

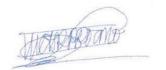
Diseño de un Sistema SCADA como Herramienta de Gestión y Control de Mantenimiento de los Equipos Electromecánicos para el Área ELPO de la Empresa Aymesa

Jaramillo Laverde, Andrés Alexander

Departamento de Eléctrica, Electrónica y Telecomunicaciones

Carrera de Ingeniería en Electrónica, Automatización y Control

Trabajo de titulación, previo a la obtención del título de Ingeniero en Electrónica,


Automatización y Control

Ing. Proaño Rosero, Víctor Gonzalo MSc.

26 de febrero de 2021

Document Information Analyzed document Memoria de Proyecto de Titulación Andres Jaramillo pdf (D96065695) Submitted 2/19/2021 7:04:00 PM Submitted by Submitter email vgproanio@espe.edu.ec Similarity Analysis address vgproanio.espe@analysis.urkund.com Sources included in the report URL: https://www.researchgate.net/profile/Marcelo_Alvarez_Luna/publication/330567438_Di ... Fetched: 2/10/2021 1:28:37 PM CORRECCION TESIS DAYSI INTRIAGO PEREZ.docx SA Document CORRECCION TESIS DAYSI INTRIAGO PEREZ.docx (D80899899) URL: https://docplayer.es/94510189-Universidad-politecnica-salesiana.html W 1 Fetched: 12/8/2019 10:42:19 PM Universidad de las Fuerzas Armadas ESPE / Tesis_CordovaHerreraRichard.pdf Document Tesis_CordovaHerreraRichard.pdf (D29753117) SA 88 1 Submitted by: biblioteca@espe.edu.ec Receiver: crcepeda.espe@analysis.urkund.com Universidad de las Fuerzas Armadas ESPE / Tesis_CordovaHerreraRichard.docx Document Tesis_CordovaHerreraRichard.docx (D29753116) SA 日 2 Submitted by: biblioteca@espe.edu.ec Receiver: crcepeda.espe@analysis.urkund.com URL: https://repositorio.espe.edu.ec/bitstream/21000/7202/1/T-ESPEL-ENI-0309.pdf 88 1 Fetched: 11/16/2019 7:08:30 AM

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES CARRERA DE INGENIERÍA EN ELECTRÓNICA, AUTOMATIZACIÓN Y CONTROL

CERTIFICACIÓN

Certifico que el trabajo de titulación, "Diseño de un Sistema SCADA como Herramienta de Gestión y Control de Mantenimiento de los Equipos Electromecánicos para el Área ELPO de la Empresa Aymesa" fue realizado por el señor Jaramillo Laverde, Andrés Alexander el cual ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenido; por lo tanto cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la "Universidad de las Fuerzas Armadas ESPE", razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Sangolquí, 26 de febrero de 2021

Firma:

Ing. Proaño Rosero, Víctor Gonzalo MSc.

C. C. 170645792-4

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES CARRERA DE INGENIERÍA EN ELECTRÓNICA, AUTOMATIZACIÓN Y CONTROL

RESPONSABILIDAD DE AUTORÍA

Yo, Jaramillo Laverde, Andrés Alexander, con cédula de ciudadanía n°172279282-5, declaro que el contenido, ideas y criterios del trabajo de titulación: Diseño de un Sistema SCADA como Herramienta de Gestión y Control de Mantenimiento de los Equipos Electromecánicos para el Área ELPO de la Empresa Aymesa es de mi autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la "Universidad de las Fuerzas Armadas ESPE", respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Sangolquí, 26 de febrero de 2021

Firma:

Jaramillo Laverde, Andrés Alexander

C.C.: 172279282-5

DEPARTAMENTO ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES CARRERA DE INGENIERÍA EN ELECTRÓNICA, AUTOMATIZACIÓN Y CONTROL

AUTORIZACIÓN DE PUBLICACIÓN

Yo Jaramillo Laverde, Andrés Alexander, con cédula de ciudadanía n°172279282-5, autorizo a la "Universidad de las Fuerzas Armadas ESPE" publicar el trabajo de titulación: Diseño de un Sistema SCADA como Herramienta de Gestión y Control de Mantenimiento de los Equipos Electromecánicos para el Área ELPO de la Empresa Aymesa en el Repositorio Institucional, cuyo contenido, ideas y criterios son de mi responsabilidad.

Sangolquí, 26 de febrero de 2021

Jaramiłło Laverde, Andrés Alexander

Firma:

C.C.: 172279282-5

Dedicatoria

Este trabajo de titulación lo dedico con todo mi amor a mis padres y hermano porque ellos estuvieron siempre brindándome su apoyo incondicional y fomentando en mi a través de sus consejos el deseo de superación, humildad y de triunfo en la vida.

Mis padres y hermano fueron mi motivación para concluir con éxito este proyecto de tesis.

Andrés Alexander

Agradecimientos

Con el presente trabajo agradezco a Dios, quién ha guiado mi vida y me ha dirigido por el camino del bien. El Padre celestial en circunstancias difíciles me ha ayudado a salir adelante y poder cumplir mi objetivo.

Agradezco a mis padres y hermano porque me brindaron su apoyo tanto moral como económico para seguir con mis estudios, lograr mi meta, tener un futuro mejor y ser orgullo para ellos.

Agradezco a mi Tutor de la carrera de Electrónica en Automización y Control de la Universidad de las Fuerzas Armadas – ESPE, Ing. Víctor Gonzalo Proaño Rosero MSc. persona de gran sabiduría que me brindó su valioso tiempo y conocimientos para culminar mi tesis con éxito.

Agradezco a la Universidad de las Fuerzas Armadas – ESPE, sobre todo a mis maestros por haberme formado como persona y profesional.

Un especial reconocimiento al Dr. José Páez Gerente de Recursos Humanos de la Empresa Aymesa S.A. por la apertura brindada en la empresa para la realización, ejecución de este proyecto y alcanzar con éxito los objetivos propuestos.

Mi gratitud al Ing. Patricio García Supervisor del Área ELPO por su guía en el presente proyecto.

Índice de Contenido

Hoja de resultados Urkund	2
Certificado del director	3
Responsabilidad de autoría	4
Autorización de publicación	5
Dedicatoria	6
Agradecimientos	7
Índice de Contenido	8
Índice de Tablas	12
Índice de Figuras	14
Resumen	22
Abstract	23
Capítulo I. Introducción	24
Antecedentes	24
Justificación	26
Alcance	26
Objetivos	27
Objetivo General	27
Objetivos Específicos	27
Descripción General del Proyecto	28
Requerimientos Funcionales	28
Capítulo II. Marco Teórico	30
Introducción al proceso ELPO	30
Pretratamiento	30

Electrodeposición	37
Hardware de control equipos electromecánicos	42
Equipos Electromecánicos del Área ELPO	45
Diseño HMI de alto desempeño	48
API (Automatización de Procesos Industriales) -1165	48
ISA (Industria Estándar de Arquitectura) - 101	49
Software Ignition como herramienta sistema SCADA.	55
Arquitectura de Ignition para el desarrollo del proyecto	58
Flujo de inicio del programa de diseño	59
Licencias del Software Igniton	60
Módulos en Software Ignition	61
Guiones (Scripting) en el Software Ignition	62
Sistema Gestor de Base de Datos	63
Comandos básicos SQL con PostgreSQL	65
Identificación de las relaciones entre entidades de la base de datos	72
Capítulo III. Base de Datos	74
Diseño de la base de datos PostgreSQL	74
Análisis de Requerimientos	74
Diseño Conceptual	76
Creación de la base y entidades de datos	91
Relaciones entre entidades SQL para la base de datos	92
Realizar consultas entre entidades SQL	92
Modelo entidad relación	93
Capítulo IV. Diseño del Sistema SCADA de Mantenimiento	95
Configuración Página Web (Web Page) software Ignition	95

	Conexión de Ignition con el PLC CompactLogix	95
	Conexión de Ignition con la base de datos PostgreSQL	98
	Configuraciones de red (Networking) y correo electrónico (email) de	
	Ignition	101
	Configuración del correo electrónico Gmail.	103
	Configuración de Notificaciones de alarmas (Alarming) Ignition	105
	Lista de llamada de correos electrónicos (On-Call Rosters) Ignition	107
Utiliza	ción de herramientas en el diseñador Ignition	109
	Creación de un Proyecto en el Diseñador (Ignition)	110
	Creación de ventanas en el Diseñador (Ignition)	113
	Creación de etiquetas (tags) en el Diseñador Ignition	114
	Creación de Plantillas (Templates) en el Diseñador (Ignition)	116
	Creación del Canal de información de notificación de alarmas (Alarm	
	Notification Pipeline)	119
	Creación de reportes en Ignition (Reporting Module)	120
	Grupo de Transacciones (Transactions Group)	126
Arquite	ectura actualizada de la red ELPO	130
Estruc	tura del sistema SCADA de mantenimiento	130
	HMI producción	135
	HMI de mantenimiento	137
	Opción Repuestos HMI de Mantenimiento.	138
	Opción Mantenimiento Área ELPO	142
	Opción Funcionamiento Área ELPO	148
	Opción Historial de Trabajo Área ELPO.	149
	Consultas Área ELPO	152

Edición Supervisor Área ELPO	165
Capítulo V. Conclusiones Y Recomendaciones	174
Conclusiones	174
Recomendaciones	176
Bibliografía	177
Anexos	179

Índice de Tablas

Tabla 1 Representación del equipo	52
Tabla 2 Paleta de colores HMI de alto rendimiento	53
Tabla 3 Módulos requeridos en el software Ignition	61
Tabla 4 Comandos DLL	65
Tabla 5 Comando CREATE base de datos	66
Tabla 6 Comando CREATE entidades	66
Tabla 7 Comando DROP Eliminar tablas y registros	67
Tabla 8 Comando TRUNCATE	67
Tabla 9 Comando ALTER	68
Tabla 10 Comandos DML manipulación de datos	68
Tabla 11 Comando SELECT	69
Tabla 12 Comando INSERT	69
Tabla 13 Comando UPDATE	70
Tabla 14 Comando DELETE	70
Tabla 15 Comandos de modificación	71
Tabla 16 Comandos de operaciones lógicas	71
Tabla 17 Comando LIKE	71
Tabla 18 Comando Inner Join	72
Tabla 19 Identificador de una entidad	72
Tabla 20 Tipos de relaciones en la base de datos	73
Tabla 21 Especificaciones de las Entidades de la base de datos	77
Tabla 22 Modelo Entidad relación de la base de datos	81
Tabla 23. Alarmas activadas con sus respectivos campos de la base de datos	82

Tabla 24	Configuraciones con sus respectivos atributos de la base de datos82
Tabla 25	Configuraciones de órdenes con sus respectivos atributos de la base de datos
	83
Tabla 26	Equipos con sus respectivos atributos de la base de datos83
Tabla 27	Historia trabajos con sus respectivos atributos de la base de datos85
Tabla 28	Mantenimientos con sus respectivos atributos de la base de datos85
Tabla 29	Monitoreos con sus respectivos atributos de la base de datos86
Tabla 30	Órdenes con sus respectivos atributos de la base de datos87
Tabla 31	Repuestos con sus respectivos atributos de la base de datos88
Tabla 32	Solicitudes con sus respectivos atributos de la base de datos
Tabla 33	Solicitudes y repuestos con sus respectivos atributos de la base de datos90
Tabla 34	Tipos solicitud con sus respectivos atributos de la base de datos91
Tabla 35	Lista de comandos para establecer relaciones entre entidades92
Tabla 36	Comandos de consulta SQL93
Tabla 37	Configuración de conexión con la base de datos PostgreSQL100
Tabla 38	Configuración con los parámetros SMTP102
Tabla 39	Configuración de correo electrónico para envío de alarmas generadas en el
SCADA	106

Índice de Figuras

Figura 1 Etapas de Pretratamiento Empresa Aymesa S.A	.31
Figura 2 Etapas de pretratamiento Área ELPO Aymesa S.A	.31
Figura 3 Etapa de Desengrase 1 por Aspersión	.32
Figura 4 Caldero Empresa Aymesa S.A	.32
Figura 5 Etapa de Desengrase 2: Aspersión e Inmersión	.33
Figura 6 <i>Enjuague de agua cruda</i>	.34
Figura 7 Acondicionador del metal o Activado Empresa Aymesa S.A	.34
Figura 8 Fosfatado Empresa Aymesa S.A	.35
Figura 9 Enjuague 2 de agua cruda	.36
Figura 10 Sellador o Pasivador	.36
Figura 11 Enjuague 3 de agua des-ionizada recirculada	.37
Figura 12 Esquema del proceso electrodeposición	.38
Figura 13 Etapas de Electrodeposición empresa Aymesa S.A	.39
Figura 14 Tanque de electrodeposición catódica empresa Aymesa S.A	.39
Figura 15 Tanque de inmersión (sistema anolito) empresa Aymesa S.A	.40
Figura 16 Enjuagues etapas Electrodeposición	.40
Figura 17 Curado de la película	.41
Figura 18 Curado de la película Horno Aymesa S.A	.41
Figura 19 Tableros de Control Área ELPO empresa Aymesa S.A	.42
Figura 20 Procesador L33ERM y dirección de su IP (Protocolo de Internet)	.43
Figura 21 Switch de interconexión de 8 Puertos Allen-Bradley empresa Aymesa S.A.	.45
Figura 22 Motor Trifásico	.46
Figura 23 Bomba hidráulica	.46

