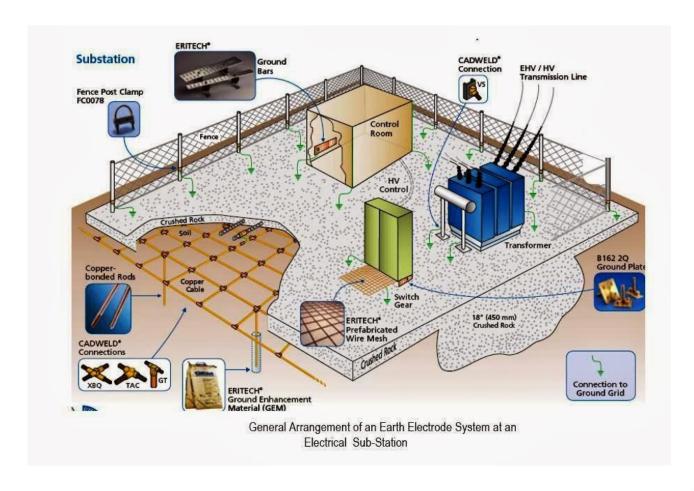


DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA EN ELECTROMECÁNICA

"Análisis de los Sistemas de Puesta a Tierra de las Subestaciones Eléctricas Portoviejo 1, Manta 3 y Montecristi 1 de 69/13,8 kV pertenecientes a la CNEL Un Manabí para establecer un plan de mantenimiento preventivo y correctivo."

Autor: Saltos González Joan Manuel

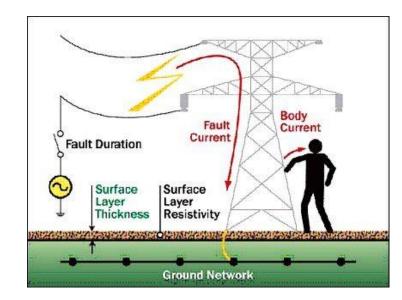
ING. Quispe Toapanta, Vicente Javier DIRECTOR DEL PROYECTO DE INVESTIGACIÓN



Contenido:

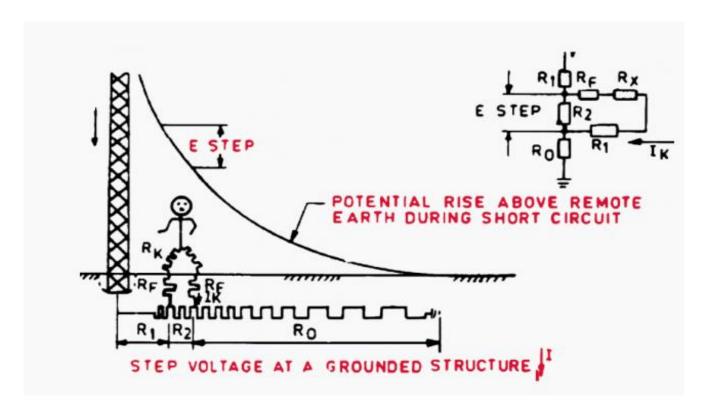
- Objetivo del sistema de puesta a tierra
- Terminología
- Justificación
- Levantamiento de Información de la condición Actual de los SPT subestaciones
- Modelación y Simulación del Sistema de puesta a tierra
- Determinación del Plan de Mantenimiento para los SPT
- Análisis de Precios unitarios para obtención de costos
- Conclusiones
- Recomendaciones

Sistema de Puesta a Tierra en Subestaciones Eléctricas

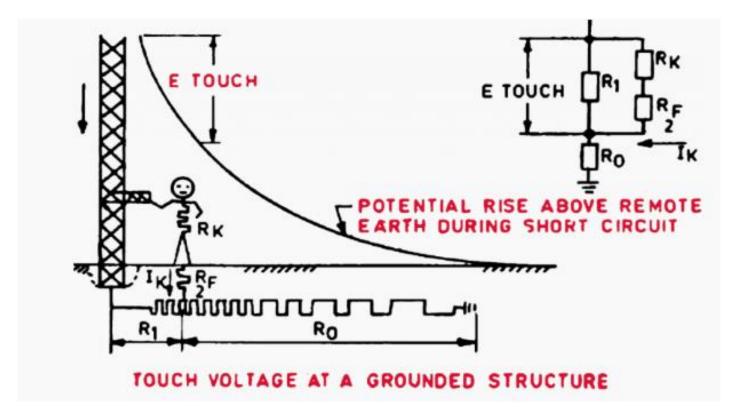

Objetivos del Sistema de Puesta a Tierra

Proteger la vida del personal en caso de que ocurra una descarga eléctrica.

