

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECATRÓNICA TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECATRÓNICO

DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE PLATAFORMA AÉREA NO TRIPULADA (UAV) CON UN SISTEMA DE APROVECHAMIENTO DE LA ENERGÍA SOLAR PARA MEJORAR LA AUTONOMÍA DE VUELO PARA EL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE LA FUERZA AÉREA ECUATORIANA (CIDFAE).

AUTORES: CHANCÚSIG QUINATOA, ALEX BLADIMIR TIPÁN GUACHI, DIEGO VINICIO

DIRECTORA: ING. CÓRDOVA CRUZATTI, ANDREA CONCEPCIÓN

PLANTEAMIENTO DEL PROBLEMA

Ausencia a nivel nacional de aeronaves autónomas que involucren el manejo de fuentes de energía renovable para desempeñar amplias jornadas de vuelo.

Modelos comerciales disponibles en el extranjero ofrecen una gran autonomía de vuelo cuyo costo de adquisición de estos equipos representa una inversión elevada.

La falta de recursos financieros enfocados a la investigación y desarrollo de equipos capaces de aprovechar la energía solar como fuente alternativa de consumo.

El constante uso de aeronaves basados en el empleo de motores a combustión para ejecutar tareas de vuelo prolongado, involucra la emisión de gases y partículas que contaminan el medio ambiente.

JUSTIFICACIÓN E IMPORTANCIA

 El Centro de Investigación y Desarrollo de la FAE cuenta con más de 10 años de experiencia en el desarrollo y construcción de plataformas aéreas no tripuladas

 La principal desventaja del UAV, es su reducida autonomía de vuelo

• La característica principal del UAV solar es el aprovechamiento de la energía que proviene del sol a través de paneles

OBJETIVOS

Objetivo General

Diseñar y construir un prototipo de plataforma aérea no tripulada de ala fija, capaz de aprovechar la energía solar para el incremento de la autonomía de vuelo para el Centro de Investigación y Desarrollo de la Fuerza Aérea Ecuatoriana (CIDFAE).

Objetivos Específicos

Identificar parámetros de diseño

Determinar el tipo y la cantidad de celdas solares

Diseñar el conjunto alar, fuselaje y cola de un UAV de ala fija

Analizar el comportamiento del ala, fuselaje y cola del UAV

Construir la estructura del UAV mediante el empleo de materiales compuestos

Determinar la autonomía del UAV Solar

HIPÓTESIS

¿El UAV de ala fija será capaz de aprovechar la energía solar para incrementar su autonomía de vuelo?

FUNDAMENTACIÓN TEÓRICA

Cargas aerodinámicas

Características aerodinámicas

Sustentación

Arrastre

Curva Polar

Momento de cabeceo

Número de Reynolds

REQUISITOS DE DISEÑO

SELECCIÓN TIPO DE AIRFRAME

ALTERNATIVAS PARA CONFIGURACIÓN UAV

N°	Componente	Alternativa
1	Ala	Número de alas: Monoplano Localización: Ala alta Tipo: Rectangular
2	Fuselaje	Geometría: Tadpole shape
3	Cola horizontal	Tipo: Convencional Ubicación: Cola de popa
4	Cola vertical	Individual
5	Motor	Tipo: Eléctrico (Alimentado por energía solar) Ubicación: Delante de la nariz Numero de motores: monomotor

SELECCIÓN DE PERFIL AERODINÁMICO

- HOBIE SM	(Reynolds 250.000)
- A18 SM	(Reynolds 250.000)
- CR001 SM	(Reynolds 250.000)
- E387	(Reynolds 250.000)

Nombre perfil	(C _L)	(C _D)
Hobie SM	1,043	0,023
A18 SM	1,279	0,043
CR001 SM	1,330	0,040
E387	1,225	0,045