Figura 24	Árbol de transmisión4	7
Figura 25	Bomba Industrial (Motor/Bomba)4	7
Figura 26	Bomba Industrial con su respaldo (stand by) electrodeposición empres	а
Aymesa S.	.A4	8
Figura 27	Ejemplo de ciclo de vida de ISA-1015	0
Figura 28	Gráfico esquemático o de estilo P&ID inapropiado e integración con otro	S
sistemas	5	1
Figura 29	Bombas con indicador según su estado5	2
Figura 30	Ejemplo de pantalla HMI de alto desempeño5	5
Figura 31	Software Ignition Versión 7.95	7
Figura 32	Empresas que usan el software Ignition5	7
Figura 33	Credencial Ignition Versión 7.95	8
Figura 34	Ignition versión 7.9.13 Control de Utilidades y puertos5	9
Figura 35	Flujo de Inicio para el diseñador Ignition6	0
Figura 36	Página Web de Ignition6	0
Figura 37	Versiones base de datos6	4
Figura 38	Administrador de la base de datos6	4
Figura 39	Diagrama UML caso de Uso Operario7	5
Figura 40	Diagrama UML caso de Uso Supervisor7	5
Figura 41	Elementos de una base de datos7	6
Figura 42	Modelo Entidad Relación9	4
Figura 43	Página Web de Ignition9	6
Figura 44	Opción de configuración Módulo de servidor9	6
Figura 45	Se Agrega el dispositivo a la configuración9	7
Figura 46	Parámetros generales de conexión al PLC.	7

Figura 47	Parámetros de conectividad con el PLC	98
Figura 48	Conexión establecida con el PLC CompactLogix área ELPO	98
Figura 49	Página Web de Ignition opción configuración	99
Figura 50	Opción de configuración Base de datos (DATABASES)	99
Figura 51	Se escoge la opción PostgreSQL que es el servidor de la base de datos1	00
Figura 52	Conexión establecida con la base de datos PostgreSQL1	01
Figura 53	Navegador Web de configuración Ignition1	01
Figura 54	Se crea una nueva configuración de correo electrónico1	02
Figura 55	Datos de creación Principal SMTP1	02
Figura 56	Configuración establecida del correo electrónico Gmail1	03
Figura 57	Gestionar la cuenta de Google < Seguridad1	04
Figura 58	Aplicaciones poco seguras: Activado1	04
Figura 59	Navegador Web de configuración Ignition1	05
Figura 60	Se crea una nueva notificación con el protocolo de correo electrónico SM	TF
	1	05
Figura 61	Editar perfil de notificación de alama1	06
Figura 62	Configuración establecida para el envío de notificación de alarmas generad	las
	1	07
Figura 63	Navegador Web de configuración Ignition1	07
Figura 64	Lista con los correos electrónicos de destino para envío de notificaciones	de
alarmas g	eneradas1	08
Figura 65	Se crea un nombre para la lista de llamadas (On-Call Roster)1	08
Figura 66	Lista creada para añadir correos electrónicos1	09
Figura 67	Lista de correos electrónicos seleccionados para el envío de notificaciones	de
alarmas d	eneradas en el proceso1	09

Figura 68	Navegador Web Ignition110
Figura 69	Archivo .jnlp inicio diseñador Ignition110
Figura 70	Ejecución del diseñador descargado del navegador Web111
Figura 71	Clave de seguridad del diseñador Ignition111
Figura 72	Abrir o crear un nuevo proyecto en Ignition112
Figura 73	Interfaz diseñador Ignition112
Figura 74	Creación de ventanas en el diseñador Ignition113
Figura 75	Creación de ventanas desde la Bienvenida del diseñador114
Figura 76	Creación de ventanas desde Archivo>Nuevo>Tipo de ventanas114
Figura 77	Creación de Tags (Etiquetas en el sistema)115
Figura 78	Set Point modificable mediante una etiqueta extra por pantalla116
Figura 79	Creación OPC Tags (Etiquetas)116
Figura 80	Creación de una nueva plantilla (Template)117
Figura 81	Diseño del Motor/Bomba industrial
Figura 82	Edición de configuraciones de un Template118
Figura 83	Propiedades de personalización del Template118
Figura 84	Variables manipuladas del motor119
Figura 85	Notificación de alarmas mediante Pipeline (Flujo de información)119
Figura 86	Canal de envío de información (Pipeline) hacia el correo electrónico120
Figura 87	Creación de un nuevo reporte en el diseñador Ignition120
Figura 88	Ventana de diseño de reportes en Ignition121
Figura 89	Ventana para agregar una nueva consulta en el reporte122
Figura 90	Ejemplo de consulta en la base de datos PostgreSQL122
Figura 91	Barra de consultas para agregarse al documento en forma de etiqueta123
Figura 92	Barra de herramientas de componentes gráficos y formas en el diseño del

reporte	123
Figura 93 Diseño del reporte Solicitudes de materiales a bodega	124
Figura 94 Vista previa de reporte generado	124
Figura 95 Barra de herramientas de reporte	125
Figura 96 Vista de reportes para seleccionar en el directorio	125
Figura 97 Propiedades del reporte y su ingreso del directorio	126
Figura 98 Ventana emergente (Pop Up) diseñador Ignition	126
Figura 99 Creación de un grupo de transacciones	127
Figura 100 Pantalla principal de Transacciones de grupo	128
Figura 101 Nuevo artículo (Item) al control de proceso de comunicación (OPC)	128
Figura 102 Etiqueta de grupo elementos de configuración	129
Figura 103 Arquitectura de la red actualizada tipo bus	130
Figura 104 Inicio del proceso de Gestión de Mantenimiento	131
Figura 105 Pantalla de Inicio del SCADA de mantenimiento	132
Figura 106 Ventana de Encabezado detallando sus elementos	133
Figura 107 Ventana de Navegación detallando sus elementos	133
Figura 108 Ventana de Herramientas de seguridad Usuario	134
Figura 109 Ventana de cambio de Usuario	134
Figura 110 Ventana Principal del Sistema SCADA	135
Figura 111 Estados Bombas Industriales	136
Figura 112 Proceso 2-C Cuba KTL empresa Aymesa S.A	136
Figura 113 Ventana de información del equipo por ubicación Cuba KTL B87-CMS	137
Figura 114 Opción Repuestos	138
Figura 115 Lista de repuestos informativa del equipo seleccionado	139
Figura 116 Ingreso nueva Solicitud: Despacho Ingreso y cambio con sus elemento	os139

Figura 117	Solicitud de Material a bodega tipo: Despacho o Ingreso140
Figura 118	Solicitud de Material a bodega tipo: Cambio140
Figura 119	Reporte de solicitud de materiales a bodega tipo: Despacho141
Figura 120	Mensaje de confirmación de envío y nota por añadir al correo electrónico
	141
Figura 121	Comprobación por correo electrónico de solicitud de material a bodega tipo:
Despacho	142
Figura 122	Opción Mantenimiento142
Figura 123	Ventana de mantenimiento de los equipos electromecánicos Área ELPO143
Figura 124	Ingreso de una nueva orden de mantenimiento del equipo electromecánico
	144
Figura 125	Orden de mantenimiento generado por el operario de turno144
Figura 126	Editar ordenes de trabajo para finalizar la actividad145
Figura 127	Actualizar orden de trabajo con las observaciones del operario146
Figura 128	Estado de la orden de mantenimiento: FINALIZADO146
Figura 129	Gestión de Mantenimiento finalizada y lista para enviar al supervisor147
Figura 130	Mensaje de confirmación de envío y nota por añadir al correo electrónico.
	147
Figura 131	Comprobación por correo electrónico de la orden de trabajo enviada148
Figura 132	Opción Funcionamiento148
Figura 133	Tiempo de funcionamiento del equipo seleccionado149
Figura 134	Opción Historial de Trabajo149
Figura 135	Historial de trabajo por equipo electromecánico150
Figura 136	Actividades diarias de todos los equipos electromecánicos y la opción de
ingresar un	trabajo diferente151

Figura 137	Cuadro de texto de la actividad realizada por el operario en el día	.151
Figura 138	Consultas	.152
Figura 139	Consulta de todas solicitudes generadas en el proceso	.152
Figura 140	Consulta de solicitudes de material a bodega tipo: Despacho	.153
Figura 141	Consulta de órdenes de trabajo de todo el proceso	.154
Figura 142	Filtro exacto de búsqueda del repuesto	.154
Figura 143	Consulta de reportes de mantenimiento	.155
Figura 144	Inventario de repuestos por equipo	.156
Figura 145	Filtro exacto de búsqueda del repuesto	.156
Figura 146	Consulta de movimientos del repuesto por cada solicitud generada	.157
Figura 147	Reporte de flujo o movimientos del repuesto	.158
Figura 148	Mensaje de confirmación de envío y nota por añadir al correo electro	ónico
		.158
Figura 149	Mensaje informativo de la orden enviada por correo electrónico	.159
Figura 150	Comprobación por correo electrónico de la orden de trabajo enviada	.159
Figura 151	Proceso Producción Cuba KTL	.160
Figura 152	Proceso Producción Cuba KTL Equipo B87 en estado Peligro	.160
Figura 153	Estado Alarmas Mantenimiento pantalla principal	.161
Figura 154	Mensaje enviado por correo electrónico de la alarma generada	.161
Figura 155	Ingreso de una nueva orden de mantenimiento del equipo electromeca	ánico
		.162
Figura 156	Orden de mantenimiento generado por el operario de turno	.162
Figura 157	Proceso Producción Cuba KTL Equipo B87 en estado Falla	.163
Figura 158	Estado Alarmas Proceso de prioridad alta	.164
Figura 159	Mantenimiento de todos los equipos electromecánicos si se genera cuald	guier

alarma	16-	4
Figura 160	Lista de alarmas del proceso atendidas16	5
Figura 161	Edición Supervisor16	5
Figura 162	Información del equipo y Edición Equipo16	6
Figura 163	Agregar Equipos electromecánicos en cada etapa16	6
Figura 164	Agregar registro de Equipo a la base de datos16	7
Figura 165	Mensaje informativo al usuario Administrador o supervisor16	7
Figura 166	Registro del equipo ingresado en la base de datos16	8
Figura 167	Mensaje informativo del equipo borrado con éxito16	8
Figura 168	Agregar, modificar y eliminar de repuestos de la base de datos16	8
Figura 169	Agregar repuestos a los equipos en cada ubicación16	9
Figura 170	Agregar un nuevo repuesto a la base de datos16	9
Figura 171	Registro de repuesto agregado a la base de datos17	0
Figura 172	Registro del repuesto ingresado en la base de datos17	0
Figura 173	Mensaje informativo del repuesto borrado con éxito17	0
Figura 174	Agregar actividades de mantenimiento en cada ubicación17	1
Figura 175	Agregar actividades de mantenimiento por equipo172	2
Figura 176	Plantilla de ingreso de actividades de mantenimiento a la base de datos.172	2
Figura 177	Mensaje informativo del registro de actividad ingresada a la base de dato	S
	17	3

Resumen

El desarrollo de Sistemas de Supervisión Control y Adquisición de Datos SCADA en la industria permite mejorar el control del proceso automatizado facilitando la visualización y garantía de su funcionamiento para el control de mantenimiento. En la actualidad el sistema SCADA no solo es una red local sino una red global. En los países industrializados de primer mundo están utilizando la Industria 4.0 que alcanza los 5 niveles de automatización los mismos que son: nivel de campo, nivel de control, nivel de visualización, nivel de gestión y nivel de administración. Este proyecto tiene como finalidad desarrollar un SCADA de mantenimiento en el Área ELPO de la empresa Aymesa, en donde necesitan gestionar el mantenimiento de cada equipo electromecánico y realizar un control de inventario de los repuestos que se utilizan. En la actualidad los operarios tienen que recurrir a un cuaderno para registrar las actividades realizadas diariamente y los inconvenientes o novedades encontradas por el personal de servicio técnico. Un sistema virtual con una base de datos es un recurso importante de información. El personal de servicio podrá generar órdenes de trabajo de acuerdo a las alarmas de mantenimiento de cada equipo del Área ELPO, generar solicitudes de material a bodega, generar inventarios de cada repuesto. Mediante un SCADA de mantenimiento el supervisor podrá hacer una auditoría de todo el manejo de información mediante consultas tales como órdenes de trabajo, solicitudes de material a bodega y consulta de inventarios.

Palabras clave:

- SCADA
- INDUSTRIA 4.0
- ÁREA ELPO

Abstract

The development of SCADA Data Acquisition and Control Supervision Systems in the industry makes it possible to improve the control of the automated process, facilitating the visualization and guarantee of its operation for maintenance control. Currently the SCADA system is not only a local network but a global network. In the first world industrial countries they are using Industry 4.0 that reaches the 5 levels of automation, which are: field level, control level, visualization, management level and administration level. The purpose of this project is to develop a maintenance SCADA in the ELPO Area of the Aymesa company, where it is necessary to manage the maintenance of each electromechanical equipment and carry out an inventory control of the spare parts that are used. At present the operators have to use a notebook to record the activities carried out daily and the inconveniences or news found by the technical service personnel. A virtual system with a database is an important information resource. The service personnel will be able to generate work orders according to the maintenance alarms of each equipment in the ELPO Area, generate requests for material in a warehouse, and generate inventories of each spare part. Through a maintenance SCADA, the supervisor will be able to carry out an audit of all the information management through consultations such as work orders, requests for material to the warehouse and inventory consultation.

Key words:

- SCADA
- INDUSTRY 4.0
- ELPO AREA

Capítulo I. Introducción

Antecedentes

La planta de ensamblaje de Automotores ubicada al Sur de Quito, tiene los siguientes Departamentos: Ingeniería, Producción, Calidad, Recursos Humanos, Compras y Mantenimiento.

El Departamento de Mantenimiento es responsable de una de las Áreas más importantes de la planta como lo es ELPO (Cataforesis), que significa electrodeposición catódica. Es un proceso de Pintura o pintado por inmersión de la carrocería del Automotor en tanques de tratamiento, previo a la pintura final para envío al mercado.

La Cataforesis está basada en el desplazamiento de partículas cargadas dentro de un campo eléctrico mediante un ánodo que es el electrodo por donde entra la corriente hacia la chapa metálica y el cátodo que es el electrodo donde sale la corriente. El área ELPO dispone de un tanque de electrodeposición para conducción de la corriente eléctrica que permite un pintado uniforme en los interiores y cuerpos huecos, aportando una gran protección anticorrosiva y resistencia a deformaciones mecánicas.