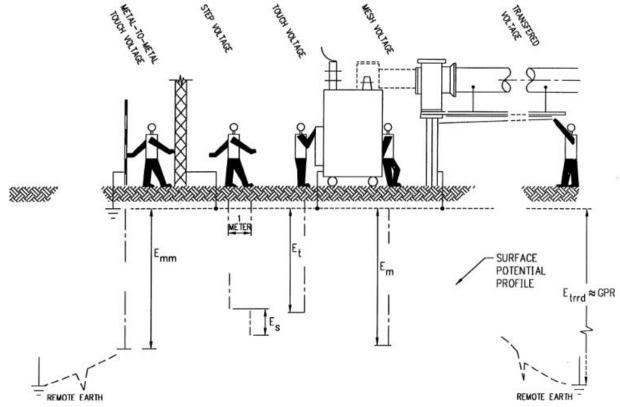
 Aislar las fallas lo más rápido posible, otorgando una baja impedancia para la conducción de las sobrecorrientes hacia la tierra, a fin de que se activen las protecciones



Terminología en un Sistema de Puesta a Tierra

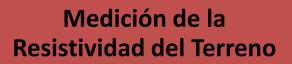

Voltaje de Paso: El voltaje que experimenta una persona a una distancia de un metro con el pie sin tener contacto con cualquier objeto aterrizado.

Terminología en un Sistema de Puesta a Tierra


Voltaje de Toque: El voltaje que experimenta una persona que se encuentra de pie y al mismo tiempo tenga una mano en contacto con una estructura aterrizada.

Terminología en un Sistema de Puesta a Tierra

Voltaje de Malla: El máximo voltaje de toque que se encuentra dentro de una cuadrícula de la malla de tierra


Justificación

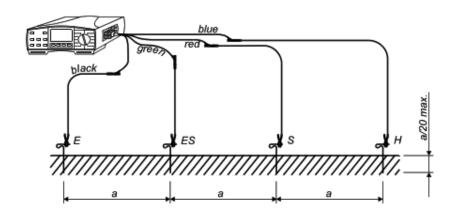
La CNEL EP tiene como objetivo de aprendizaje y desarrollo, incrementar los niveles de eficiencia de los servicios tecnológicos, por lo tanto es indispensable levantar información actualizada de los sistemas de puesta a tierra en sus diferentes subestaciones, abriendo paso a realizar una investigación para analizar alternativas que mejoren el sistema.

Levantamiento de Información

Se realizó inspección visual y uso del equipo de medición de tierra.

Medición de Resistencia de la Malla de Tierra

IEEE Guide for Safety in AC Substation Grounding


Sponsor

Substations Committee of the IEEE Power Engineering Society

Medición de Resistividad del Terreno

Condición Actual de Resistividad del Terreno en S/E Portoviejo 1

Resistividad del Terreno = $7,9 \Omega m$

Tabla 12. Medición de la resistividad del suelo en la Subestación Eléctrica Portoviejo

		Per	Perfil 1 Perfil 2		fil 2	Perfil 3		Resistividad Promedio	
#Medición	Espaciamiento	R1	ρ1	R2	ρ2	R3	ρ3	ρ=(ρ1+ρ2+ρ3) /3	
	[m]	[Ω]	[Ωm]	[Ω]	[Ωm]	[Ω]	[Ωm]	[Ωm]	
1	4	0,17	4,10	0,17	4,14	0,17	4,22	4,15	
2	4	0,27	7	0,31	8	0,31	8	7,66	
3	4	0,35	9	0,37	9,5	0,39	10	9,5	
4	4	0,39	10	0,4	11	0,39	10	10,33	
	PROMEDIO								

Medición de Resistencia de la Malla de Tierra.

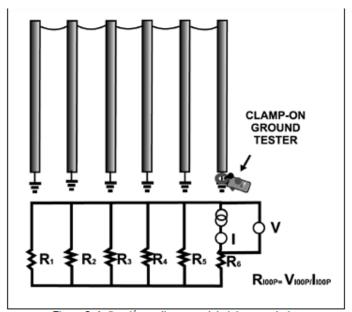
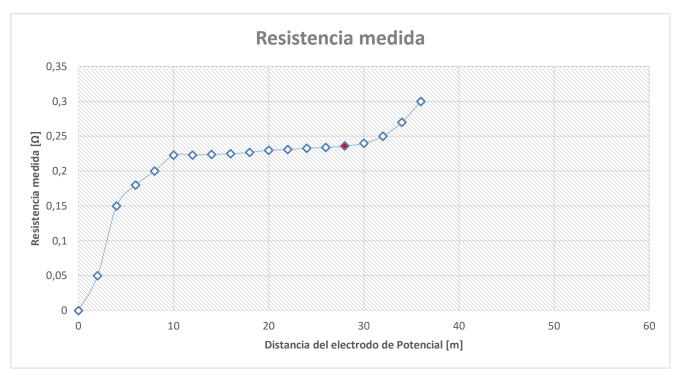



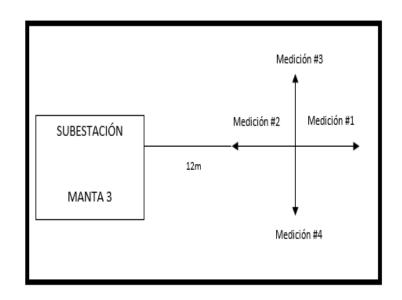
Figura 2. Aplicación en tierra paralela interconectada.

