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Abstract. The application of mobile robots in autonomous navigation has con-

tributed to the development of exploration tasks for the recognition of unknown 

environments. There are different methodologies for obstacles avoidance imple-

mented in mobile robots, however, this research introduces a novel approach for 

a path planning of an Unmanned Ground Vehicle (UGV) using the camera of a 

drone to get an aerial view that allows to recognize ground features through im-

age processing algorithms for detecting obstacles and target them in a determined 

environment. After aerial recognition a global planner with Rapidly-exploring 

Random Tree Star (RRT*) algorithm is executed, Dubins curves are the method 

used in this case for nonholonomic robots. The study also focuses on determining 

the compute time which is affected by a growing number of iterations in the 

RRT*, the value of step size between the tree’s nodes and finally the impact of 

number of obstacles placed in the environment. This project is the initial part of 

a larger research about a Collaborative Aerial-Ground Robotic System. 

Keywords: RRT*, Path planning, image processing. 

1 Introduction 

Unmanned Aerial Vehicles (UAVs) and mobile robots are used in different opera-

tions according to their performances. UAVs have many limitations, for example, the 

carrying capacity, flight time, etc. However, UAVs has a more ample range of vision 

of a workspace and higher velocities [1]. On the contrary, mobile robots present many 

advantages compared to UAVs. Mobile robots can carry heavier loads, have more 

power units, and higher capacity for processing [2] [3]. The purpose is to combine them 

to create a hybrid system taking into consideration the advantages of those two robotic 

systems. In this proposal, the UAV is able to analyze a broad portion of ground in spe-

cific workspace to provide safe displacement directions to the grounded vehicle [4] [5]. 

The research presents a study to establish a global planner that represents the data 

obtained from a top view generated by UAV [6]. First, the system develops an image 

through processing algorithms based on artificial vison in order to determinate the most 

relevant features inside the picture. In this case, the algorithm estimates the position of 

the obstacles as well as the mobile vehicle’s destination.  
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LaValle [7] proposed RRT algorithm considered as an optimal technique to construct 

trajectories in nonconvex high-dimensional spaces and used to solve path planning 

problems. Commonly, an RRT is deficient to solve a problem related with the planning, 

therefore, it is necessary to implement a path planning algorithm based on that RRT* 

to expand the tree in free spaces [8]. The kinematic constraints of the ground vehicle 

based on Ackerman steering makes RRT* algorithm grows drawing curves easy to 

adapt the vehicle turning movements. This kind of curves is named Dubins path. Fi-

nally, it is important to consider adjusting many parameters to expand the tree, it will 

allow to know how the algorithm is affected when existing variations of the obstacles, 

number of iterations and the length of the connection between the tree’s nodes.  

In section 2, the article presents an image processing algorithm for constructing a 

global planner. In section 3, it details an analysis to stablish a RRT* algorithm using a 

geometrically method based on constructing tangent lines that connect two points with 

a shortest curve in a Euclidean plane. Finally in section 4 results will be presented ac-

cording the data obtained in different scenarios and various obstacle configurations. 

2 Image Processing 

The main objective of image processing is to remark certain details on an image. For 

this reason, processing images from the UAV’s camera is important to obtain a 2D 

binarized map where obstacles are recognized [9]. All stages are specified in the next 

flowchart: 

 

 

Fig. 1. Flowchart image processing 

2.1 Image acquisition 

Parrot Bebop 2 was used as UAV. It has a 14-megapixel 'fisheye' with a 3-axis image 

stabilization system that maintains a fixed angle of the view. The drone’s camera has 

to point to the ground (vertical position), for getting vertical camera’s rotation we have 

used a software development kit provided by Robot Operating System (ROS). Experi-

mental results show to an altitude of 4m above ground level our Region of Interest 

(ROI) covers an approximately metric area of 6m x 4m. 

2.2 Changing Color spaces  

Object discrimination using Red, Green and Blue color space (RGB) turns difficult 

because the object’s color is correlated with the amount of light exposure at the mo-

ment. For that reason, Hue, Saturation and Value color space (HSV) is more relevant 

to discriminate colors regardless the amount of light at the scene. Change of color 
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spaces from RGB to HSV in this application allows better adapting of the obstacles’ 

algorithm to light changes, in cases which shadows contribute to false positives [10]. 

2.3 Image smoothing 

Noise reduction is a very important factor for good image processing. In this case, it 

is applied a Gaussian Blur filter [11]. This means that each pixel was affected for a 

kernel (neighbor pixels). A kernel of size 5 was used and a Gaussian kernel standard 

deviation in an X direction of 0, where the target is not to get a blurred image if else to 

eliminate the small percent of noise.  

