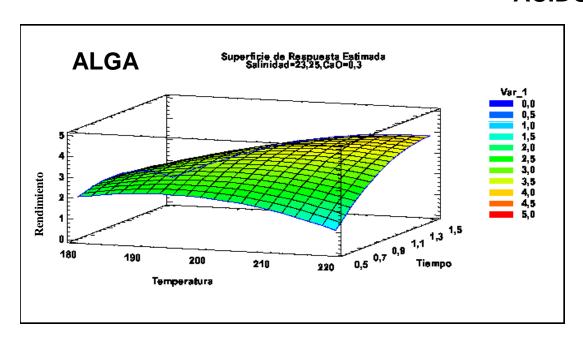
	Tratamiento Alga	Voltaje ácido láctico	Concentración del ácido acético (%)	Rendimiento (ml ácido acético/ml sol)
	GO1	0,319	0,656	1,987
	GO2	0,239	0,231	0,700
	GO3	0,354	1,022	3,098
	GO4	0,373	1,312	3,976
	GO5	0,304	0,537	1,626
	GO6	0,289	0,442	1,338
	G07	0,275	0,369	1,119
	GO8	0,265	0,324	0,983
	GO9	0,375	1,36	4,122
_	GO10	0,32	0,661	2,002
	GO11	0,383	1,498	4,539
	GO12	0,376	1,367	4,142
	GO13	0,319	0,655	1,986
	GO14	0,27	0,348	1,054
	GO15	0,32	0,658	1,995
	GO16	0,274	0,365	1,107
	GO17	0,299	0,505	1,53
	GO18	0,263	0,315	0,955
	GO19	0,218	0,176	0,532
	GO20	0,32	0,659	1,997
	GO21	0,276	0,373	1,129
	GO22	0,276	0,374	1,134
	GO23	0,239	0,231	0,699
	GO24	0,24	0,234	0,708
	GO25	0,25	0,266	0,806
	GO26	0,381	1,459	4,42
	GO27	0,357	1,073	3,25

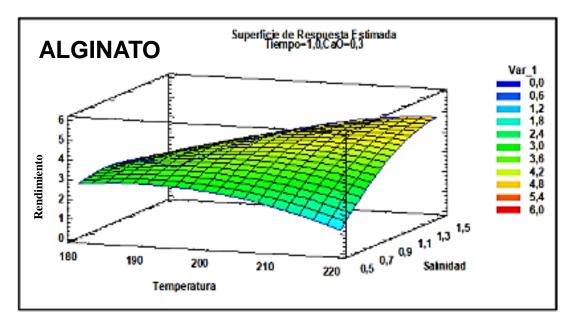

Tratamiento Alginato	Voltaje ácido láctico	Concentración del ácido acético (%)	Rendimiento (ml ácido acético/ml sol)
G1	0,326	0,714	2,164
G2	0,266	0,326	0,988
G3	0,364	1,177	3,567
G4	0,385	1,534	4,649
G5	0,335	0,804	2,437
G6	0,301	0,516	1,564
G7	0,298	0,496	1,504 CONTINUA
G8	0,268	0,338	1,023
G9	0,383	1,497	4,536
G10	0,332	0,772	2,339
G11	0,403	1,938	5,872
G12	2 0,388 1,59		4,841
G13	0,333 0,784		2,376
G14	0,289	0,443	1,342
G15	0,332	0,777	2,356
G16	0,29	0,448	1,359
G17	0,31	0,58	1,758
G18	0,275	0,368	1,116
G19	0,265	0,325	0,986
G20	0,331	0,766	2,321
G21	0,3	0,509	1,543
G22	0,301	0,516	1,563
G23	0,265	0,326	0,987
G24	0,262	0,312	0,945
G25	0,266	0,329	0,997
G26	0,393	1,704	5,165
G27	0,369	1,242	3,765



Graficas de Superficie ÁCIDO LÁCTICO

Valor óptimo de rendimiento: 19,3684% (213.416 °C, 1.49909 h, 15 ppt de Salinidad y 0.599936 g de CaO)


Valor óptimo de rendimiento 29,6475% (215,162 °C, 1.3169 h, 31.5 ppt de Salinidad y 0.29736 g de CaO)



Gráficas de Superficie ÁCIDO ACÉTICO

Valor óptimo de rendimiento: 3.96% (219.895 °C, 1.49974 h, 31.5 ppt de Salinidad y 0.315114 g de CaO)

Valor óptimo de rendimiento: 4.975% (220 °C, 1.5 h, 31.5 ppt de Salinidad y 0.298809 g de CaO)

CONCLUSIONES

- Las variaciones realizadas del método de extracción de Mazumder, para este caso en particular, permiten demostrar que sin la adición de Na2CO3 al proceso no se llegara a obtener alginato de sodio.
- Para este trabajo el valor del mejor rendimiento fue de 27,34% (Experimento 9) en agua de mar al 100% con la misma temperatura y concentración de Na2CO3. En investigaciones posteriores (Robalino,2017), con el mismo sistema de extracción y a las mismas condiciones concentración se obtuvo 26,55% de rendimiento de alginato de sodio, siendo el mejor. El desarrollar la extracción de alginato en agua de mar aumenta ligeramente el rendimiento
- Se puede reemplazar el agua dulce convencional por agua de mar para realizar la extracción de alginato de las algas pardas. De modo que se pueda preservar el agua y contribuir al cuidado del planeta.

CONCLUSIONES

- Es posible la producción de ácidos orgánicos a partir de algas pardas marinas y alginato de sodio en agua de mar empleando tratamiento hidrotermal (microondas). Cabe mencionar que el mayor rendimiento obtenido en el estudio para ácido láctico y acético fue del 30,54% y 5,872% comparado con el de (Jeon,2015) el cual obtuvo 12,59% y 1,08% respectivamente.
- Mediante las diferentes técnicas analíticas para cada uno de los casos de estudio, se logró identificar y caracterizar a los productos de interés para el presente estudio (alginato de sodio, ácidos orgánicos).

RECOMENDACIONES

- Es recomendable emplear agua de mar sometida a algún proceso de purificación para eliminar sobre todo solidos que puedan afectar al estado final de los extractos.
- Tratar de que el sistema de extracción de polisacáridos sea lo más adiabático posible, para que la temperatura se mantenga constante y poder obtener el mayor rendimiento.
- Proseguir con un estudio en el cual se puedan identificar otros ácidos orgánicos que por bibliografía si se obtienen (Jeon, 2016); (fórmico, glicólico, etc.).

GRACIAS