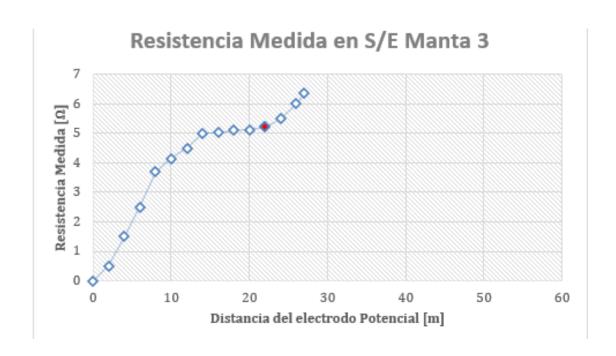
Condición Actual de Resistencia de la Malla de Tierra en S/E Portoviejo 1

Resistencia del sistema de tierramedida = $0,23 \Omega$

Condición Actual de Resistividad del Terreno en S/E Manta 3

Resistividad del Terreno = $93,2 \Omega m$




Tabla 16. Medida de la resistividad del suelo en la subestación Manta 3

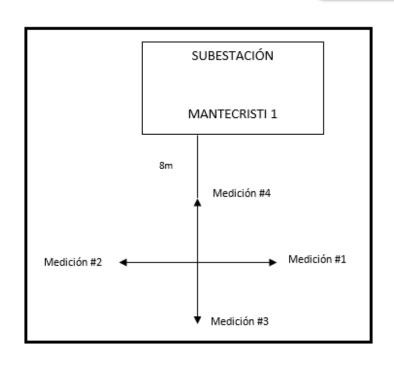
		Perfil 1		Perfil 2		Perfil 3		Resistividad Promedio
#Medición	Espaciamiento	R1	ρ1	R2	ρ2	R3	ρ3	ρ=(ρ1+ρ2+ρ3) /3
	[m]	[Ω]	[Ωm]	[Ω]	[Ωm]	[Ω]	[Ωm]	[Ωm]
1	4	4	100,53	4	100,5	4,5	113,09	104,706
2	4	3	75,39	2	50,26	5	125,66	83,77
3	4	3	75,39	2	50,26	3	75,39	67,01
4	4	4	100,53	5	125,66	5	125,66	117,28
PROMEDIO							93,2	

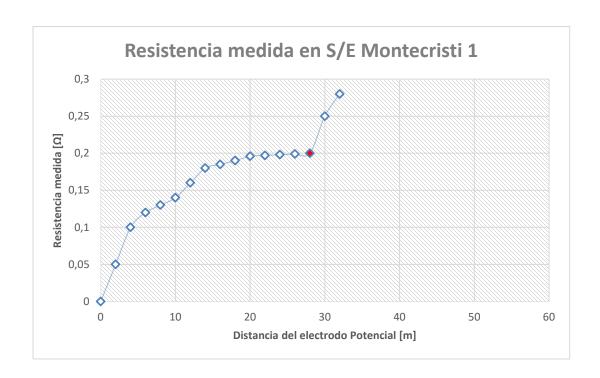
Condición Actual de Resistencia de la Malla de Tierra en S/E Manta 3.

Resistencia del sistema de tierra medida = $5,21 \Omega$

Medición de Resistividad del Terreno en S/E Montecristi 1

Resistividad del Terreno = $10,4 \Omega m$

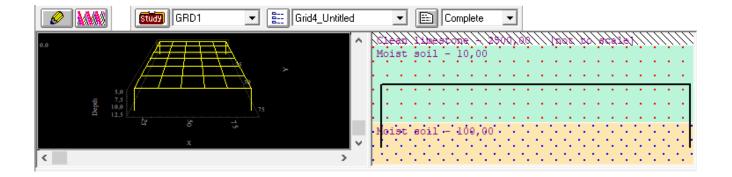



Tabla 20 Medidas de la resistividad del suelo en la Subestación Eléctrica Montecristi 1

	Perfil 1 Perfil 2 Perfil 3		Resistividad Promedio					
#Medición	Espaciamiento	R1	ρ1	R2	ρ2	R3	ρ3	ρ=(ρ1+ρ2+ρ3) /3
	[m]	[Ω]	[Ωm]	[Ω]	[Ωm]	[Ω]	[Ωm]	[Ωm]
1	4	0,35	9	0,39	10	0,43	11	10
2	4	0,12	3	0,16	4	0,12	3	10
3	4	0,32	8	0,43	11	0,32	8	9
4	4	0,43	11	0,6	15	0,47	12	12,6
	10,4							

Medición de Resistencia de la Malla de Tierra de S/E Montecristi 1.