La carrocería metálica debe someterse a un tratamiento de desengrase y fosfatado para que se adhiera adecuadamente la pintura sobre el metal. Posteriormente debe pasar por un horno que facilite la polimerización correcta y obtener garantía total de las prestaciones de la pintura. (Cataforesis, 2018)

El control en el Área ELPO (Cataforesis), tiene un solo HMI con subpantallas para diferentes diagramas del proceso, que alcanzan el tercer nivel de Automatización que es el Nivel de Supervisión, pero no permite Gestionar el Mantenimiento.

La Gestión del Mantenimiento es una forma de control de proceso automatizado, pues significa gestionar una base de datos sobre la que se ejecutan acciones como solicitudes

de material a bodega y órdenes de mantenimiento. La Empresa Ensambladora de Autos ubicada al Sur de Quito ha emprendido la automatización de un sistema SCADA para la Gestión de Mantenimiento.

Actualmente se dispone de una bitácora manual en donde el Supervisor describe o asigna las actividades que deben realizar los técnicos de mantenimiento y a su vez se registra las actividades que realiza el personal y los inconvenientes que tuvieron en realizar su labor.

Por otro lado, no se dispone de una base de datos real de los repuestos prioritarios del Área, así como tampoco un registro del tiempo de vida útil de los equipos, que permitan determinar los mantenimientos.

Adicionalmente es necesario disponer de un sistema de notificación o avisos de actividades que permita alertar al personal de mantenimiento sobre las horas de funcionamiento y posibles fallos de los distintos equipos ya sea mediante envió de Mails o SMS, para coordinar mantenimientos.

Los tipos de mantenimiento que la empresa que realiza son: Mantenimiento en Uso, Mantenimiento Preventivo y Mantenimiento Predictivo.

Mantenimiento en Uso: Es una planificación semanal de tareas simples que realiza el operador como limpieza u otras actividades, que cada equipo tiene como recomendación en su catálogo de fábrica.

Mantenimiento Preventivo: Es una planificación previa antes de existir un desgaste o error en el equipo. El Área ELPO cuenta con todas las actividades de mantenimiento preventivo de cada equipo electromecánico.

Mantenimiento Predictivo: Es una planificación que conforme pasa el tiempo de uso del equipo electromecánico, se realiza revisiones en el momento más oportuno, de acuerdo a las actividades del catálogo de fábrica, para evitar realizar mantenimientos correctivos

que no están planificados.

Justificación

El Área ELPO de la Planta Ensambladora de Autos ubicada al sur de Quito en el sector de Guajaló, necesita llevar un control estricto del mantenimiento para garantizar el funcionamiento correcto durante las 24 horas al día, 7 días a la semana, 365 días al año de los equipos electromecánicos y evitar paros de planta que podrían generar tiempos muertos o pérdidas en la producción, por las condiciones Químicas del Proceso.

Con la ejecución de este proyecto se pretende proporcionar una adecuada Gestión del Mantenimiento incluyendo características adicionales a la Interfaz HMI existente, incorporando un sistema de información veraz referente a equipos y repuestos, facilitando la generación de órdenes de trabajo, solicitudes de materiales a bodega, control de inventario y el desarrollo optimizado de las actividades de mantenimiento. El sistema permitirá alertar de las actividades pendientes mediante notificaciones Email o SMS en el Área ELPO.

Alcance

El proyecto se lo realizará para la Empresa Ensambladora de Autos y utilizará la tecnología para disponer de un inventario de repuestos, generar órdenes de trabajo de acuerdo a los cronogramas de mantenimiento establecidos en el catálogo de fábrica de cada equipo electromecánico y generar solicitudes de materiales a bodega.

Desarrollo de un interfaz HMI en Software Ignition, en el cual el usuario sea capaz de visualizar y supervisar todas las etapas que conlleva el Área ELPO.

Desarrollo de una base de datos SQL para almacenar el registro de repuestos, órdenes de trabajo de acuerdo a los cronogramas de mantenimiento de los equipos electromecánicos, solicitudes de material a bodega y detalles informativos de los equipos electromecánicos existentes.

Generación de reportes de solicitudes de material a bodega y órdenes de trabajo del mantenimiento en el Área ELPO.

Desarrollo de una base de datos SQL que registra el cronograma de las actividades de mantenimiento que se requieren realizar en los equipos del área ELPO.

Sistema de notificación que permita enviar Mails o SMS sobre las distintas Alertas de Mantenimiento a realizar, envío de órdenes de mantenimiento y solicitudes de material a bodega.

Para el desarrollo del proyecto se utilizará el software Ignition que actualmente la empresa tiene planificado adquirir para la implementación del sistema de Gestión de Mantenimiento.

Se desarrollarán los diagramas de las etapas del proceso ELPO, flujograma del diseño de notificaciones, generación de solicitudes de material a bodega y órdenes de trabajo.

Objetivos

Objetivo General

Desarrollar un Sistema de Supervisión Control y Adquisición de Datos (SCADA),
 mediante el Software Ignition como herramienta de gestión y control de alarmas
 para el Mantenimiento de los Equipos Electromecánicos en el Área ELPO.

Objetivos Específicos

 Crear una Base de Datos SQL, que contenga información de equipos existentes, repuestos más críticos de los equipos, así como toda la información detallada de las órdenes de mantenimiento y solicitudes de material a bodega del Área ELPO.

- Desarrollar un Sistema Gráfico HMI que permita a los usuarios (Personal Técnico),
 monitorear, controlar y gestionar el mantenimiento de los equipos del Área ELPO.
- Implementar un Sistema de notificación de alarmas, avisos o indicadores operacionales de mantenimiento, mediante envío de Mails o SMS, a los operarios y supervisores del Área ELPO.
- Desarrollar una plantilla automatizada para la generación de órdenes de trabajo, solicitudes de materiales a bodega e inventario de repuestos existentes en el Área ELPO.

Descripción General del Proyecto

Requerimientos Funcionales

El Proyecto consiste en desarrollar un Sistema de Supervisión Control y Adquisición de Datos (SCADA) del proceso de mantenimiento del Área ELPO. Se utiliza el Software Ignition como herramienta de gestión para lograr un proceso Automatizado facilitando al personal de mantenimiento la información sobre las horas de funcionamiento y posibles fallos de los distintos equipos electromecánicos. Se generan automáticamente órdenes de mantenimiento de las alarmas producidas por los equipos, solicitudes de material a bodega como: ingreso, despacho y cambio. Con esta herramienta se contribuye a la actualización tecnológica de la empresa.

Realizar la Base de Datos SQL, detallando las características específicas de los equipos, así como de los repuestos más importantes de cada parte del equipo electromecánico existente del Área ELPO, además un registro de información de cada orden y solicitud ingresada desde el inicio del sistema automatizado, llevar un número único de solicitud de material a bodega y su orden de mantenimiento desde su generación por el personal técnico de turno para su respectiva auditoria.

Desarrollar un Sistema Gráfico HMI que permita al Personal Técnico, monitorear, controlar y supervisar el mantenimiento de los equipos del Área ELPO.

Desarrollar un Sistema de notificación de alarmas, avisos o indicadores operacionales de mantenimiento, mediante envío de Mails o SMS, a los operarios y supervisores del Área ELPO.

Desarrollar una plantilla automatizada para la generación de órdenes de trabajo, solicitudes de material a bodega y reportes de inventario de cada equipo existente en el Área ELPO.

El procedimiento de mantenimiento de los equipos electromecánicos se realizará con un respaldo en la Base de Datos el cual el operario debe realizar luego de presentarse una alarma de mantenimiento de acuerdo al catálogo del fabricante.

Capítulo II. Marco Teórico

Introducción al proceso ELPO

El Área ELPO tiene las siguientes etapas:

La etapa de pretratamiento o fosfatado en donde se realiza la limpieza de las superficies metálicas de impurezas y eliminación de restos hierro.

La etapa de electrodeposición donde se procede a la inmersión de la carrocería en un tanque que contiene pintura base para el automotor, mediante un campo eléctrico que genera corriente para que la película de pintura se adhiera en la carrocería. Para terminar el proceso la carrocería entra al horno con diferentes temperaturas con ello formar una película definitiva.

El hardware de control de las bombas industriales en el Área ELPO muestra los siguientes elementos: Tablero de control de las bombas industriales con su respectivo PLC y un módulo switch que sirve para conectarse con otros equipos en red formando lo que se conoce como una red de área local (LAN).

Las bombas industriales son importantes para el movimiento de las diferentes substancias químicas o líquidos en todas las etapas mencionadas. Son las bombas industriales los equipos electromecánicos que requieren mantenimiento y que son motivo del presente proyecto.

Pretratamiento

La fase de pretratamiento del área ELPO consta de diferentes tanques o cubas que son utilizados para la inmersión de la carrocería para limpiar las superficies metálicas de impurezas y eliminación de restos hierro. Díez (2019) afirma: "Se coloca una capa

recubierta de fosfato de zinc, que es un compuesto químico inorgánico que sirve para proteger la carrocería de problemas ambientales. Una vez que se aplica la etapa de fosfatado se lava la carrocería con una solución acuosa pasivante que mejora la adhesión de la pintura". (ver Figura 1 y Figura 2).

Figura 1

Etapas de Pretratamiento Empresa Aymesa S.A.

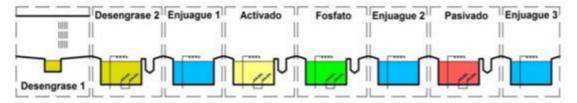
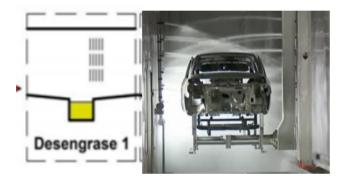


Figura 2

Etapas de pretratamiento Área ELPO Aymesa S.A.


Nota. Obtenido de Empresa Aymesa S.A.

Desengrase 1 por Aspersión

Díez (2019) menciona que: "Utiliza un caldero para calentar el agua con un compuesto químico que elimina la suciedad y remueve las partículas de lubricantes a una presión de 1 bar mediante aspersores obteniendo una limpieza profunda y esplendor natural". (ver Figura 3 y Figura 4).

Figura 3

Etapa de Desengrase 1 por Aspersión

Nota. Obtenido de Empresa Aymesa S.A.

Figura 4

Caldero Empresa Aymesa S.A

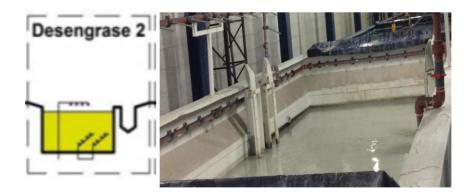
Nota. Obtenido de Empresa Aymesa S.A.

Desengrase 2: Aspersión e Inmersión

Díez (2019) menciona que: "El sistema de aspersión consiste en la proyección de líquido de desengrase hacia la superficie de la chapa metálica de la carrocería. La aplicación de este sistema de aspersión se realiza en las esquinas de la cuba de agua en lugares cerrados, para evitar la contaminación de otras zonas de la industria".

Se pueden distinguir dos tipos de sistemas de aspersión:

Aspersión con líquido


Se proyecta sobre la chapa metálica con un caudal elevado y presión baja.

Aspersión a vapor

Se inyecta una corriente de vapor con presión alta que se proyecta a la chapa metálica (carrocería). (ver Figura 5).

Figura 5

Etapa de Desengrase 2: Aspersión e Inmersión

Nota. Obtenido de Empresa Aymesa S.A.

Enjuague de agua cruda

Molina (2002) menciona que: "El proceso de enjuague de agua cruda consiste en remover las partículas de grasa residual de la chapa metálica para luego pasar a la etapa

de acondicionado sin residuos del proceso anterior; además, prevenir el secado entre cada etapa". (ver Figura 6).

Figura 6

Enjuague de agua cruda

Nota. Obtenido de Empresa Aymesa S.A.

Acondicionador del metal o Activado

Molina (2002) menciona que: "Consiste en la aplicación de un compuesto químico elaborado a base de ácidos inorgánicos (fosfato) y otros aditivos muy eficaces para la limpieza de la chapa metálica y darle un aspecto uniforme y un buen acabado preparando al metal para la aplicación de la pintura". (ver Figura 7).

Figura 7

Acondicionador del metal o Activado Empresa Aymesa S.A.



Nota. Obtenido de Empresa Aymesa S.A.

Fosfatado

Díez (2019) menciona que: "El proceso de fosfatado consiste en sumergir la chapa metálica en una solución acuosa de varios compuestos químicos como: zinc, níquel y manganeso que convierten a la pieza metálica en una superficie policristalina que favorece la adhesión de la pintura y la resistencia contra la corrosión". (ver Figura 8).

Figura 8
Fosfatado Empresa Aymesa S.A

Nota. Obtenido de Empresa Aymesa S.A.

Enjuague 2 de agua cruda

Molina (2002) menciona que: "En esta etapa tiene por objeto realizar dos acciones: Remover la solución de fosfatado y el yodo residual de la unidad en proceso.

Prevenir el secado de la unidad entre la etapa de fosfatado y etapa de enjuague". (Ver Figura 9).

Figura 9

Enjuague 2 de agua cruda

Nota. Obtenido de Empresa Aymesa S.A.

Sellador o Pasivador

Díez (2019) menciona que: "Consiste en formar una película de fosfato sobre la superficie de la chapa metálica para proteger al metal contra la acción de agentes externos. Existen varios tipos de selladores hechos ya sea a base de aluminio, cromo o aceros inoxidables. Los mejores son a base de cromo, aunque muchos selladores se están retirando progresivamente del mercado por daño al medio ambiente". (ver Figura 10).