2.4 Binarization 

In our application, it was important to separate foreground elements (obstacles) from 

the background of the image, binarization or thresholding methods are commonly used 

for that purpose [12]. The obstacles were considered the most outstanding element on 

the ground, therefore, establishing a binarized map where the obstacles have a pixel 

value of 0 and a pixel value of 1 is a free space. The Hue value which represents red 

color goes from 0º – 30º and 330º – 0º approximately. Another stage is using the bina-

rization to detect the target blue [13]. 

2.5 Edge dilatation and erosion 

The dilation convolution adds pixels to the boundaries of the obstacles’ structure 

reducing noise, while erosion remove pixels on the outside boundaries of the obstacles’ 

structure. The dilatation and erosion combined result in better filter. It fills holes (open-

ing) and removes small objects (closing). The opening operation works with a structur-

ing element a size kernel of 5. The operation affects the pixel and a 5x5 matrix size, 

meanwhile closing operation uses a size kernel of 21 [14]. 

3 RRT* Algorithm 

Dubins curves-based RRT* is used as a global planner. It establishes the path by two 

type of configurations divided in Curve – straight – curve (CSC) and Curve- curve-

curve (CCC), which are the pattern of expansion in the RRT* algorithm. Random sam-

ple paths are generated from combination of straight lines and curves. 

3.1 Initial requirements 

Data input to get the path with the RRT* algorithm serve as initial state and orienta-

tion, numbers of iterations, goal state, step size. To set Dubin curves parameters it is 

necessary to know the minimum turning radius of the robot. Finally, another important 

input data is having the binarized map (workspace).       
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3.2 RRT* Algorithm  

Acording to Noreen et al [15] RRT* is based in a group of features which allow tree 

expansion very similar to RRT algorithm. The difference between the systems is that 

RRT* incorporates two special properties called near neighbor search and rewiring tree 

operations.  

The algorithm is represented by a tree denoted as 𝑇 = (𝑉, 𝐸), where V is a set of 

vertices and E is a set of edges. The initial configuration (𝑞𝑖𝑛𝑖𝑡) includes a set of vertices 

that represents where the tree starts. In each iterations configured (Lines 3-11), the al-

gorithm stablishes a random position (𝑞𝑟𝑎𝑛𝑑) in free region, (𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡) is searched in 

the tree according to predefined step size from (𝑞𝑟𝑎𝑛𝑑) and immediately the algorithm 

stablishes a new configuration (𝑞𝑛𝑒𝑤) with 𝑆𝑡𝑒𝑒𝑟 function which guides the system 

from (𝑞𝑟𝑎𝑛𝑑) to (𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡). The function 𝐶ℎ𝑜𝑜𝑠𝑒𝑝𝑎𝑟𝑒𝑛𝑡 allows to select the best parent 

node for the new configuration (𝑞𝑛𝑒𝑤) before its insertion in tree considering the closest 

nodes that lie inside of a circular area, finding(𝑞𝑚𝑖𝑛). Finally near neighbor operations 

allows to generate the optimal path repeating the previous process [16]. 

Table 1. Pseudocode RRT* algorithm 

Algorithm RRT* 

T = (V, E) ← RRT*(𝑞𝒊𝒏𝒊) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

𝑇 ← InitializeTree( ); 

𝑇 ← InsertNode(∅, 𝑞𝑖𝑛𝑖𝑡, T); 

𝒇𝒐𝒓 i = 0 to i = N 𝒅𝒐 

𝑞𝑟𝑎𝑛𝑑 ← Sample(𝑖); 

𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← Nearest(𝑇, 𝑞𝑟𝑎𝑛𝑑); 

(𝑞𝑛𝑒𝑤, 𝑈𝑛𝑒𝑤) ← Steer(𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑞𝑟𝑎𝑛𝑑); 

𝒊𝒇 Obstaclefree(𝑞𝑛𝑒𝑤) 𝒕𝒉𝒆𝒏 

     𝑞𝑛𝑒𝑎𝑟 ← Near(𝑇, 𝑞𝑛𝑒𝑤 , |𝑉|); 

     𝑞𝑚𝑖𝑛 ← Chooseparent (𝑞𝑛𝑒𝑎𝑟, 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑞𝑛𝑒𝑤); 

     𝑇 ← InsertNode(𝑞𝑚𝑖𝑛, 𝑞𝑛𝑒𝑤 , 𝑇); 

     𝑇 ← Rewire(𝑇, 𝑞𝑛𝑒𝑎𝑟, 𝑞𝑚𝑖𝑛 , 𝑞𝑛𝑒𝑤; ) 

𝒓𝒆𝒕𝒖𝒓𝒏 𝑇 

3.3 Dubin Curves 

The Dubin curves describes six types of trajectories: RSR, LSR, RSL, LSL, RLR, 

and LRL. Each configuration comes from an analogy that is denoted by R (right move), 

S (straight move) and L (left move) [17].  