Curva de sustentación

Nombre perfil	(C _L)	(C _D)	(AoA)
Hobie SM	1,043	0,023	6,5°
A18 SM	1,279	0,043	8,5°
CR001 SM	1,330	0,040	10,5°
E387	1,225	0,045	10,2°

SELECCIÓN DE PERFIL AERODINÁMICO

Coeficiente de momentos

- HOBIE SM	(Reynolds 250.000)
- A18 SM	(Reynolds 250.000)
- CR001 SM	(Reynolds 250.000)
- E387	(Reynolds 250.000)

Nombre perfil	(C _L)	(C _D)	(C _M)
Hobie SM	1,043	0,023	-0,107
A18 SM	1,279	0,043	-0,127
CR001 SM	1,330	0,040	-0,122
E387	1,225	0,045	-0,085

Gráfica cl/cd vs ángulo de ataque

Nombre perfil	$(C_{L/}C_{D})$	(AoA)
Hobie SM	86,55	4,03°
A18 SM	93,74	3,96°
CR001 SM	95,80	3,47°
E387	88,61	5,03°

SELECCIÓN DE PERFIL AERODINÁMICO

Nombre	Nombre Descripción		
Hobie SM	Hobie Hawk airfoil – Bajo número Reynolds	Hobie Hawk R/C	
A18 SM	Perfil de vuelo libre de bajo número de	bajo número de Archer A18 F1C	
	Reynolds		
CR001 SM	Perfil aerodinámico de lanzamiento manual,	Cody Robertson	
	bajo número de Reynolds (suavizado)	Cody Robertson	
E387 Eppler E387, bajo número de Reynolds		Eppler	

Alto coeficiente de sustentación

Bajo coeficiente de resistencia al aire

Bajo coeficiente de momento de cabeceo

Bajo número de Reynolds

RESUMEN DE CARACTERÍSTICAS DEL CONJUNTO ALAR

Velocidad de crucero

- Re = 250 000
- c = 330,72 *mm*
- V = 12,398 *m/s*

Carga y superficie alar

• Carga =
$$3,05 \ Kg/m^2$$

• $S = 1,150 m^2$

Envergadura

Relación de aspectoÁngulo de ataqueDiedro $(2^\circ - 5^\circ)$ • AR = 10,521• AoA = 0,585°• Ala alta: 2°
• Ala media: 3°
• Ala alta: 4°

DISEÑO DE FUSELAJE

1. Seleccionar una geometría adecuada

2. Establecer la relación óptima longitud-diámetro

$$\left(\frac{L_f}{D_f}\right)_{opt} = 7,2$$

DISEÑO DE FUSELAJE

3. Aproximar de dimensiones

4. Optimizar

DISEÑO DE ESTABILIZADOR HORIZONTAL

Configuración de cola y ubicación

- T invertida
- Popa

Coeficiente de volumen (VH)

Calcular la distancia

• Planeador = 0,6

óptima

• 1796,753 mm

Coeficiente de elevación a velocidad de crucero

• -0,139

Momento de cabeceo aerodinámico

• -0,0958

Superficie de la cola horizontal

• 127,058 $x10^3 mm^2$

EH • NACA 0006 **Relación de aspecto y conicidad** • $AR_h = 7,014$

Seleccionar el perfil

aerodinámico para

• $\lambda_h = 0,7$

Ángulo de barrido y diedro

• $\Lambda_{hLE} = 0^{\circ}$

DISEÑO DE ESTABILIZADOR HORIZONTAL

DISEÑO DE ESTABILIZADOR VERTICAL

DISEÑO DE ESTABILIZADOR VERTICAL

DISEÑO DE SUPERFICIES DE CONTROL

1. Dimensionamiento de Alerones

DISEÑO DE SUPERFICIES DE CONTROL

2. Dimensionamiento de Rudder

$$\frac{C_R}{C_{v_{punta}}} = 0.3$$

3. Dimensionamiento de Elevador

$$C_E = \frac{1}{3}(c_{h_{raiz}})$$

SELECCIÓN DE MATERIALES

Madera	Densidad (Kg/m ³)	Módulo de elasticidad (GPa)	Límite elástico (MPa)
Balsa	240 - 300	7,2 - 8,8	16,2 – 19,8
Ceiba	280 - 340	3,7-4,5	18,4 - 22,5
Sauce	310 - 380	7,1 - 8,7	24,4-29,9