Figura 10
Sellador o Pasivador

Nota. Obtenido de Empresa Aymesa S.A.

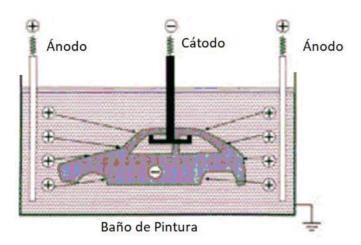
Enjuague 3 de agua des-ionizada recirculada.

Molina (2002) menciona que: "El agua des-ionizada carece de iones disueltos; es decir, no tiene átomos cargados eléctricamente. Debido a su baja conductividad eléctrica, el agua des-ionizada es un buen refrigerante para los equipos industriales. La limpieza regular de la maquinaria industrial es parte del mantenimiento básico para conservar su vida útil. El uso de agua des-ionizada frena la formación de depósitos de sales presentes en el agua, reduciendo la corrosión y remueve el sellador no adherido en la chapa metálica. Es el enjuague final de la unidad para impedir que las sales de agua dura u otros contaminantes ingresen en el baño de Electrodeposición". (ver Figura 11).

Figura 11

Enjuague 3 de agua des-ionizada recirculada

Nota. Obtenido de Empresa Aymesa S.A.


Electrodeposición

La electrodeposición catódica es un proceso que se realiza mediante la inmersión de la carrocería en un baño de pintura con la finalidad de asegurar la protección de la chapa metálica tanto su interior como en su exterior. En la empresa Aymesa el proceso de electrodeposición catódica es conocido como ELPO.

Emewadmin (2018) menciona que: "Su funcionamiento consiste en realizar un baño de pintura electrolítica a la carrocería, mediante una tensión eléctrica que a su vez genera un campo eléctrico en el interior del tanque produciendo cargas eléctricas positivas (ánodo) la cual llega a la pieza, formándose una capa aislante que impide la posterior circulación de corriente a través de la carrocería, obteniendo un nivel controlado de espesor y un pintado homogéneo". (ver Figura 12).

Figura 12

Esquema del proceso electrodeposición

Nota. Obtenido de Molina, J. (2002). Pretratamiento de carrocerías. of-axalta-coating-systems-ltd-website-h.

La empresa Aymesa dispone de diferentes etapas de limpieza a la carrocería que son: electrodeposición, anillo de agua des-ionizada, ultrafiltrados y escurrido final con el esquema general. (ver Figura 13 y Figura 14).

Figura 13

Etapas de Electrodeposición empresa Aymesa S.A.

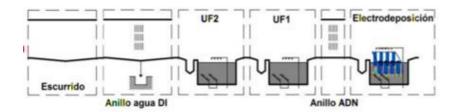


Figura 14

Tanque de electrodeposición catódica empresa Aymesa S.A.

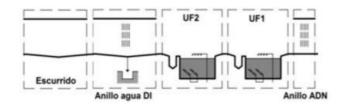
Nota. Obtenido de Empresa Aymesa S.A.

Tanque de Inmersión (circulación) Sistema Anolito Electrodeposición.

Emewadmin (2018) menciona que: "Durante el proceso de electrodeposición, se genera ácido acético, el cual debe ser extraído para mantener neutro el pH de la pintura. Se compone de agua a la que se ha añadido sal que se llama Anolito que tiene un pH 2. (ver Figura 15).

Figura 15

Tanque de inmersión (sistema anolito) empresa Aymesa S.A.


Nota. Obtenido de Empresa Aymesa S.A.

Enjuagues etapas Electrodeposición.

Emewadmin (2018) menciona que: "Las etapas de enjuagues tienen la función de recuperar el 100 % de sólidos de pintura no adheridos y devolverlos al tanque principal. Para dar una buena apariencia a la capa final de pintura las etapas de enjuague pueden ser por aspersión, inmersión y/o combinación de ambos. Las piezas pasan sucesivamente a través de enjuagues de permeato re-circulado y ultra filtrado 1 y 2 que son compuestos químicos que limpian el proceso anterior de electrodeposición. El enjuague final es con agua des-ionizada virgen". (ver Figura 16).

Figura 16

Enjuaques etapas Electrodeposición

Etapa final curado de la película mediante Horno

Molina (2002) menciona que: "El horno debe poseer varias zonas de calentamiento con diferentes temperaturas que permiten remover componentes volátiles y así evitar evaporación rápida de solventes y/o agua. También se mejora la apariencia de la película en el acabado final". (ver Figura 17 y Figura 18).

Figura 17

Curado de la película

Nota. Obtenido de Molina, J. (2002). Pretratamiento de carrocerías. of-axalta-coating-systems-ltd-website-h.

Figura 18

Curado de la película Horno Aymesa S.A.

Nota. Obtenido de Empresa Aymesa S.A.

Hardware de control equipos electromecánicos

Tableros de control del Área ELPO.

En la Figura 19 se observa los elementos de control del proceso, se puede visualizar dos PLC's CompactLogix con sus módulos de entrada y salida que sirven para realizar el control del proceso en el Área ELPO. Su arquitectura de red es de tipo bus.

Figura 19

Tableros de Control Área ELPO empresa Aymesa S.A.

Nota. Obtenido de Empresa Aymesa S.A.

Controlador PLC CompactLogix

Figura 20

Procesador L33ERM y dirección de su IP (Protocolo de Internet)

Nota. Obtenido de Empresa Aymesa S.A.

En la Figura 20 se observa el controlador CompactLogix que proporciona soluciones en el Área ELPO. El control de los equipos electromecánicos, comprende los siguientes módulos.

- Dos puertos EtherNet / IP.
- Un puerto USB.
- Soporte para módulos de expansión locales.
- Control de módulos de E/S locales y distribuidos.
- Uso de una tarjeta de memoria SD o 1784-SD2 para memoria no volátil.
- Ya no se necesita una batería debido a la solución de almacenamiento de energía interno.

Rockwell Automation (2016) menciona que: "Esta línea de controladores Logix admite la incorporación de aplicaciones de Windows, como analítica y recolección de datos."

Conmutador (Switch) Allen-Bradley

Rockwell Automation (2016) menciona que: "Un conmutador (switch) es un dispositivo de interconexión utilizado para conectar equipos en red formando lo que se conoce como una red de área local (LAN) y cuyas especificaciones técnicas siguen el estándar conocido como Ethernet (o técnicamente IEEE 802.3)".

La función básica de un switch es la de unir o conectar dispositivos en red.

Red de Área Local (LAN)

Barrera Soriano (2010) menciona que: "Tienen Cobertura aproximadamente de 10 metros a 1 kilómetro. Son redes pequeñas de tecnología de broadcast en las que la transmisión de datos se realiza por un solo canal de comunicación. Soportan velocidades de transmisión 10 a 100 Mbps".

Ethernet

Barrera Soriano (2010) menciona que: "Ethernet es un estándar de redes LAN definido por la IEEE para la capa física y la capa de enlace de datos".

Capa Física

Barrera Soriano (2010) menciona que: "Base de tiempo común entre transmisor y receptor para permitir una correcta interpretación de la señal recibida".

Capa de enlace de datos

Barrera Soriano (2010) menciona que: "El propósito de este nivel es convertir el medio de transmisión crudo en uno que esté libre de errores de transmisión".

Switch 8 Puertos Allen-Bradley.

El Switch del fabricante Allen-Bradley dispone de 8 puertos para comunicarse con el

PLC del área ELPO en la dirección IPV4 (Protocolo de Internet): 192.168.60.30 y Máscara de subred de clase C: 255.255.255.0. (ver Figura 21).

Figura 21
Switch de interconexión de 8 Puertos Allen-Bradley empresa Aymesa S.A.

Nota. Obtenido de Empresa Aymesa S.A.

Equipos Electromecánicos del Área ELPO.

Bombas industriales (Bomba/Motor)

Formared (2018) menciona que: "La función de las bombas industriales es bombear líquidos hacia un punto determinado según el proceso en ejecución, está compuesto por tres partes principales que son:

Un motor eléctrico que provee la potencia para el bombeo ". (ver Figura 22).

Figura 22

Motor Trifásico

Nota. Obtenido de Formared. (2018). Capacitación Industrial.

http://formared.blogspot.com/2018/02/bombas-y-sistemas-industriales-de-bombeo.html.

Una bomba que es la parte hidráulica la cual tiene dos funciones aspersión e impulsión de líquido. (ver Figura 23).

Figura 23

Bomba hidráulica

Nota. Obtenido de Formared. (2018). Capacitación Industrial.

http://formared.blogspot.com/2018/02/bombas-y-sistemas-industriales-de-bombeo.html.

Un árbol de transmisión que traslada la potencia aumentando la velocidad de la bomba. (ver Figura 24).

Figura 24Árbol de transmisión

Nota. Obtenido de Formared. (2018). Capacitación Industrial.

http://formared.blogspot.com/2018/02/bombas-y-sistemas-industriales-de-bombeo.html.

Cuerpo de la bomba/motor. (ver Figura 25 y Figura 26).

Figura 25

Bomba Industrial (Motor/Bomba)

Nota. Obtenido de Formared. (2018). Capacitación Industrial.

http://formared.blogspot.com/2018/02/bombas-y-sistemas-industriales-de-bombeo.html.

Figura 26

Bomba Industrial con su respaldo (stand by) electrodeposición empresa Aymesa S.A.

Nota. Obtenido de Empresa Aymesa S.A.

Diseño HMI de alto desempeño

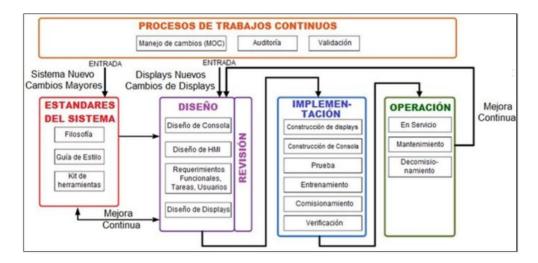
Technologies (2018) menciona que: "Los diseños HMI (Interfaz Humano-Máquina) en el transcurso del tiempo han ido evolucionando para lograr una adecuada interfaz gráfica para el supervisor y el operador. Las opciones correctas de diseño de pantalla (filosofía, diseño y organización) permiten la máxima funcionalidad de monitoreo y control del operador".

API (Automatización de Procesos Industriales) -1165

Hollifield (2016) menciona que: "La sección 8.2.4 de la norma API-1165 establece: El color no será la única indicación de información. Es decir, la información pertinente debe estar disponible de alguna otra forma indicativa además del color, como un símbolo o fragmento de texto".

ISA (Industria Estándar de Arquitectura) - 101

Es una organización internacional que se encarga del desarrollo de estándares relacionados con el mundo de la instrumentación, el control y la automatización en general.


Interfaces hombre-máquina para el proceso Sistemas de automatización

Group (2017) menciona que: "El uso de esta norma proporciona orientación para diseñar, construir, operar y mantener un HMI tanto en situaciones normales como anormales. Describe guías para mejorar las capacidades del usuario para detectar, diagnosticar y responder adecuadamente a las situaciones anormales. Las prácticas en esta norma son aplicables a procesos discretos y cualquier proceso que utiliza un panel para la conexión a un sistema controlado".

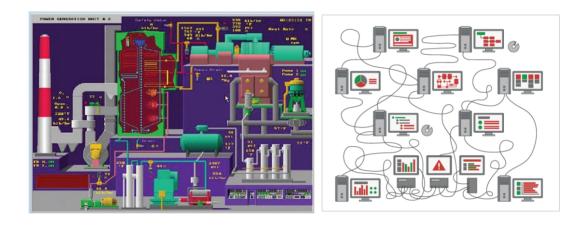
Hollifield (2016) menciona que: "ISA-101 sigue el enfoque habitual del ciclo de vida de otras normas ISA. Life Cycle es un documento estructura, no un plan de proyecto. Es obligatorio utilizar algún tipo de proceso del ciclo de vida para administrar una HMI. El ciclo de vida de la norma ISA 101 está dada por el siguiente diagrama que se muestra a continuación". (ver Figura 27).

Figura 27

Ejemplo de ciclo de vida de ISA-101

Nota. Obtenido de Hollifield, B. (2016). High Performance HMI Principles and Best Practices. 32.

Technologies (2018) menciona que: "Las normas deben proporcionar el mínimo aceptable, no el óptimo. Por ejemplo, ISA-101 puede hacer una declaración como "El color debe usarse para dirigir la atención y agregar significado a la pantalla". En la industria el control y automatización de procesos industriales ha tratado de mejorar la seguridad a través de sistemas de visualización gráfica".


Group (2017) menciona que: "El uso adecuado de tecnologías de la HMI de alto rendimiento y la gestión de alarmas puede mejorar la eficiencia del proceso y aumentar la productividad. El diseño de la HMI juega un papel crítico en determinar la capacidad del operador para administrar eficazmente la operación de mantenimiento, particularmente en detectar y resolver rápidamente una situación anormal, que es la tarea más importante de un operador".

Hollifield (2016) menciona que: "La mayoría de los HMI consisten simplemente en

gráficos esquemáticos o de estilo P&ID (Diagrama de flujo de Tuberías). Las pantallas proporcionan al operador gran cantidad de colores saturados, pero casi no hay información real, además son difíciles de personalizar y escalar ya que no se integran bien con otros sistemas, son caros para implementar, los costos de licencias de software son altos, los costos de capacitación y desarrollo son altos. Se presenta un ejemplo de HMI". (ver Figura 28).

Figura 28

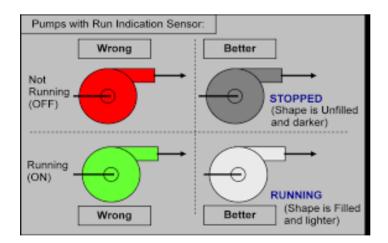
Gráfico esquemático o de estilo P&ID inapropiado e integración con otros sistemas

Nota. Obtenido de Hollifield, B. (2016). High Performance HMI Principles and Best Practices. 32.