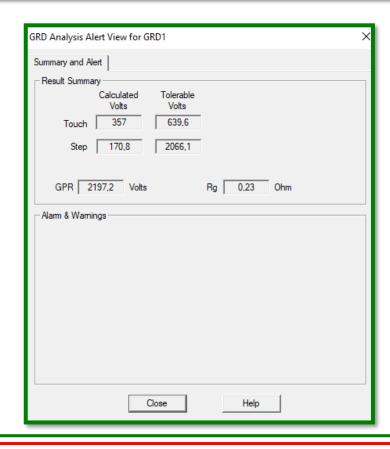
Resistencia del sistema de tierra medida = 0.2Ω

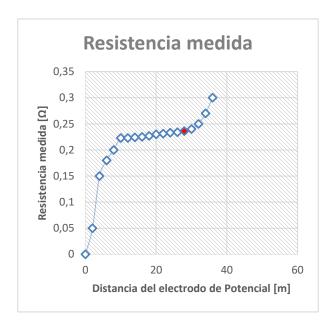


Simulación del SPT S/E Portoviejo 1

 $I_{cortocircuito=9,246 kA}$

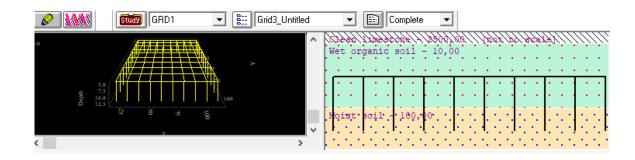
Parám	Configuración de la malla para simulación normal		
Profundi	dad de	1,5	
conductors			
Longitud	Lx	21	
de la malla (m)	Lx	21	
N° de	X	7	
conductores	Y	6	
N° total de c	onductores	13	
Tipo de Co	onductor	Cobre, recocido	
	suave estirado, 2/0		
	AWG		
N° de ele	Nº de electrodos		

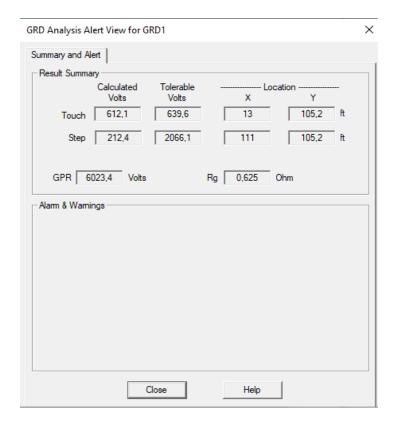




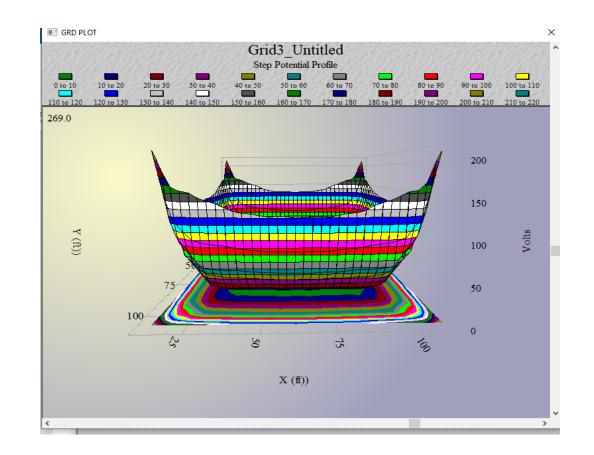
Método IEEE 80-2000

Resistencia del sistema de tierra simulada = 0.23Ω


- Cumple con Norma IEEE 80-2000.
- $E_m < V_{toque}$
 - $E_s < V_{paso}$



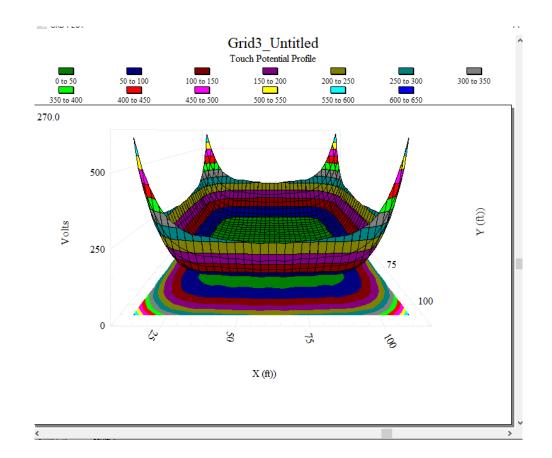
Método Elementos Finitos (FEM)