SELECCIÓN DE MATERIALES

Plano XY

ESFUERZOS PRINCIPALES MÁXIMO Y ESFUERZO CORANTE MÁXIMO

Punto	σ_1	σ_2	τ _{max}
1	23,513 MPa	0 MPa	11,756 MPa
2	6,598 MPa	0 MPa	3,299 MPa
3	59,189 MPa	0 MPa	29,595 MPa
4	26,582 MPa	0 MPa	13,291 <i>MPa</i>
ut	$S_{ut} =$	190 MPa	n = 3,

 $\sigma_1 \ge \frac{S_{ut}}{n}$

ANÁLISIS ESTRUCTURAL DEL ESTABILIZADOR

ANÁLISIS ESTRUCTURAL DEL ESTABILIZADOR

ANÁLISIS ESTRUCTURAL DEL ESTABILIZADOR

SIMULACIÓN ESTÁTICA - ALA

SIMULACIÓN ESTÁTICA - ALA

SIMULACIÓN ESTÁTICA - FUSELAJE

SIMULACIÓN ESTÁTICA - FUSELAJE

SIMULACIÓN ESTÁTICA - ESTABILIZADOR

SIMULACIÓN ESTÁTICA - ESTABILIZADOR

DISEÑO ELECTRÓNICO

NNOVACIÓN

DISEÑO ELECTRÓNICO

UNIVERSIDAD DE LAS FUERZAS ARMADAS

ESQUEMA DE CONEXIONES DE PIXHAWK

ESPECIAL DE LAS FUERZAS ARMADAS

CONFIGURACIÓN DEL SISTEMA AUTÓNOMO

SINTONIZACIÓN DE PID

Ganancia	Eje	Valor predeterminado	Valor Sintonizado
RLL2SRV _P	Roll	1,0	2,08496
RLL2SRV _I	Roll	0,30	0,15759
RLL2SRV _D	Roll	0,080	0,15637
PTCH2SRV _P	Pitch	1,0	1,07751
PTCH2SRV _I	Pitch	0,30	0,08979
PTCH2SRV _D	Pitch	0,040	0,08081

SISTEMA DE APROVECHAMIENTO DE ENERGÍA SOLAR

Eficiencia de celdas solares

Característica	Maxeon Gen 3	Neon R	Single Junction				
Fabricante	SunPower	LG	Alta Device				
	Características eléc	tricas					
Eficiencia (%)	Eficiencia (%) 24,3% 20,8 % 26%						
Voltaje en máxima potencia	0,632 V	0,608 V	0,97 V				
(Vmp)							
Corriente en máxima	5,89 A	9,87 A	0,229 A				
potencia (Imp)							
Potencia máxima (Pmpp)	3,72 W	6 W	0,25 W				
Voltaje a circuito abierto	0,730 V	0,711 V	1,10 V				
(Voc)							
Corriente en corto circuito	6,18 A	10,79 A	0,240 A				
(ISC)							
Factor de forma	0,825	0,782	0,946				
Coeficiente de temperatura (Voltaie)	-1,74 mV/°C	-1,706 mV/°C	-2,09 mV/°C				
Características Físicas							
	Silicio	Silicio	Arsoniuro do				
Tipo de celda	monocristalino	monocristalino	Galio				
	(N)	(N)	Guilo				
Dimensiones (mm)	125 x 125	161.7 x 161.7	50 x 19.6				
Peso (gr)	6,5	7,0	0.112				
Precio (USD)	\$3,20	\$7,00	\$11,00				