Representación dinámica del equipo

Los gráficos de las bombas industriales en un HMI de alto rendimiento son representados con un texto informativo y no simplemente con el color.

El diseño de cada equipo está representado a través de colores y texto informativo como se describe en la Tabla 1. (ver Figura 29).


Tabla 1Representación del equipo

TEXTO INFORMATIVO	COLOR	RGB
APAGADO	gris	85,85,85
ENCENDIDO	blanco	255,255,255
PELIGRO	verde	0,255,0
FALLA	rojo	217,0,0

Nota. Recuperado de Hollifield, B. (2016). High Performance HMI Principles and Best Practices. 32.

Figura 29

Bombas con indicador según su estado

Nota. Obtenido de Hollifield, B. (2016). High Performance HMI Principles and Best Practices. 32.

Uso apropiado de color

Technologies (2018) menciona que: "Una paleta de colores debe tener un límite y/o número de colores distinguibles utilizados constantemente. Los colores brillantes se utilizan principalmente para atraer o llamar la atención sobre situaciones no normales. El funcionamiento normal no debe mostrar colores muy saturados, como bombas, equipos, válvulas y artículos similares de color rojo brillante o verde. Cuando se eligen los colores de alarma, como el rojo brillante y el amarillo, se usan únicamente como un aspecto de la representación de una condición relacionada con la alarma, y para ningún otro propósito. Si se usa color inconsistentemente, entonces deja de tener significado. En la Tabla 2 está representado la paleta de colores de HMI de alto rendimiento en donde se especifica el color, RGB (Rojo, Verde y Azul) y muestra el uso definido que se le da a cada color".

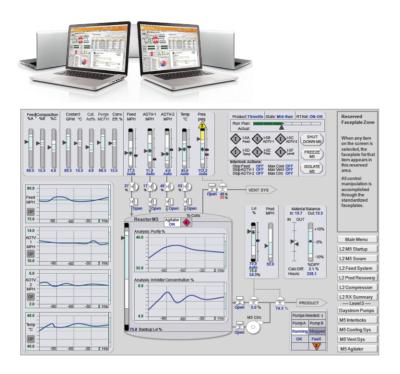
 Tabla 2

 Paleta de colores HMI de alto rendimiento

Color	RGB	Muestra	Uso definido
Gris	85,85,85		Indicador apagado del equipo.
Blanco	255,255,255		Indicador encendido del equipo.
Verde	0,255,0		Punto de ajuste del equipo y otras
			entradas del operador
Rojo	217,0,0		Nivel superior, alarma de prioridad
			uno.
Negro	0,0,0		Texto y etiqueta, principales líneas del

Color	RGB	Muestra	Uso definido		
			proceso. Contornos de recipientes del		
			proceso.		
Gris oscuro	74,74,74		Algún texto, líneas de proceso		
			menores.		
Gris claro	243,243,243		Indicaciones de calidad		
Azul oscuro	0,0,215		Valores o indicadores de información		
			del proceso.		
Naranja	255,102,0		Alarma de prioridad tres.		

Nota. Recuperado de Hollifield, B. (2016). High Performance HMI Principles and Best Practices. 32.


Ejemplo de diseño de una HMI de alto rendimiento para un Reactor

Copadata (2017) menciona que: "El diseño gráfico HMI de alto rendimiento contiene toda la información y los controles requeridos para realizar casi todas las tareas del operador asociadas con la norma ISA 101 de una HMI".

Los indicadores y controladores analógicos están alineados para un escaneo fácil, en lugar de dispersarse por toda una representación de P&ID. La facilidad de detección de situaciones anormales es importante ya que al usuario le facilita el control y mantenimiento. (ver Figura 30).

Figura 30

Ejemplo de pantalla HMI de alto desempeño

Nota. Obtenido de Hollifield, B. (2016). High Performance HMI Principles and Best Practices. 32.

Copadata (2017) menciona que: "Los principios de HMI de alto rendimiento se desarrollan específicamente para solventar los sistemas complejos que monitorean los operadores, además la gestión de mantenimiento que pueden realizar mediante la misma interfaz de cada equipo según los requerimientos de la empresa".

El HMI de alto rendimiento es diseñado para ser la mejor herramienta para la interacción del operador con el sistema de gestión.

Software Ignition como herramienta sistema SCADA.

En la elaboración del Diseño de un Sistema SCADA de mantenimiento, se ha

seleccionado el software Ignition como herramienta de Visualización, Control y Gestión el cual permite alcanzar los 5 niveles de automatización que son: Nivel de campo, Nivel de control, Nivel de visualización, Nivel de gestión y Nivel de administración.

Nivel de Campo: Comprende sensores y actuadores, a este nivel se le conoce también como nivel físico.

Nivel de Control: Dispositivos para controlar y compilar actividades de producción. El PLC (Controladores Lógicos Programables) recogen los datos de sensores o equipos para generar acciones programadas.

Nivel de Visualización: Un SCADA puede monitorizar en tiempo real uno o más PLCs a la vez. Desde un SCADA se pueden enviar órdenes a uno o varios PLC y coordinarlos entre sí.

Nivel de Gestión: El MES (Sistema de Ejecución de Manufactura) dirige y monitoriza los procesos de producción en la planta, incluyendo el trabajo manual o automático de informes que se generan en un software industrial.

Nivel de Administración: Permite a la empresa monitorear los niveles de sus procesos de manufactura relacionados a la producción de la planta ERP (Planificación de Recursos Empresariales).

Automation (2020) menciona que: "Las principales ventajas del Software Ignition para automatizar la Gestión del mantenimiento en el Área ELPO se resumen en: acceder fácilmente a los datos en tiempo real; es flexible y resistente al futuro por ser modular; el software Ignition a lo largo del tiempo ha dado un gran impacto a nivel industrial, por este motivo las empresas de vanguardia usan el software en la actualidad".

La Figura 31 se observa el logo de la versión 7.9 del software y la Figura 32 se observa

los logos de tres empresas de prestigio.

Figura 31

Software Ignition Versión 7.9

Nota. Obtenido de Automation, I. (2020). Web Page Oficial.

https://inductiveautomation.com/

Figura 32

Empresas que usan el software Ignition

Nota. Obtenido de Automation, I. (2020). Web Page Oficial.

https://inductiveautomation.com/

Automation (2020) menciona que: "Para el diseño y la utilización de todas las funcionalidades existe una plataforma de aprendizaje en línea gratuita diseñada para el manejo del software Ignition. Se tiene acceso a videos de capacitación, pruebas en línea textuales que muestran la capacidad de entendimiento y se puede obtener la credencial del curso realizado".

La Figura 33 se observa la credencial de aprobación completa del curso Ignition por Inductive Automation Versión 7.9.

Figura 33

Credencial Ignition Versión 7.9.

Nota. Obtenido de University, I. (2020). Inductive University.

https://inductiveuniversity.com/courses/whats-new-in-Ignition-v-sevenpointnine/7.9

Arquitectura de Ignition para el desarrollo del proyecto.

University (2020) menciona que: "Ignition tiene una arquitectura modular en donde se instalan los paquetes necesarios que cumplan las funciones" con los requerimientos de la Empresa Aymesa S.A.

Arquitectura Cliente-Servidor.

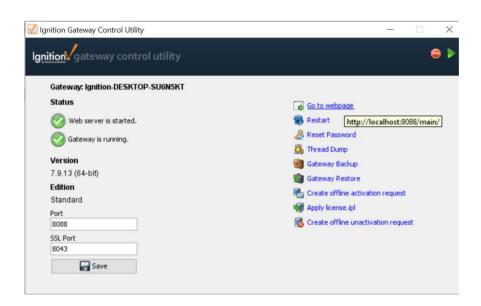
Ignition es un servidor web que permite controlar las herramientas para que los clientes puedan acceder al servidor por medio de la red.

Desarrollo basado en la Web.

Se ingresa mediante cualquier navegador al servidor Web para realizar lo siguiente: Crear configuraciones, iniciar el diseñador Ignition, compilar aplicaciones en el diseñador.

Arrancar diseñador en clientes a través de la Web.

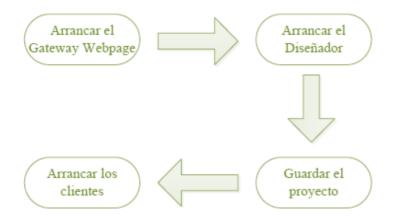
Se utiliza el navegador Web para la descarga de aplicaciones realizadas en el programa de diseño (Ignition Designer) y abrir en una máquina diferente la misma que


refleja el servidor que se encuentra utilizando el proyecto.

Flujo de inicio del programa de diseño

Para crear una aplicación en Ignition se arranca desde el Gateway Control Utility que permite gestionar todas las configuraciones del software tales como: puertos, abrir la web, reiniciar el servidor, respaldar la información, ingresar las licencias y desplegar la versión del Ignition instalada. (ver Figura 34).

Figura 34


Ignition versión 7.9.13 Control de Utilidades y puertos

Nota. Obtenido de Software Ignition Versión 7.9.13.

Se debe acceder a la página Web de software en cualquier navegador, en donde se descarga el programa de diseño de la aplicación Ignition, se crea un proyecto y se lo guarda para seguir diseñando. (ver Figura 35).

Flujo de Inicio para el diseñador Ignition

Nota. Obtenido de Automation, I. (2020). Web Page Oficial.

https://inductiveautomation.com/

Puerta de enlace (Gateway) a la Página Web Ignition

Se accede por cualquier navegador utilizando la dirección que viene por defecto http://localhost:8088/main/web/config/?4. (ver Figura 36).

Figura 36

Página Web de Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Licencias del Software Igniton

Las licencias en Ignition son limitadas de acuerdo a los módulos que se van a utilizar en el proyecto, (ver Tabla 3).

Tabla 3 *Módulos requeridos en el software Ignition*

IGNITION	MÓDULOS
Versión 7.9.13	Módulo de visión (Vision Module)
	Módulo de Puente con la base de datos
	(SQL Bridge Module)
	Módulo de reportes (Reporting Module)
	Módulo de Alarmas (Alarm Notification
	Module)
	Módulo de servidor (OPC - UA Server
	Module)

Nota. Recuperado de Automation, I. (2020). Web Page Oficial.

https://inductiveautomation.com/

Módulos en Software Ignition

El software Ignition permite escoger los módulos a instalarse para solventar el problema de automatización planteado por la empresa Aymesa S. A.

A continuación, se describe todos los módulos utilizados en el proyecto:

Módulo de visión (Vision Module)

University (2020) menciona que: "Este módulo permite el empleo de características y propiedades de los elementos existentes en el diseñador de Ignition. Permite crear modelos gráficos o iconos de los elementos del proceso por parte del desarrollador de acuerdo a sus necesidades. Crear alarmas propias acorde a los requerimientos de la empresa. El número de clientes es limitado".

Módulo de Puente con la base de datos (SQL Bridge Module)

University (2020) menciona que: "Este módulo permite la comunicación con la base de datos. Agrega características del lenguaje SQL de lectura y escritura de información

con la base de datos mediante Scripts (Guiones de código) y dispositivos que están conectados en la red".

Módulo de reportes (Reporting Module)

University (2020) menciona que: "Crea reportes con diseños de acuerdo a la necesidad de la empresa Aymesa S.A. se lo puede configurar con una base de datos mediante consultas y que sean entregados a la persona encargada mediante correos electrónicos o SMS en varios formatos PDF, HTL, CSV".

Módulo de Alarmas (Alarm Notification Module)

University (2020) menciona que: "Se configura las alarmas de acuerdo a la necesidad de la empresa Aymesa S.A. y son enviadas por correo electrónico hacia un grupo definido para su procesamiento".

Módulo de servidor (OPC – UA Server Module)

University (2020) menciona que: "Inductive Automation ofrece el módulo Ignition OPC UA (Arquitectura Unificada), que añade la funcionalidad de cliente y servidor a Ignition. El software se conecta mediante este módulo a los principales PLC's existentes".

Guiones (Scripting) en el Software Ignition

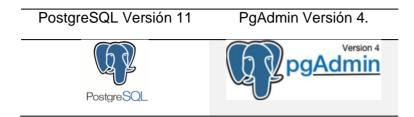
University (2020) menciona que: "Cada elemento del diseñador Ignition contiene guiones para realizar diferentes acciones. Phyton es el lenguaje de programación y Jython es un lenguaje de programación de alto nivel, dinámico y orientado a objetos basado en Python e implementado íntegramente en Java. Se usa en muchos lugares en Ignition. Cada elemento (botones, etiquetas, listas desplegables, tablas dinámicas y ventanas en general) tiene sus propios eventos que activan la ejecución de sus guiones y agregan funcionalidad de diferentes maneras".

Componentes: Se agrega acciones a los componentes para personalizar la apariencia de gráficos y tablas e incluso se configura un esquema de navegación personalizado.

Etiquetas: Se crea un guión que se ejecute en un cambio de etiqueta por ejemplo cuando se active una alarma,

Módulo de reportes: Se utiliza secuencias de comandos para crear una fuente de datos personalizada para crear una acción única para usar con el sistema de programación.

Notificación de alarmas: Se crea listas personalizadas mediante secuencias de comandos para cambiar dinámicamente el usuario al que se notifica con cada nuevo evento de alarma.


Sistema Gestor de Base de Datos

La empresa Aymesa S.A. no dispone de una licencia de una base de datos por lo que se ha escogido un software de código abierto no licenciado para almacenar información necesaria que requiere el Área ELPO. PostgreSQL (2020) menciona que: "Es un sistema de gestión de base de datos relacional orientado a objetos. Los datos comprenden atributos y métodos de funcionamiento de código abierto". Para realizar las consultas en la base de datos de acuerdo a las necesidades de la empresa Aymesa S.A. se utilizará un SCADA de mantenimiento en el software Ignition, que comprende guiones (Scripts) en dos lenguajes SQL y Jython.