 

All these configurations use geometrically computing method based on constructing 

tangent lines between two circles. The first step has two circles 𝐶1 and 𝐶2, with their 

respective radius 𝑟1 and 𝑟2, where 𝐶1 represents coordinates (𝑥1, 𝑦1) and 𝐶2 as (𝑥2, 𝑦2) 

(see in Fig. 2). 
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Fig. 2. Circles initial configuration 

Inner tangents. Then a line is drawn between two center points 𝐶1 and 𝐶2 stablishing 

a vector 𝑉1
⃗⃗  ⃗, magnitude 𝐷 and the midpoint 𝑝3 (point between 𝑝1 and 𝑝2) is calculated , 

circle 𝐶3 is constructed with a radius 𝑟3 as we reflected in the Fig. 3 

𝐷 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 (1) 

𝑝3 = (
𝑥1+𝑥2

2
,
𝑦1+𝑦2

2
) (2) 

𝑟3 =
𝐷

2
  (3) 

The next step is to draw another circle 𝐶4 located in 𝐶1’s center, with radius 𝑟4 =
𝑟1 + 𝑟2, we obtained 𝑝𝑡 , which is the intersection between 𝐶4 and 𝐶3 like the one shown 

in Fig.3. A triangle is built joining the points 𝑝1, 𝑝3, 𝑝𝑡  and we can define geometrically 

that segment 𝑝𝑡𝑝1̅̅ ̅̅ ̅̅ = 𝑟4 and 𝑝1𝑝3̅̅ ̅̅ ̅̅ = 𝑝𝑡𝑝3̅̅ ̅̅ ̅̅ = 𝑟3. The angle 𝛾 =  ∠𝑝𝑡𝑝1𝑝3 is very im-

portant to define the coordinates of 𝑝𝑡 . The next equation determinate the amount of 

rotation about the 𝑥-axis, 𝜃 for 𝑉2
⃗⃗  ⃗.  

𝜃 = 𝛾 + 𝑎𝑡𝑎𝑛2(𝑉1
⃗⃗  ⃗) (4) 

Using 𝜃, it is possible to obtain 𝑝𝑡  according to the following equations: 

𝑥𝑡 = 𝑥1 + (𝑟1 + 𝑟2) ∗ cos (𝜃) (5) 

𝑦𝑡 = 𝑦1 + (𝑟1 + 𝑟2) ∗ sin (𝜃) (6) 

Considering that the inner tangent starts on 𝐶1, it is necessary to normalize a vector 

𝑉2
⃗⃗  ⃗ = (𝑝𝑡 − 𝑝1) and multiply it by 𝑟1, the result will allow to find a vector 𝑉3

⃗⃗  ⃗ to 𝑝𝑖𝑡1 

from 𝑝1. It resumes next by: 

𝑉3
⃗⃗  ⃗ =

𝑉2⃗⃗⃗⃗ 

‖𝑉2‖
∗ 𝑟1 (7) 

𝑝𝑖𝑡1 = 𝑝1 + 𝑉3
⃗⃗  ⃗  (8) 

Finally, it is possible to draw a vector 𝑉4
⃗⃗  ⃗ from 𝑝𝑡  to 𝑝2, as shown in the figure. Using 

𝑉4
⃗⃗  ⃗ magnitude and the direction it is possible to find the inner tangent point on 𝐶2. 

𝑉4
⃗⃗  ⃗ = (𝑝2 − 𝑝𝑡) (9) 

𝑝𝑖𝑡2 = 𝑝𝑖𝑡1 + 𝑉4
⃗⃗  ⃗ (10) 
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Fig. 3. Inner tangents  

Outer tangents. The process is very similar to the one of inner tangents, having two 

circles 𝐶1 and 𝐶2, and considering 𝑟1 ≥ 𝑟2, the procedure is the same as before, 𝐶4 is 

centered at 𝑝1, with a difference the radius 𝑟4 = 𝑟1 − 𝑟2, after getting 𝑝𝑡  and following 

all steps performed for the interior tangents, 𝑉2
⃗⃗  ⃗ is obtained and the first outer tangent 

point 𝑝𝑜𝑡1. This condition produces that 𝑟4 < 𝑟1. To get the second outer tangent 𝑝𝑜𝑡2 

an addition is performed by: 

𝑝𝑜𝑡2 = 𝑝𝑜𝑡1 + 𝑉4
⃗⃗  ⃗  (11) 

The main difference between calculating outer tangents compared to inner tangents is 

the construction of circle 𝐶4; all steps keeps the same. 