SISTEMA DE APROVECHAMIENTO DE ENERGÍA SOLAR

SISTEMA DE APROVECHAMIENTO DE ENERGÍA SOLAR Irradiación y HSP en el mes de Mayo (2006 - 2015)

SIMULACIÓN AERODINÁMICA

Perfil cr001sm

-9.943e+01 -1.326e+02 -1.658e+02 -1.990e+02

[Pa]

SIMULACIÓN AERODINÁMICA

Perfil NACA0006

CONSTRUCCIÓN

CONSTRUCCIÓN

PRUEBAS DEL PANEL C60

PRUEBAS DE VUELO (BATERÍA LI-PO)

NIO	Fecha	Tiempo de vuelo	Voltaje de	Temperatura	Velocidad de	Presión
IN ³			batería (V)	ambiente (°C)	viento (Km/h)	(HPa)
1	20/11/2019	00h:19min	22,2	23	13	1024
2	22/11/2019	00h:15min	23,4	27	13	1029
3	22/11/2019	00h:17min	22,5	27	14	1022
4	25/11/2019	00h:22min	22,0	22	11,1	1028
5	26/11/2019	00h:19min	22,3	20	11,1	1027
6	27/11/2019	00h:16min	22,6	18	14,8	1029
7	28/11/2019	00h:18min	22,3	18	11,1	1030
8	02/12/2019	00h:20min	21,9	18	11,1	1030
9	03/12/2019	00h:20min	22,1	23	14,8	1030
10	05/12/2019	00h:18min	22,4	24	11,1	1030
11	16/12/2019	00h:16min	22,35	23	14,8	1030
12	17/12/2019	00h:15min	22,81	24	18,5	1028
13	20/12/2019	00h:16min	22,55	16	11,1	1029

PRUEBAS DE VUELO (BATERÍA LI-PO)

PRUEBAS DE VUELO (ION-LITIO + PANEL SOLAR)

N°	Fecha	Tiempo de	Voltaje inicial	Voltaje final	Temperatura	Velocidad de	Condición climática
		vuelo	(V)	(V)	ambiente (°C)	viento (Km/n)	
1	27/12/2019	02h:52min	25.25	21,51	14	3,7	P. Nublado (día)
2	28/12/2019	03h:30min	25.24	21,12	16	7,4	Soleado (tarde)
3	02/01/2020	02h:44min	25.25	21,98	13	0	P. Nublado (día)
4	03/01/2020	03h:38min	25.25	22,40	14	3,7	Soleado (tarde)
5	06/01/2020	03h:55min	25.24	22,72	12	0	Soleado (día)
6	07/01/2020	04h:02min	25.25	21,28	19	0	Soleado (tarde)
7	08/01/2020	01h:25min	25.24	21,59	10	7,4	Soleado (día)
8	08/01/2020	01h:40min	25.24	19,20	18	0	Soleado (tarde)
9	09/01/2020	03h:40min	25.25	18,12	19	12	Soleado (día)
10	10/01/2020	02h:52min	25.24	21,51	18	10,2	Nublado (tarde)

PRUEBAS DE VUELO (ION-LITIO + PANEL SOLAR)

VALIDACIÓN DE LA HIPÓTESIS

Para realizar la validación de la hipótesis del proyecto en función de una cantidad de muestras inferior a 30 se utilizará la prueba de T-Student a través de los siguientes pasos:

Establecer la hipótesis nula

- H_0 : La autonomía de vuelo del UAV usando energía solar es igual a 180 minutos.
- $H_0: \mu = 180$

Establecer la hipótesis alternativa

- H_1 : La autonomía de vuelo del UAV usando energía solar es superior a 180 minutos.
- *H*₁: μ > 180

Nivel de significancia

• $\alpha = 0.05$ (Proyectos de investigación)

Identificación del estadístico de la prueba donde $\overline{X} = 181, 8$ min

• t = 0,104

Formulación de regla de decisión

- Rechazar la hipótesis nula (H_0) si el valor de t es mayor a $t_{\alpha} = 1,833$
- 0,104 < 1,833

Toma de decisión

• La hipótesis nula (H_0) no se rechaza con el nivel de significancia de 0,05.