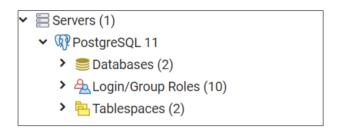
El concepto de base de datos generalmente se relaciona con el de red, ya que se puede compartir información de cualquier objeto. Para el manejo de la base de datos es necesario un administrador que viene integrado con la base de datos PostgreSQL y que tiene el nombre de PGAdmin. Es un cliente Web que actúa para administrar la base en modo gráfico. La Figura 37 se observa el logo de la base de datos y el logo del cliente.

Figura 37

Versiones base de datos

Nota. Obtenido de PostgreSQL. (2020). PostgreSQL. https://www.postgresql.org/about/

Administrador Web PgAdmin


Existen tres ramas en el administrador de la base de datos las mismas que son:

Databases (Bases de datos), Login/Group Roles (Grupo de Roles) y Tablespaces

(Espacio de Tablas). (ver Figura 38).

Figura 38

Administrador de la base de datos

Nota. Obtenido de PostgreSQL. (2020). PostgreSQL. https://www.postgresql.org/about/

Base de datos (Databases)

Indicador de las bases de datos existentes creadas por los desarrolladores.

Roles de ingreso-grupos (Login/Group Roles)

Creación de Roles por cada desarrollador para facilitar la administración de privilegios.

Espacio de tablas (Tablespace)

Sirve para guardar la información de las tablas de la base de datos.

Comandos básicos SQL con PostgreSQL

Para la creación de una base de datos es necesario utilizar sus comandos y funciones básicas que permitirán guardar la información requerida.

Sarría (2016) menciona que: "Existen tres tipos de comandos SQL: DLL (Lenguaje de definición de datos), DML (Lenguaje de manipulación de datos), DCL (Lenguaje de control de datos). A continuación, se realiza un detalle".

DLL (Lenguaje de definición de datos) con PostgreSQL

El lenguaje de definición de datos es utilizado para crear, modificar y eliminar entidades. (ver Tabla 4).

Tabla 4

Comandos DLL

Comando	Descripción	
CREATE	Crea nueva base de datos, entidades y atributos.	
DROP o TRUNCATE	Elimina las entidades de la base de datos.	
ALTER	Modifica los atributos de la entidad creada.	

CREATE

Base de datos.

Se escribe el código para crear la base de datos en el administrador Web. (ver Tabla 5).

Tabla 5

Comando CREATE base de datos

Comando	Descripción
CREATE DATABASE db_aymesa	Crea la base de datos db_aymesa.
WITH	Inicia el bucle With.
OWNER = nombre_propietario	Propietario de la base grupo aymesa.
ENCODING = 'UTF8'	Codificación de caracteres.
TABLESPACE = pg_default	Espacio de la tabla.

Crear tablas.

Digitar el código dentro de la base de datos creada en una herramienta de consulta. (ver Tabla 6).

Tabla 6

Comando CREATE entidades

Comando	Descripción		
CREATE TABLE	Crea la entidad en la base db_aymesa		
public. nombre_entidad			
(Inicia el bucle.		
Atributos	Ingresa los atributos necesarios con el tipo		
)	de dato según la empresa.		
WITH (Divide consultas en partes más simples.		
OIDS = FALSE	Identificador de filas no asignado.		
)			
TABLESPACE pg_default;	Espacio de tabla que se guarda la		
	información.		
ALTER TABLE public.nombre_entidad	d Modifica los atributos de la entidad.		
OWNER to nombre_propietario;	Propietario de la base de datos.		

DROP

El comando DROP elimina un objeto de la base de datos. Elimina entidades, atributos y base de datos creada. (ver Tabla 7).

Tabla 7Comando DROP Eliminar tablas y registros

Comando	Descripción
DROP TABLE 'NOMBRE_ENTIDAD'	Elimina la entidad asignada.
DROP DATABASE	Elimina la base de datos.
'NOMBRE_BASEDATOS'	

TRUNCATE

El comando TRUNCATE elimina el contenido de la entidad y sus relaciones. (ver Tabla 8).

Tabla 8

Comando TRUNCATE

Comando	Descripción						
TRUNCATE TABLE	Elimina	los	atributos	У	registros	de	la
'NOMBRE_ENTIDAD'	entidad.						

Fuente: Elaboración Propia.

ALTER

El comando ALTER sirve para agregar atributos con otros comandos. (ver Tabla 9).

Tabla 9

Comando ALTER

Comando	Descripción				
ALTER TABLE -nombre_entidad	Selecciona	la	entidad	asignada	para
	agregar un atributo después de su creación		ación.		

DML (Lenguaje de manipulación de datos) en PostgreSQL

Sarría (2016) menciona que: "El lenguaje de manipulación de datos sirve para modificar registros de la entidad de la base de datos creada". (ver Tabla 10).

Tabla 10

Comandos DML manipulación de datos

Comando	Descripción
SELECT	Consulta de registros de la entidad de la base de datos de acuerdo
	a las necesidades.
INSERT	Agrega los registros o atributos en la entidad de la base de datos.
UPDATE	Actualiza los registros ingresados de la base de datos, de acuerdo
	al cambio de atributos necesario.
DELETE	Elimina registros de la base de datos, es un comando similar al
	DROP.

SELECT

El comando SELECT sirve para mostrar la entidad especifica de la base de datos. (ver Tabla 11).

Tabla 11

Comando SELECT

Comando	Descripción		
SELECT			
Ingreso atributos a la entidad	Selecciona los atributos a mostrar.		
FROM			
public. nombre_atributo ;	Indica el nombre de la entidad a mostrar.		

INSERT

El comando INSERT sirve para agregar los atributos de la entidad en la base de datos. (ver Tabla 12).

Tabla 12

Comando INSERT

Comando	Descripción
INSERT INTO public.nombre_entidad (Agrega registros de datos en la entidad
Atributos definidos)	asignada.
	Atributos definidos en la entidad.
VALUES(registro1,registro2,);	Ingresa un nuevo registro de acuerdo a los
	atributos definidos.

UPDATE

El comando UPDATE sirve para actualizar los registros que fueron ingresados con el comando INSERT. (ver Tabla 13).

Tabla 13

Comando UPDATE

Comando	Descripción
UPDATE public.nombre_entidad	Actualiza la entidad asignada.
SET Atributos definidos	Selecciona los atributos definidos para
WHERECondicionante;	actualizar.
	Condición según el identificador id.

DELETE

Elimina los registros ingresados en la entidad asignada. (ver Tabla 14).

Tabla 14

Comando DELETE

Comando	Descripción
DELETE FROM public.nombre_entidad	Elimina el registro de la entidad asignada.
WHERE -Condicionante;	Condición según el identificador id.

Clausulas

Las cláusulas son condiciones de modificación para definir datos asignados. (ver Tabla 15).

Tabla 15

Comandos de modificación

Comandos	Descripción
FROM	Especifica la entidad que se va a seleccionar.
ORDER BY	Ordena los atributos de los registros.
WHERE	Condición según el atributo.
AS	Cambia de nombre de un atributo.
Distinct	Discrimina valores repetidos en los registros.
ON	Condición de unión.
CONSTRAINT	Restricciones para limitar el tipo de dato.

Operadores Lógicos

Tabla 16

Comandos de operaciones lógicas

Comandos	Descripción
AND	Devuelve el valor lógico si las dos expresiones se
	cumplen.
OR	Devuelve el valor lógico si una de las dos expresiones
	son ciertas.

Comparación

Tabla 17

Comando LIKE

	Comando	Descripción
LIKE		Realizar filtros en la base de datos mediante un
		cuadro de ingreso de texto.

Consultas mediante JOIN

Tabla 18

Comando Inner Join

Comando	Descripción
Inner Join	Relaciona varias entidades de la base de datos
	que están en cadena. Entidades sueltas no las
	relaciona

Identificador de cada entidad

Eninsoft (2018) menciona que: "En cada entidad se debe asignar una llave primaria ya que es necesario para hacer relaciones con otras entidades". (ver Tabla 19).

Tabla 19

Identificador de una entidad

Identificador	Descripción
id serial PRIMARY KEY NOT NULL,	Identificador llave primaria de una entidad
	al momento de su creación con el comando
	CREATE

Identificación de las relaciones entre entidades de la base de datos.

Para realizar relaciones entre las entidades es necesario tener presente los requerimientos de la empresa Aymesa S.A. que permite distinguir el tipo de relación que existe. (ver Tabla 20).

Tabla 20

Tipos de relaciones en la base de datos

Tipos de Relaciones	Ejemplo
1 (uno) a 1 (uno)	Una orden de trabajo tiene un mantenimiento.
1 (uno) a N (muchos)	Un equipo tiene muchos mantenimientos.
N (muchos) a N (muchos)	Muchas solicitudes tienen muchos repuestos y muchos repuestos tienen muchas solicitudes.

Capítulo III. Base de Datos

Diseño de la base de datos PostgreSQL

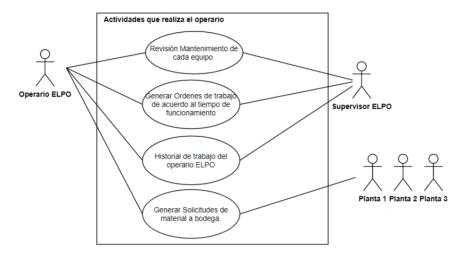
Para ejecutar la base de datos es necesario conocer los requerimientos de hardware que requiere el software. La base de datos se instaló en una máquina virtual en el sistema operativo Windows 10 con una arquitectura de 64 bits. Para la instalación de la base de datos referirse al ANEXO A. El diseño de la base de datos se ha realizado considerando los siguientes aspectos: Análisis de requerimientos, diseño conceptual y diseño físico.

Análisis de Requerimientos

La base de datos permite el almacenamiento y manejo de los datos de una forma eficaz permitiendo la confiabilidad y seguridad de que la información no se pierda. Los datos que se requieren almacenar y luego mostrar la información mediante consultas son:

- Horas de funcionamiento de los equipos.
- Inventario de repuestos.
- Órdenes de trabajo.
- Cronogramas de mantenimiento.
- Especificaciones técnicas de los equipos.
- Solicitudes de materiales a bodega como: ingreso, despacho y cambio.

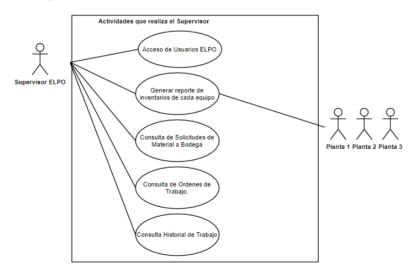
Como un valor agregado en la base de datos se añadieron las actividades diarias realizadas por cada operario.


Diagramas de caso de uso UML (Lenguaje Unificado de Modelado)

El diagrama de caso de uso UML sirve para representar un modelo gráfico y lograr visualizar todos los requerimientos de la empresa Aymesa S.A. (ver Figura 39 y Figura 40).

Caso de uso Operario ELPO

Figura 39

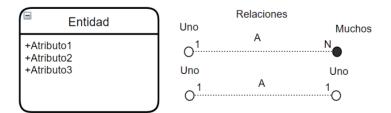

Diagrama UML caso de Uso Operario

Caso de uso Supervisor ELPO

Figura 40

Diagrama UML caso de Uso Supervisor

Diseño Conceptual


Se representan en cada una de las tablas los elementos que se van a utilizar en la base de datos como son: la estructura de cada tabla, los tipos de datos y las restricciones de los datos que se almacenarán en ella. Para realizar el modelo de datos es necesario seguir reglas que permitan organizar toda la información requerida.

Una Entidad es una unidad de una base de datos que contiene información que constituye la representación de un objeto, persona del mundo real y como tal posee ciertos atributos que la diferencia del resto de entidades.

El modelo de una base de datos indica la arquitectura, incluidas las relaciones y limitaciones que determinan cómo se almacenan los datos y cómo se accede a ellos. La mayoría de los modelos de datos se pueden representar por medio de un diagrama llamado Entidad – Relación que consta de los siguientes componentes: conjuntos de entidades, atributos, relaciones entre conjuntos de entidades, líneas que conectan atributos a conjuntos de entidades. Se describen los elementos de la base de datos. (ver Figura 41).

Figura 41

Elementos de una base de datos

Para el control de concurrencia es decir cuando varios usuarios intenten actualizar los mismos datos es conveniente manejar en forma secuencial el ingreso a las tablas según la necesidad para evitar que se pierdan los datos.

Especificaciones de elementos de la base de datos

Los elementos de la base de datos están diseñados según las necesidades de la empresa Aymesa S.A. Las entidades y atributos de la base de datos están representados en la Tabla 21.

Tabla 21Especificaciones de las Entidades de la base de datos

Entidad	Atributos	
ordenes	id	
	responsable	
	aprueba	
	alarma	
	observaciones	
	cod_operacion	
	actividades	
	secuencial	
	estado	
	fecha_inicio	
	fecha_finalizacion	
	fecha_generacion	
	id_configuracion_ordenes	

configuraciones_ordenes id

descripcion

Entidad	Atributos	
	longitud	
	codigo	
	secuencial_actual	
mantenimientos	id	
	equipo	
	actividad	
	cod_operacion	
	tiempo	
	nombre_alarma	
	usuario	
	fecha_creacion	
	fecha_actualizacion	
	id_equipo	
equipos	id	
	capacidad	
	combustible	
	diámetro	
	dim_principal	
	lubricante	
	peso	
	potencia	
	temperatura	
	rodete	
	velocidad	
	altura	
	marca	
	modelo	
	potencia_kw	

Entidad	Atributos
	intensidad
	tensión
	fases
	cos_phi
	frecuencia
	n_serie
	ubicacion
historia_trabajos	id
	usuario
	descripcion
	fecha_creacion
	fecha_generacion
	id_equipo
solicitudes	id
	nombre_solicitante
	departamento
	aprobado
	bodega
	uso
	fecha_creacion
	fecha_envio
	fecha_actualizacion
	fecha_generacion
	nombre_solicitud
	secuencial
	estado
	motivo_anulacion
	id_configuracion

Entidad	Atributos
Liitidad	id_tipo_solicitud
	id_equipo
	ia_oquipo
tings policitud	:4
tipos_solicitud	id
	descripción
	orden
configuraciones	id
	descripcion
	longitud
	codigo
	secuencial_actual
solicitudes_repuestos	id_solicitud
	id_repuesto
	requerido
	c_contable
	um
	fecha_creacion
	cambio
	estado_cambio
	n_solicitud
repuestos	id
	serie
	descripción
	cant_disponible
	codigo_aymesa
	referencia_de_fabrica
	fecha_creacion

Entidad	Atributos	
	fecha_actualizacion	
	usuario	
	origen	
	stock_inicial	
	requerido	
	tipo_elemento	
	id_equipo	
alarmas_activadas	id	
	nombre_alarma	
monitoreos	id	
	t_stamp	
	alarmas_elpo	

Relaciones de atributos y entidades de la base de datos.