 

In the next figure (see Fig. 4), it can be seen the path establishes using data input. 

 

 

Fig. 4. RRT* algorithm’s visualization 

4 Results 

The experimental results produced by RRT* path planning based on Dubins curves 

were performed using a CPU with an i7 third generation processor and 16 Gb RAM 

memory. For algorithm testing, a scene with a necessary amount of light was chosen to 

obtain the correct object segmentation. From this point the test started with no obstacles 
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in the scene. Then obstacles were gradually added to stablish four different configura-

tions, in such way, algorithm functionality and efficiency was tested. 

The algorithm was tested in 5 different cases (see Fig. 5), with no obstacles (first 

case), one obstacle (second case), two obstacles (third case), three obstacles (fourth 

case) and four obstacles (fifth case).  

 

    
(a)              (b) 

 

    
(c)              (d) 

 

 
(e) 

Fig. 5. Scene configurations 

(a)No obstacles (b)One obstacle (c)Two obstacles (d)Three obstacles (e)Four obstacles 

 

The algorithm satisfies its purpose because the path established (red line) started 

from car’s position to the final configuration (blue circle) avoiding the obstacles. An-

other aspect to consider was that the goal position should have a tolerance radius of 60 

pixels measured from the goal position’s center point. 
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The first measurement of results (see Fig. 6) showed that the cases in which obstacles 

were added, it was necessary to increase the number of iterations to reach the configu-

ration desired. Forty iterations were the minimum to reach the goal in the first case, 

compared with the fifth case where it was necessary at least 110 iterations to establish 

a path for UGV to represent. 

 

 

Fig. 6. Number of iterations and step size processed for each obstacle configuration 

Based on the data processed, a second-grade polynomial equation was obtained to 

represent the number of iterations required for a scene where there are more than 4 

obstacles in a scene.  

 𝑦 = −4,6𝑥2 + 44,3𝑥 + 3 (12) 

The ideal value for step size for each case is decreasing if we take into consideration 

the first test is with no obstacles and the fifth test has 4 obstacles in the scene. One-

hundred-forty pixels the maximum step size for the optimal performance of the algo-

rithm within the limits of workspace and for UGV to follow the path described. In the 

last three cases (case 3, case 4, and case 5), the necessary step size is 70 pixels, although 

the correlation of data is high by number of tests, the best possible solution in case the 

number of obstacles increase would be tested with the same value of step size. 

 

Processing time required by the algorithm compared with the number of obstacles is 

presented in (Fig. 7). The blue line (time 1) describes the necessary time for expanding 

RRT* using an optimal data input for each case. The red one (time 2) describes the time 

required to reach de goal destination if the data is fixed with values of 30 pixels for step 

size and the maximum number of iterations is 1500. 
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Fig. 7. Processing time required by algorithm 

5 Conclusions 

From the data aforementioned in this paper, we can conclude that exists a direct 

relationship between several iterations, step size, and quantity of obstacles. In case with 

few obstacles within the workspace, we can configure the step size in maximum value 

of 140 pixels allowing to reduce the number of times that mechanical direction of UGV 

has to rotate. The number of iterations are directly proportional to the number of obsta-

cles because, more obstacles in the scene require to construct more iterations to reach 

the goal with an optimal path. 

Establishing constant input data was not the most efficient way to execute the algo-

rithm because if the step size configuration is too low, near 30 pixels, so the UGV can 

take an excessive time to follow the path and require too many changes in the direction 

of the robot. 

 This study has determined the importance of configuring initial parameters to con-

struct the RRT* algorithm. Considering the path planning is based in a global planner, 

it is important to get the parameters in lesser time and optimal manner possible to obtain 

a better routing of data between UGV and UAV. Also, the study is the first stage of a 

global research for developing a collaborative robot system, we focused on getting a 

correct path for a mobile robot to navigate without colliding with objects around it. 

Finally, this work could be complemented with the development of pure pursuit control 

for UGV. 
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