- Para el diseño del planeador solar se selecciona el perfil alar CR001 SM debido a su elevado coeficiente de sustentación (1,330), baja resistencia al flujo de aire determinado por su coeficiente de arrastre (0,040), bajo momento de cabeceo siendo igual a -0,085 cuyo valor negativo indica el momento antihorario con respecto a la nariz de avión, finalmente, la finura aerodinámica del perfil puede alcanzar un rendimiento de 95,80%.
- De acuerdo a las cargas aerodinámicas primordiales para el diseño de aeronaves se determina la fuerza de sustentación necesaria para levantar al avión equivalente a 56,071 N, el arrastre dependerá de la geometría de la aeronave es igual a 1,658 N, la estimación de peso permitió dimensionar el conjunto alar del UAV y seleccionar un motor de acuerdo a las especificaciones de diseño, el peso del planeador solar es 3,5 Kg, finalmente, el empuje mínimo requerido del motor seleccionado es 30,87 N.
- Dentro de una amplia gama de paneles solares, la mejor alternativa de acuerdo a la potencia de salida y su eficiencia por célula es el panel monocristalino del tipo IBC (células interdigitadas de contacto posterior) elaborados con silicio de tipo N, se selecciona el panel solar Maxeon Gen 3 (C-60), presenta una eficiencia de 24,3%, potencia máxima de salida de 3,72 W, a diferencia de otros tipos de paneles su pérdida de voltaje es baja debido al coeficiente de temperatura de -1,74 mV/°C, siendo la mejor alternativa ofreciendo un rendimiento aproximado de 82,5%

- El cálculo de la cantidad de paneles solares depende del voltaje nominal del sistema, consumo energético de los equipos y la capacidad de irradiación solar en la ciudad de Ambato tomando como punto referencial el mes crítico mayo y su cantidad de horas solares pico (5,86 h/día), se estimó un total de 52 celdas solares para obtener una autonomía promedio de 3 horas de vuelo utilizando un banco de baterías de Ion-Litio con una capacidad de 5200 mAh en configuración 6S-2P.
- La ubicación de las celdas solares sobre el extradós del ala permite aprovechar de manera directa la radiación solar durante la ejecución de planes de vuelo, teniendo en cuenta la ubicación geográfica del Ecuador no se requiere emplear un ángulo de inclinación del panel solar ya que la radiación global que experimenta toda la zona del país incide de forma perpendicular a un ángulo de inclinación de 0° (horizontal) permitiendo aprovechar la máxima cantidad de radiación solar.
- A través de la aplicación de un software CAE se analizaron las deformaciones, esfuerzos máximos y factor de seguridad, permitiendo identificar zonas críticas dentro de la estructura del UAV que no se contemplan durante un análisis mecánico teórico del conjunto alar, permitiendo aplicar correcciones del modelo CAD previo a la construcción, para garantizar un funcionamiento óptimo del prototipo disminuyendo el riesgo de falla que pueda comprometer la integridad del UAV incluyendo los equipos y carga transportada.

- Con la herramienta CFD se analizó el comportamiento de los perfiles aerodinámicos utilizados en el desarrollo del UAV solar (CR001 SM y NACA 0006) para observar las velocidades y presiones sobre las superficies de intradós y extradós a diferentes ángulos de ataque para analizar la capacidad de sustentación y su viabilidad aplicativa durante la etapa constructiva, debido a que cada perfil aerodinámico cuenta con características de utilidad de acuerdo al requerimiento de diseño.
- La construcción de la estructura del UAV se basa en el empleo de materiales ligeros con buenas propiedades mecánicas, siendo la mejor alternativa el compuesto epoxifibra de carbono cuya densidad es $1560 Kg/m^3$ que presenta una reducción de peso del 17,8% con respecto a otros materiales compuestos basados en fibra de vidrio o Kevlar, además, para diseño mecánico se considera el límite elástico del material siendo de 1940 *MPa* que supone un incremento del 10,82% de resistencia con respecto a la fibra de vidrio, por lo tanto, la estructura del fuselaje, tubo de acople con el empenaje y refuerzos sobre la piel del ala donde existe una mayor concentración de esfuerzos se implementaron satisfactoriamente en el UAV.