Tabla 22 *Modelo Entidad relación de la base de datos*

Entidad	Entidades Relacionadas	Atributos Relacionados
ordenes	- configuraciones_ordenes (N-1)	id_configuraciones_ordenes(N)
	- mantenimientos (1-1)	- id (llave primaria)
mantenimientos	- equipos (N-1)	- id_equipo (N)
solicitudes	- tipos_solicitud (N-1)	- id_tipo_solicitud (N)
	- configuraciones (N-1)	- id_configuracion (N)
	- solicitudes_repuestos (1-N)	- id_solicitud(N)
	- equipos (N-1)	- id_equipo (N)

Entidad	Entidades Relacionadas	Atributos Relacionados
repuestos	- solicitudes_repuestos (1-N)	- id_repuesto (N)
	- equipos (N-1)	- id_equipo (N)

Diseño Físico

Se presenta un diccionario de datos de la siguiente manera: nombre de la entidad, tipo de dato y una descripción que indica el uso del atributo.

Tabla 23

Alarmas activadas con sus respectivos campos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad alarmas activadas.
nombre_alarma	character varying (50)	Tipo de alarma activada.

 Tabla 24

 Configuraciones con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria entidad configuraciones.
descripcion	text	Tipo de documento de la solicitud.
longitud	int	Número de dígitos de la solicitud.
codigo	text	Tipo de comprobante de la

Atributos	Tipo de Dato	Descripción
		solicitud.
secuencial_actual	text	Número de secuencia
		actual de la solicitud.

 Tabla 25

 Configuraciones de órdenes con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad configuraciones ordenes
descripcion	text	Tipo documento orden
longitud	Int	Número de dígitos órdenes.
codigo	text	Tipo de comprobante órdenes.
secuencial_actual	text	Número de secuencia actual órdenes.

Tabla 26Equipos con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad equipos.
capacidad	character varying (50)	Caudal del equipo.
combustible	character varying (50)	Tipo de combustible equipo.

Atributos	Tipo de Dato	Descripción
diametro	character varying (50)	Diámetro del equipo.
dim_principal	character varying (50)	Diámetro principal del equipo.
lubricante	character varying (50)	Tipo de lubricante que necesita el equipo.
peso	character varying (50)	Peso del equipo.
potencia	character varying (50)	Potencia del equipo
temperatura	character varying (50)	Temperatura de operación del equipo.
rodete	character varying (50)	Dimensiones del rotor del equipo.
velocidad	character varying (50)	Velocidad del equipo.
altura	character varying (50)	Altura alcanzada por el equipo.
marca	character varying (50)	Marca del equipo.
modelo	character varying (50)	Modelo del equipo.
potencia_kw	character varying (50)	Potencia del equipo.
intensidad	character varying (50)	Intensidad de corriente del equipo.
tension	character varying (50)	Tensión del equipo.
fases	character varying (50)	Tipo de motor del equipo.
cos_phi	character varying (50)	Factor de potencia del equipo.
frecuencia	character varying (50)	Frecuencia de operación del equipo.

Atributos	Tipo de Dato	Descripción
n_serie	character varying (50)	Número de serie del equipo.
ubicacion	character varying (50)	Ubicación del equipo en la Planta ELPO.

Tabla 27

Historia trabajos con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad historia trabajos.
id_equipo	int	Llave foránea de la entidad
descripcion	Text	Detalle del trabajo diario operario.
fecha_creacion	TIMESTAMP	Inicio proceso operario.
fecha_generacion	TIMESTAMP	Fecha generada.
id_equipo	int	Llave foránea entidad.

Tabla 28

Mantenimientos con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad mantenimientos.
equipo	character varying (255)	Ubicación del equipo.
actividad	character varying (255)	Actividad a realizar por

Atributos	Tipo de Dato	Descripción
		parte del operario de turno.
codigo_operacion	character varying (10)	Código operación equipo.
tiempo	character varying (255)	Tiempo que se realiza el mantenimiento.
nombre_alarma	character varying (255)	Identificador de alarma.
usuario	Text	Supervisor o admin que genera la actividad.
fecha_creacion	TIMESTAMP	Fecha que se registra la actividad.
fecha_actualizacion	TIMESTAMP	Fecha que se actualiza la actividad.
id_equipo	int	Llave foránea de la entidad equipo

Tabla 29

Monitoreos con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad monitoreos.
t_stamp	TIMESTAMP	Tiempo automático monitoreos.
alarmas_elpo	bigint	Alarmas de los equipos electromecánicos.

Tabla 30Órdenes con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad órdenes.
responsable	character varying (50)	Acceso de usuarios Ignition.
aprueba	character varying (50)	Supervisor ELPO.
alarma	character varying (50)	Tipo de alarma activada.
observaciones	character varying (200)	Observaciones después de terminar el mantenimiento del equipo.
cod_operacion	character varying (50)	Código de ejecución de la orden.
actividades	character varying (50)	Actividades realizadas del operario.
secuencial	bigint	Número secuencial orden por cada registro.
estado	Text	Estado de orden generado o finalizado.
fecha_inicio	TIMESTAMP	Fecha inicio orden de mantenimiento.
fecha_finalizacion	TIMESTAMP	Fecha finalización orden de mantenimiento.
fecha_generacion	TIMESTAMP	Fecha generada por el operario.

Atributos	Tipo de Dato	Descripción
id_configuracion_ordenes	bigint	Llave foránea de la entidad
		configuraciones órdenes.

Tabla 31

Repuestos con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad repuestos.
serie	character varying (50)	Serie del repuesto.
descripcion	character varying (50)	Nombre del repuesto.
cant_disponible	Int	Cantidad disponible en bodega.
codigo_aymesa	character varying (50) codigo_aymesa_unique	Código único del repuesto sin repetición en ningún registro.
referencia_de_fabrica	character varying (50)	Referencia de fabricación del repuesto.
fecha_creacion	TIMESTAMP	Fecha que se registra el repuesto.
fecha_actualizacion	TIMESTAMP	Fecha de actualización del repuesto.
usuario	Text	Supervisor o admin que genera el cambio en la base.
origen	character varying (3)	Origen del registro de cada repuesto.

Atributos	Tipo de Dato	Descripción
stock_inicial	Int	Repuestos almacenados que ingresan a bodega.
requerido	Int	Registro volátil al momento de su petición en la entidad.
tipo_elemento	Text	Clase de elemento.
id_equipo	Bigint	Llave foránea de la entidad equipo.

Tabla 32Solicitudes con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad solicitudes.
nombre_solicitante	character varying (50)	Acceso de usuarios ingreso al sistema Ignition.
departamento	character varying (50)	Departamento que hace la petición del repuesto.
aprobado	character varying (50)	Supervisor ELPO.
bodega	character varying (50)	Bodega mantenimiento.
uso	character varying (100)	Uso del repuesto.
fecha_creacion	TIMESTAMP	Fecha que se genera la solicitud.
fecha_envio	TIMESTAMP	Fecha de envío por correo electrónico.

Atributos	Tipo de Dato	Descripción	
fecha_actualizacion	TIMESTAMP	Fecha actualización por base de datos.	
fecha_generacion	TIMESTAMP	Fecha de generación del pdf.	
nombre_solicitud	text	Tipo de documento.	
secuencial	bigint	Número secuencial de la solicitud por cada registro.	
estado	text	Estado de solicitud generado, ingresado y anulado.	
motivo_anulacion	text	Observaciones del solicitante.	
id_configuracion	bigint	Llave foránea de la entidad configuraciones.	
id_tipo_solicitud	int	Llave foránea de la entidad tipo de solicitud.	
id_equipo	bigint	Llave foránea tabla equipo.	

Tabla 33Solicitudes y repuestos con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id_solicitud	Int	Llave foránea de la entidad solicitudes.
id_repuesto	Int	Llave foránea de la entidad repuestos.
requerido	Int	Cantidad requerida registro

Atributos	Tipo de Dato	Descripción
		por cada repuesto.
c_contable	Text	Cantidad contable del repuesto.
um	Text	Unidad de medida del repuesto.
fecha_creacion	TIMESTAMP	Fecha de creación del repuesto.
cambio	Int	Registro volátil cantidad de cambio
estado_cambio	Text	Estado despacho
n_solicitud	text	Número de solicitud asociada al cambio.

Tabla 34Tipos solicitud con sus respectivos atributos de la base de datos

Atributos	Tipo de Dato	Descripción
id	int, serial PRIMARY KEY	Llave primaria de la entidad tipos solicitud.
descripcion	text	Tipos solicitud: Ingreso, Despacho y Cambio.
orden	int	Orden para futuras modificaciones.

Creación de la base y entidades de datos

PgAdmin 4 permite gestionar la base de datos PostgreSQL. Se puede crear un proyecto nuevo con entidades de datos mediante líneas de comando SQL e interfaz

gráfica. Se empleó para crear las entidades, actualizar los registros, agregar atributos, borrar atributos de las entidades. Estas operaciones se facilitan cuando se realizan mediante líneas de comandos. En el ANEXO A: Instalación PostgreSQL, se muestra la instalación de la base de datos y el detalle del procedimiento para la creación de entidades y atributos.

Relaciones entre entidades SQL para la base de datos

En la Tabla 35 se observa los comandos SQL para hacer las relaciones entre entidades y establecer consultas de cada entidad en la base de datos PostgreSQL.

Tabla 35

Lista de comandos para establecer relaciones entre entidades

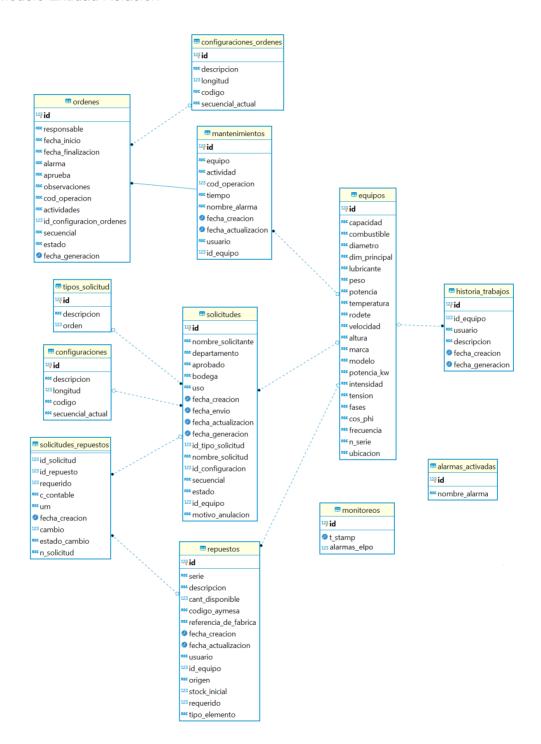
Comandos	Descripción	
ALTER TABLE nombre_tabla_2	Selecciona la entidad asignada.	
ADD CONSTRAINT	Agrega restricciones para limitar el tipo	
Ejemplo relación 1-N:	de dato.	
Tabla1_tabla2	Nombre de tabla 1 y tabla 2 para	
FOREIGN KEY (Ilave_foranea)	relacionarse.	
REFERENCES Tabla_1(Ilave_primaria);	; Indica la llave foránea e id.	
	Referencia la tabla 1 con la llave	
	primaria.	

Realizar consultas entre entidades SQL

En la Tabla 36 se observa un ejemplo práctico de las solicitudes de material a bodega usando el lenguaje SQL de una consulta con entidades relacionadas.

Tabla 36

Comandos de consulta SQL


Comandos	Descripción	
SELECT distinct s.id,	Selecciona los atributos de la entidad	
s.nombre_solicitud, s.departamento,	asignada y discrimina los registros	
s.aprobado, s.bodega,	repetidos.	
s.fecha_generacion,s.fecha_envio,		
ts.descripcion		
FROM solicitudes s	Especifica la entidad solicitudes y se	
	abrevia con s .	
inner join tipos_solicitud ts	Relaciona la entidad tipos_solicitud y	
	se abrevia con ts .	
on ts.id = s.id_tipo_solicitud	Condición de unión de las dos entidades	
	con la llave primaria y foránea.	
where s.id= {id_busqueda}	Condición de búsqueda con una	
	etiqueta.	

Modelo entidad relación

En la base de datos se crearon 12 entidades que tienen relaciones entre sí, de manera que se obtiene la lectura y escritura de información utilizando el lenguaje SQL de consultas. En la Figura 42 se observa el modelo entidad relación que se empleó según las necesidades de la empresa Aymesa S.A.

Figura 42

Modelo Entidad Relación

Capítulo IV. Diseño del Sistema SCADA de Mantenimiento

En este capítulo se describe los pasos que fueron necesarios para que el software Ignition establezca una comunicación con el PLC y la base de datos, además la creación de un perfil SMTP (Protocolo para transferencia Simple de correo) con el acceso al correo electrónico en Gmail y su configuración de notificación de alarmas (Alarming) para envío de correos electrónicos.