Voltaje de Paso

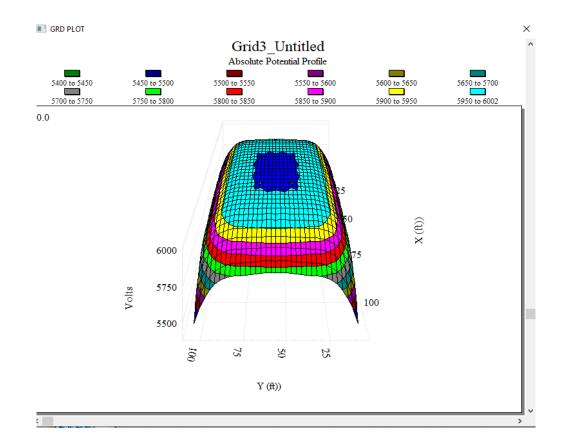
 $E_s < E_{paso}$

212,2 *V* < 2066,1 *V*



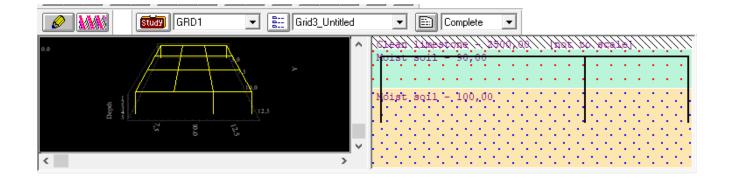
Voltaje de Toque

 $\overline{E_m} < E_{toque}$


612, 1*V* < 639,6 *V*

Voltaje Absoluto

GPR = 6023,44 V

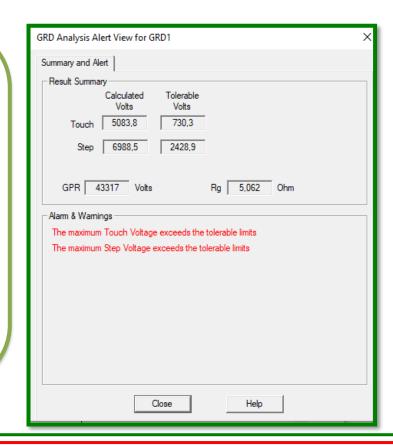


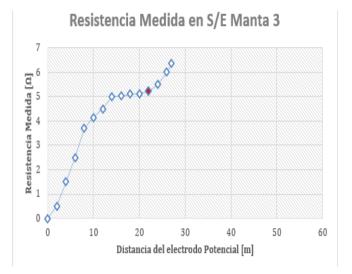
Simulación del SPT S/E Manta 3

 $I_{cortocircuito=8,298 kA}$

Parám	etros	Configuración de la malla para simulación normal
Profundi	dad de	1,5
conductore	es (m)	
Longitud	Lx	8
de la malla (m)	T	
	Lex	8
N° de	X	4
conductores		
	Y	4
N° total de co	onductores	8
Tipo de Co	nductor	Cobre, recocido
		suave estirado, 2/0
		AWG
N° de ele		5
T J	-14	ź.

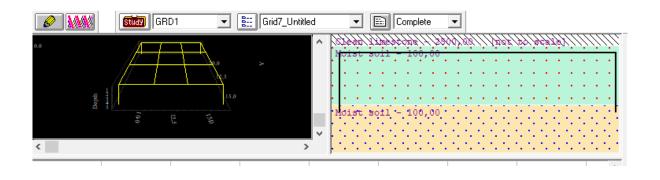
Método IEEE 80-2000

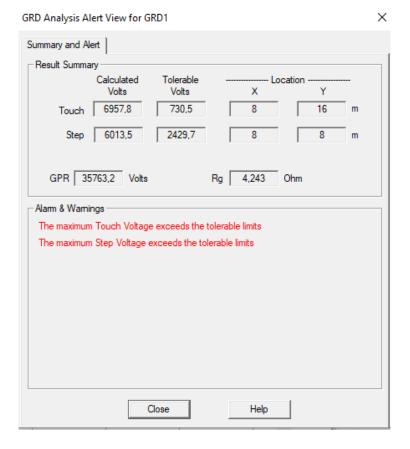

Resistencia del sistema de tierra simulada = $5,062 \Omega$


- No Cumple con Norma IEEE 80-2000.
- No cumple

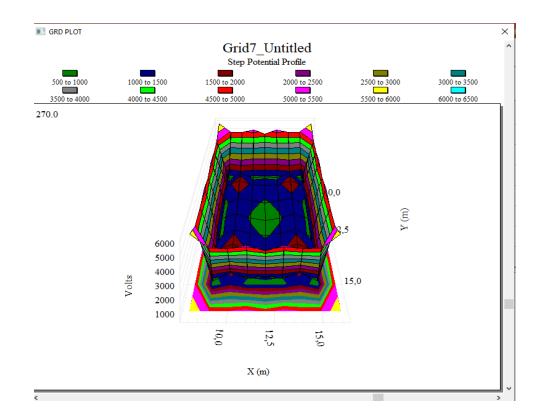
$$E_m > V_{toque}$$
.