- A fin de reducir el efecto del peso del prototipo, el conjunto alar se construyó a base de madera de balsa debido a su baja densidad $268 Kg/m^3$ permitiendo la elaboración de costillas y la piel del ala, cuidando la dirección de la fibra para aprovechar sus propiedades mecánicas y agregar rigidez al conjunto alar manteniendo un peso de 1,5 Kg.
- Mediante la ejecución de trayectorias de vuelo del UAV solar se logró determinar que existe una mejora significativa en el tiempo de funcionamiento del prototipo de hasta 4 horas como tiempo máximo de vuelo al integrar un sistema fotovoltaico que aproveche los índices de radiación solar a diferencia de otras plataformas no tripuladas que utilizan combustibles fósiles o baterías con una duración de 20 a 30 minutos, con esto se logra demostrar que el uso de energías renovables en aplicaciones tecnológicas añada una ventaja importante, razón por la cual en países industrializados tienen mayor demanda.

RECOMENDACIONES

- Para la construcción de plataformas aéreas no tripuladas es necesario tener conocimiento previo del área, debido a que la investigación parámetros teóricos de construcción llevados a la práctica representa una mayor inversión de tiempo en el desarrollo del prototipo y por lo tanto la probabilidad a obtener fallas aumenta, además se debe considerar que la experiencia del piloto es un parámetro importante al momento de realizar pruebas de funcionamiento del prototipo construido porque las acciones que realice durante el vuelo puede repercutir en los resultados finales del proceso constructivo.
- Para elevar el tiempo de vuelo actual del prototipo se puede optar por aumentar la cantidad de cedas solares y realizar una conexión en paralelo para elevar el suministro de corriente permitiendo tener mayor potencia de salida capaz de alimentar todo el sistema electrónico y a su vez realizar una carga adecuada de los almacenadores de energía.
- El aprovechamiento de la máxima potencia de los paneles solares depende del tipo de controlador empleado, la implementación de un controlador MPPT de alta gama permitirá incrementar la eficiencia del sistema fotovoltaico debido a la precisión del seguimiento del punto de máxima potencia en función del voltaje y corriente de entrada. Además, el incremento del número de baterías que conforman el acumulador de energía permitirá mitigar la reducción de autonomía de vuelo correspondiente a malas condiciones climáticas que afectan a la generación de energía solar como soporte del sistema convencional de baterías.

RECOMENDACIONES

- Durante las pruebas de vuelo del prototipo es importante considerar los agentes atmosféricos presentes como la dirección del viento especialmente durante el despegue y aterrizaje porque estas condiciones pueden ayudar o perjudicar al UAV. No se debe realizar pruebas de vuelo durante días lluviosos porque la presencia de agua ocasionará daños en los componentes electrónicos del prototipo.
- Como medida de seguridad al realizar pruebas de funcionamiento de las superficies de control para calibración o revisión se recomienda retirar las hélices del motor de propulsión, un parámetro mal configurado o un desplazamiento inconsciente del stick que controla la velocidad del motor puede enviar una señal PWM al variador ESC ocasionado que el motor sea energizado y al tener una relación de KV elevada, las hélices pueden herir al operario o en su defecto puede desestabilizar en prototipo.
- La implementación de winglets en los extremos del ala puede ayudar a mejorar la sustentación del UAV y a reducir las estelas producto de la salida de flujo a través del borde de salida del perfil aerodinámico esto implica una reducción de arrastre y un incremento en la autonomía de vuelo.