No cumple


$$E_s > V_{paso}$$



Método Elementos Finitos (FEM)

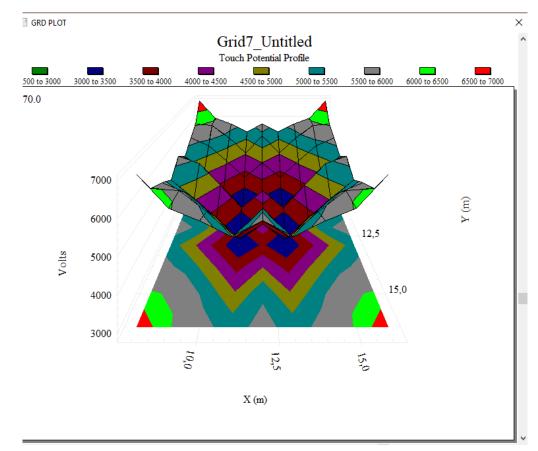


Voltaje de Paso

 $E_s > E_{paso}$

6013,5 *V* < 2429,7 *V*

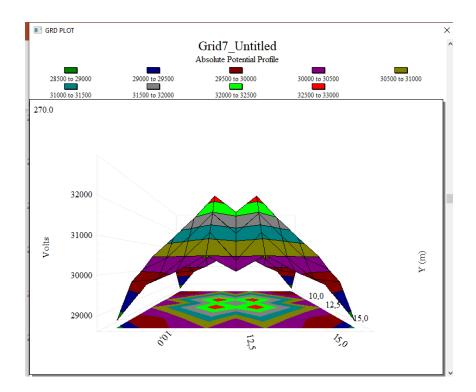
No Cumple



Voltaje de Toque

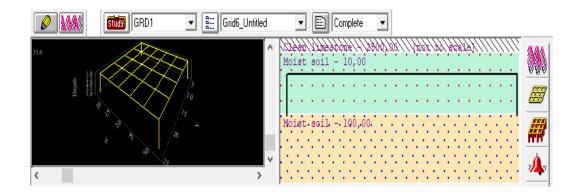
 $E_m > E_{toque}$

6957,8 > 730,5 *V*


No Cumple

Voltaje Absoluto

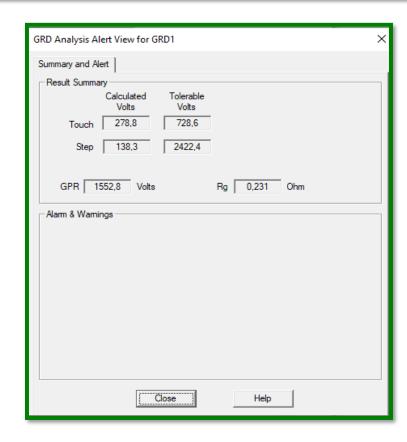
GPR = 35763,2 V Elevado

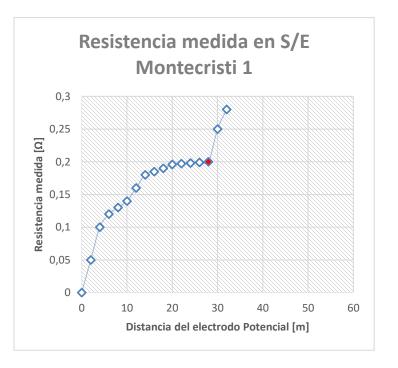


Simulación del SPT S/E Montecristi 1

 $I_{cortocircuito=6,413 kA}$

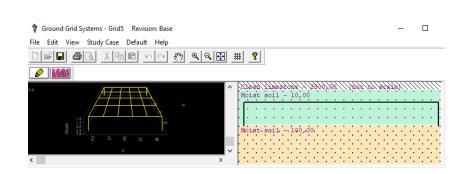
	arámetros	Configuración de la malla para simulación normal
Profundidad	d de conductores (m)	1
Longitud de la malla (m)	Lx	25
	Lx	20
Nº de conductores	х	5
	Y	б
Nº total	l de conductores	11
_	de Conductor	Cobre, recocido suave estirado, 70 mm²
Nº d	le electrodos	4
Longitud	2	
Diámetro	del electrodo (cm)	2
Resiste	ncia de la tierra	0,231

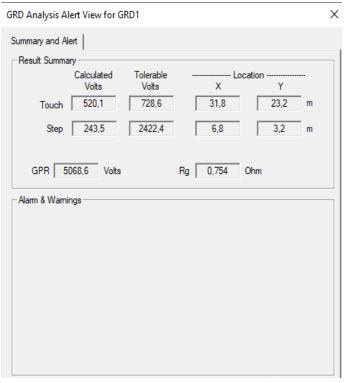




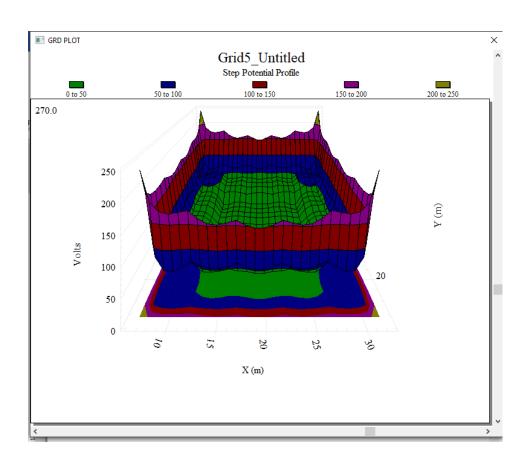
Método IEEE 80-2000

Resistencia del sistema de tierra simulada = $0,231 \Omega$


- Cumple con Norma IEEE 80-2000.
- $E_m < V_{toque}$ $E_s < V_{paso}$



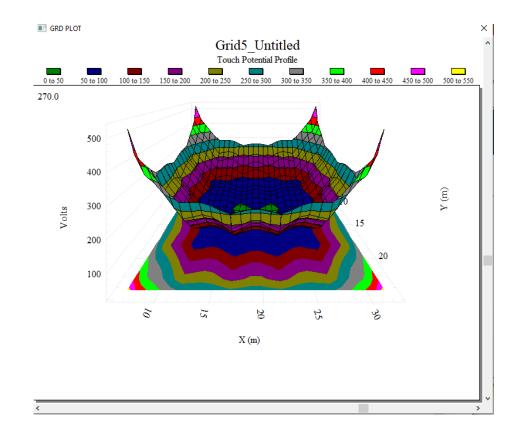
Método Elementos Finitos (FEM)



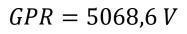
Voltaje de Paso

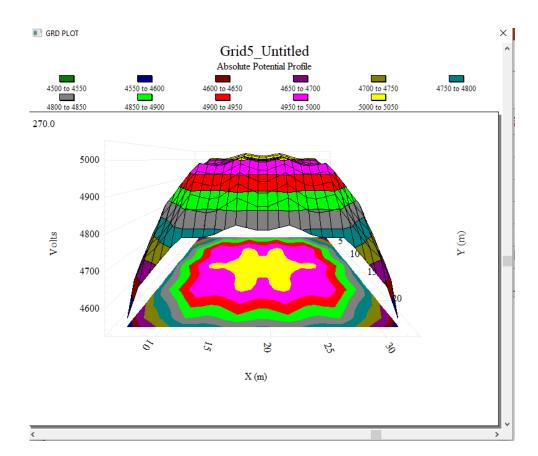
 $E_s < E_{paso}$

243,5 *V* < 2422,4 *V*



Voltaje de Toque


 $E_m < E_{toque}$


520,1 *V* < 728,6 *V*

Voltaje Absoluto

Plan de Mantenimiento de los SPT

	HOJA DE PROPUESTA DE MANTENIMIENTO
Frecuencia de la Rutina	Tarea Propuesta
	Realizar la verificación del estado del sistema de puesta a tierra, mediante las mediciones de resistividad del terreno y medición de la resistencia de puesta a tierra, realizar un análisis estadístico de las mediciones, para evaluación de factibilidad técnica y factibilidad económica
	Medición de tensión de contacto y tensión de paso que se presenten sobre la superficie de la puesta a tierra, para comparar con los establecidos por la normativa y evaluar las condiciones del sistema.
	Tratamiento del terreno mediante sales y químicos, para disminuir su resistividad al paso de la corriente.
Rutina Anual	Efectuar revisión en las cámaras de inspección, realizando excavaciones para determinar el estado físico de los conductores de la malla en distintos puntos
	Inspección del sistema de puesta a tierra, con las condiciones generales de los conductores, nivel de corrosión, estado de las uniones y componentes, para realizar un reacondicionamiento cíclico o una sustitución cíclica de ser necesaria.
	Verificar limpieza y ajuste de los tornillos de las uniones mediante martilleo en su cabeza. En caso de no presentar sonido no sólido aflojar, ajustar el tornillo y aflojar nuevamente y ajustar finalmente.
	Rediseñar o proponer mejoras del sistema si es requerido.

Análisis de Precios Unitarios para obtención de Costos

Tabla 50Costo Referencial por Mantenimiento Predictivo

Costo total de Actividad por Mantenimiento Predictivo del sistema de tierra						
Actividades por Mantenimiento Predictivo	Unidad	Cantidad	Precio unitario (Dólares)	Costo total (Dólares)		
Inspección Visual del Cable de Protección	m	10	12,55	125,50		
Inspección Visual de la Toma de Tierra	u	50	22,90	1.145,00		
Inspección Visual de la Torre	u	50	2,72	136,00		
Inspección Visual de corrosión en Uniones	u	100	20,9	2.090,00		
Termovisión de Conductores	m	10	44,50	222,5		
Medición puesta a tierra de Torre	u	50	30,50	732,00		
Medición de resistividad del terreno	u	1	250,00	250,00		
Medición de tensión de contacto y de paso	u	50	125,50	3.012,00		
SU	JBTOTAL			7.713,00		
I.V	/.A. (12%)			925,56		
TO	8.638,56					
INDIR	1.295,78					
UTII	LIDAD (5%)			431,93		
COSTOTO	TAL DEL R	UBRO		10.366,27		

Análisis de Precios Unitarios para obtención de Costos

Tabla 51Costo Referencial por Mantenimiento Preventivo

Costo total de Actividad por Mantenimiento Preventivo del sistema de tierra						
Actividades por Mantenimiento Preventivo	Unidad	Cantidad	Precio unitario (Dólares)	Costo total (Dólares)		
Limpieza de Uniones de aterrizado	u	50	80,00	2.800,00		
Limpieza de conductores de tierra	m	10	180,55	1.805,50		
Inspección de conductores de malla de tierra	m	10	25,50	255,00		
Corrección de puntos calientes	m	10	570,00	5.700,00		
Ajuste de conexiones en la caja de registro	u	50	95,00	3.800,00		
Mantenimiento de Uniones de la caja de registro	u	50	120,50	2.410,00		
SUE	16.770,50					
тот	AL (IVA)			18.782,96		
INDIRE	2.817,44					
UTILI	939,15					
COSTO TOT	AL DEL RU	BRO		22.536,54		

Análisis de Precios Unitarios para obtención de Costos

Tabla 52
Costo Referencial por mantenimiento correctivo

Costo total de Actividad por Mantenimiento Correctivo del sistema de puesta a tierra						
Actividades por Mantenimiento Correctivo	Unidad	Cantidad	Precio unitario (Dólares)	Costo total (Dólares)		
Reparación de conductores de tierra	m	10	550	3850,00		
Reparación de uniones	u	100	150	15.000,00		
Mejoramiento del sistema de tierra	u	50	180	9.000,00		
Mejoramiento del suelo	u	1	750	750,00		
Si	28.600,00					
TC	32.032,00					
INDIR	4.804,80					
UTI	1.601,6					
COSTO TO	COSTO TOTAL DEL RUBRO					

Conclusiones

- La condición actual de la resistencia de puesta a tierra de la subestación Portoviejo 1 es muy buena presenta un valor de $0,23\Omega$, ya que se encuentra bajo los estándares eléctricos permitidos, la cual tiene un valor menor a $1~\Omega$, tal y como recomienda la norma IEEE 80-2000.
- La subestación Manta 3 presenta una elevada resistencia de puesta a tierra, presenta un valor de 5,21 Ω por lo que se encuentra en una condición no favorable, superando el límite de 1 Ω establecido por la norma IEEE 80-2000.
- La subestación Montecristi 1 tiene una resistencia de puesta a tierra excelente, presenta un valor de 0,2 Ω por debajo de 1 Ω establecido por la cláusula 14.1 de la norma IEEE 80-2000.

Conclusiones

- Se elaboró un plan de mantenimiento predictivo y preventivo para las subestaciones Portoviejo 1 y Montecristi 1, sus condiciones actuales son buenas, por lo que es factible realizar reacondicionamiento cíclico en las uniones y conductores que presentan óxido y mejorar las condiciones del terreno cada cierto tiempo.
- El plan de mantenimiento elaborado para la subestación Manta 3 es un plan correctivo, debido a que presenta condiciones críticas que afectan a la seguridad del personal y de los equipos en la subestación.

Recomendaciones

- Realizar comprobaciones del sistema de puesta a tierra periódicamente en intervalos máximos de 3 años, para asegurar la vida útil de los equipos, así como la seguridad al personal dentro de la subestación
- La subestación Manta 3 presenta condiciones críticas para la seguridad del personal y de los equipos, razón por la cual se requiere de un mejoramiento del terreno mediante cloruro de sodio, sulfato de magnesio y cobre o cloruro de calcio, para aumentar la conductividad del suelo que rodea el electrodo, junto con una reparación de la malla de tierra de la subestación añadiendo planchas de cobre.

Recomendaciones

• Los costos referenciales de mantenimiento para el sistema de puesta a tierra de las subestaciones proceden de tres actividades, el mantenimiento predictivo que presenta un costo referencial de \$10.366,27 USD, el mantenimiento preventivo con un costo de \$22.536,54 USD y el mantenimiento correctivo que cuenta con un costo referencial de \$38.438,40 USD para la ejecución de dichas actividades.