Para el desarrollo de la interfaz HMI (Interfaz Humano Máquina) en el diseñador de Ignition es necesario conocer los siguientes pasos: creación de un proyecto, creación de ventanas, creación de etiquetas (tags), creación de plantillas (templates), creación de una fuente de información de notificación de alarmas (alarm notification pipeline), creación de reportes y transacciones de grupo (transactions group).

Se presenta los diagramas de flujo del proceso que se realizó en el diseñador Ignition para cumplir con los requerimientos de la empresa Aymesa S.A.

En el ANEXO B se muestra la instalación del software Ignition con todos los detallados del procedimiento. En el ANEXO C se muestra el manual de usuario para el operario/supervisor con los pasos detallados a seguirse. En el ANEXO D se muestra la carta de satisfacción empresa Aymesa. En el ANEXO E se muestra los diagramas de flujos de la programación.

Configuración Página Web (Web Page) software Ignition

Para la configuración en la página web de Ignition (Web Page) es necesario registrarse con el nombre de usuario y contraseña para acceder a las herramientas e iniciar con las configuraciones que se presentan a continuación.

Conexión de Ignition con el PLC CompactLogix

El Módulo de servidor (OPC – UA Server Module) se conecta con la mayoría de los

principales PLC's del mercado. El software Ignition contiene los drivers de conexión en el módulo. A continuación, se presenta los detalles de la conexión con el PLC del área ELPO CompactLogix. En la página Web de Ignition se selecciona la opción configuración. (ver Figura 43).

Figura 43

Página Web de Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para crear una nueva conexión con un PLC se ingresa a Dispositivos (Devices) en la opción Módulo de servidor (OPC-UA SERVER). (ver Figura 44).

Figura 44

Opción de configuración Módulo de servidor

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para realizar la configuración de un dispositivo es necesario seleccionar el tipo de PLC y establecer la conexión. (ver Figura 45).

Figura 45
Se Agrega el dispositivo a la configuración

Add Device Step 1: Choose Type
Allen-Bradley Logix Driver Connect to Allen-Bradley Logix family devices, including devices with firmware v21+.
Allen-Bradley MicroLogix Connect to MicroLogix 1100 and 1400 series PLCs.
Allen-Bradley PLC5 Connect to PLC5s via Ethernet.
Allen-Bradley SLC Connect to SLC 5/05s via Ethernet.
O DNP3 Driver Connect to a DNP3 outstation.
Legacy Allen-Bradley CompactLogix Connect to CompactLogix firmware v20 and prior processors.

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para la conexión con el PLC es necesario definir parámetros generales: Nombre (Name), Descripción (Description) y habilitar la conexión (Enabled). (ver Figura 46).

Figura 46

Parámetros generales de conexión al PLC

Nota. Obtenido de Software Ignition Versión 7.9.13.

Se define los parámetros de conectividad para establecer la dirección IP (Hostname) del dispositivo que desea conectarse tales como:

Tiempo muerto (Timeout): tiempo de comunicación entre el módulo de servidor y el PLC.

Ruta de Conexión (Connection Path): Directorio para conectarse con el PLC.

Solicitudes Actuales (Current Requests): Número de peticiones que el software Ignition envía al controlador (PLC) en el mismo tiempo. (ver Figura 47).

Figura 47

Parámetros de conectividad con el PLC

Nota. Obtenido de Software Ignition Versión 7.9.13.

Al finalizar la configuración de la conexión con el PLC el estado se muestra en el módulo del servidor (OPC-UA SERVER). (ver Figura 48).

Figura 48

Conexión establecida con el PLC CompactLogix área ELPO

Nota. Obtenido de Software Ignition Versión 7.9.13.

Conexión de Ignition con la base de datos PostgreSQL

Para establecer la conexión con la base de datos PostgreSQL se ingresa a la página

Web de Ignition y se selecciona la opción configuración. (ver Figura 49).

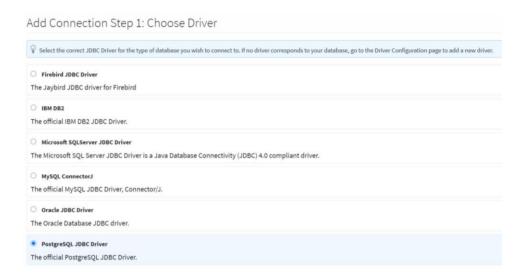
Figura 49

Página Web de Ignition opción configuración

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para crear una nueva conexión con la base de datos se ingresa a Conexiones (Connections) en la opción de Base de Datos (DATABASES). (ver Figura 50).

Figura 50


Opción de configuración Base de datos (DATABASES)

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para realizar la configuración con una base de datos se escoge el nombre del servidor de la base de datos para establecer la conexión. (ver Figura 51).

Figura 51
Se escoge la opción PostgreSQL que es el servidor de la base de datos

Nota. Obtenido de Software Ignition Versión 7.9.13.

Se presenta en la Tabla 37 las configuraciones que se realizó para la conexión con la base de datos PostgreSQL.

Tabla 37

Configuración de conexión con la base de datos PostgreSQL

Parámetros	Descripción	Configuración
Nombre	Nombre para la conexión de	PostgreSQL_Aymesa.
	la base de datos.	
Descripción	Descripción de la conexión.	Conexión con el servidor de la
		base de datos PostgreSQL.
Conexión URL	Dirección donde se	jdbc:postgresql://localhost:5432/
(Localizador	encuentra la base de datos y	db_aymesa.
de Recursos	se muestra un ejemplo:	
Uniforme).	jdbc:postgresql://host:port/da	
	tabase	
Nombre de	Usuario para la conexión de	Aymesa.

Parámetros	Descripción	Configuración
Usuario	la base de datos que se	
	configuró en la instalación.	
Contraseña	Contraseña de la base de	Contraseña.
	datos PostgreSQL	
Contraseña	Se repite la contraseña	Contraseña.

Al finalizar la configuración de conexión con la base de datos se muestra un mensaje de Ignition que indica que la conexión ha sido establecida. (ver Figura 52).

Figura 52

Conexión establecida con la base de datos PostgreSQL

Name	Description	JDBC Driver	Translator	Status	
PostgreSQL_Aymesa		PostgreSQL JDBC Driver	POSTGRES	Valid	delete

Nota. Obtenido de Software Ignition Versión 7.9.13.

Configuraciones de red (Networking) y correo electrónico (email) de Ignition

Para establecer la conexión con el perfil SMTP (Protocolo de transferencia simple de correo) de Gmail de forma gratuita, se ingresa a la página Web de Ignition y se selecciona la opción configuración. (ver Figura 53).

Figura 53

Navegador Web de configuración Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para crear una nueva conexión con la configuración de correo electrónico (email) se ingresa a la Red (Networking) en la opción configuración de correos electrónicos (Email

Settings). (ver Figura 54).

Figura 54

Se crea una nueva configuración de correo electrónico

Nota. Obtenido de Software Ignition Versión 7.9.13.

En la configuración general para la creación del perfil SMTP se ingresa el nombre y descripción. (ver Figura 55).

Figura 55

Datos de creación Principal SMTP

Nota. Obtenido de Software Ignition Versión 7.9.13.

La configuración del servidor (SMTP Server Settings) se observa en la Tabla 38 con todos los parámetros que se agregaron a la conexión.

Tabla 38

Configuración con los parámetros SMTP

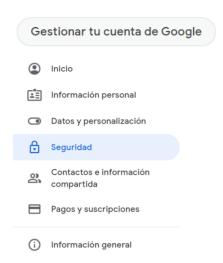
Parámetros	Descripción	Configuración.	
Hostname(nombre	Nombre del protocolo de	smtp.gmail.com	
del anfitrión)	comunicación Gmail.		
Port (Puerto)	Puerto de conexión con el	465 (SSL)	

Parámetros	Descripción	Configuración.
	servidor SMTP.	
Use SSL/TLS port	SSL: Protección de inicio de	True
	sesión de correo electrónico,	
	TLS: Protocolo que	
	proporciona seguridad en la	
	información,	
Nombre de Usuario	Usuario para la conexión del	aajl.andres@gmail.com
	correo electrónico.	
Contraseña	Contraseña del correo	Contraseña.
	electrónico	
Contraseña	Se repite la contraseña del	Contraseña.
	correo electrónico.	

Al finalizar la configuración de correo electrónico (email) se muestra un mensaje de Ignition que indica que la conexión ha sido establecida. (ver Figura 56).

Figura 56

Configuración establecida del correo electrónico Gmail


Nota. Obtenido de Software Ignition Versión 7.9.13.

Configuración del correo electrónico Gmail.

Para que el software Ignition acceda automáticamente al correo electrónico sin necesidad de iniciar sesión por el supervisor, es necesario habilitar el acceso de aplicaciones poco seguras. En la Figura 57 se observa el ingreso para gestionar la cuenta Google.

Figura 57

Gestionar la cuenta de Google < Seguridad

Nota. Obtenido de Cuenta de Gmail (2021)

https://myaccount.google.com/?utm_source=OGB&tab=mk&utm_medium=act&pli=1&ga r=1

Al ingresar a la opción de seguridad se busca el acceso de aplicaciones poco seguras para que el software Ignition acceda automáticamente al correo electrónico mediante el protocolo SMTP (Protocolo de transferencia simple de correo). (ver Figura 58).

Figura 58

Aplicaciones poco seguras: Activado

Nota. Obtenido de Cuenta de Gmail (2021)

https://myaccount.google.com/?utm_source=OGB&tab=mk&utm_medium=act&pli=1&ga

r=1

Configuración de Notificaciones de alarmas (Alarming) Ignition

Para establecer la configuración de notificaciones automáticas de correo electrónico de las alarmas generadas en el proceso de mantenimiento SCADA, se ingresa a la página Web de Ignition y se selecciona la opción configuración. (ver Figura 59).

Figura 59

Navegador Web de configuración Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para crear un perfil de alarmas generadas en el proceso se ingresa a la opción Notificación (Notification). (ver Figura 60).

Figura 60

Se crea una nueva notificación con el protocolo de correo electrónico SMTP

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para realizar la configuración automática de correo electrónico de las alarmas es necesario definir parámetros generales: Nombre (Name), Descripción (Description) y habilitar la conexión (Enabled). (ver Figura 61).

Figura 61

Editar perfil de notificación de alama

Edit Alarm I	Notification Profile
Main	
Name	alarmas_email
Description	Perfil para envió de alarmas correo ele
Enabled	(default: true)

Nota. Obtenido de Software Ignition Versión 7.9.13.

La configuración de envío de correos electrónicos se observa en la Tabla 39 con todos los parámetros que se agregaron a la configuración.

Tabla 39

Configuración de correo electrónico para envío de alarmas generadas en el SCADA

Parámetros	Descripción	Configuración.
Use SMTP Profile	Si se selecciona, este	Enabled (Habilitada)
(Uso de perfil de	perfil de notificación	
protocolo de correo	utilizará uno de los	
electrónico)	perfiles SMTP	
	definidos.	
SMTP Profile	Selección de perfil	EMAILS_GMAIL
	definido SMTP.	
Port (Puerto)	El servicio de puerto	25
	SMTP se está	
	ejecutando.	

Al finalizar la configuración de correo electrónico (email) se muestra un mensaje de Ignition que indica que la conexión ha sido establecida. (ver Figura 62).

Figura 62

Configuración establecida para el envío de notificación de alarmas generadas

Alarm Notification F	rofiles				
Name	Description	Enabled	Туре	Status	
alarmas_email		true	Email Notification	Running	delete edit

Nota. Obtenido de Software Ignition Versión 7.9.13.

Lista de llamada de correos electrónicos (On-Call Rosters) Ignition

Se agrega correos electrónicos en una lista para enviar las notificaciones de correo electrónico de las alarmas generadas en el proceso de mantenimiento SCADA, se ingresa a la página Web de Ignition y se selecciona la opción configuración. (ver Figura 63).

Figura 63

Navegador Web de configuración Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para crear una lista de llamadas de destino de las alarmas generadas en el proceso se ingresa a la opción On-Call Rosters. (ver Figura 64).

Figura 64

Lista con los correos electrónicos de destino para envío de notificaciones de alarmas generadas

Nota. Obtenido de Software Ignition Versión 7.9.13.

Para crear la lista de llamadas (On-Call Roster) es necesario definir parámetros generales: Nombre (Name) y Descripción (Description). (ver Figura 65).

Figura 65

Se crea un nombre para la lista de llamadas (On-Call Roster)

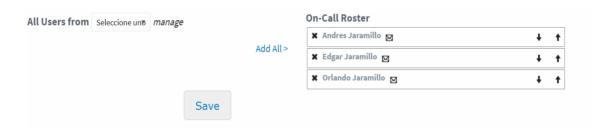
Edit On-Call Roster					
Properties					
Name	AVISO_ALARMAS				
Description					

Nota. Obtenido de Software Ignition Versión 7.9.13.

Al crear una nueva lista es necesario añadir los correos electrónicos que fueron creados con la opción de gestión de usuarios para ingreso al sistema SCADA de mantenimiento. (ver Figura 66).

Figura 66

Lista creada para añadir correos electrónicos



Nota. Obtenido de Software Ignition Versión 7.9.13.

Ejemplo de correos electrónicos creadas para el envío de notificación de alarmas del proceso en el sistema SCADA. (ver Figura 67).

Figura 67

Lista de correos electrónicos seleccionados para el envío de notificaciones de alarmas generadas en el proceso

Nota. Obtenido de Software Ignition Versión 7.9.13.

Nota: Para concluir la configuración de envío de correos electrónicos de alarmas generadas en el sistema SCADA es necesario crear un canal (Pipeline) en el diseñador con los requerimientos de la empresa.

Utilización de herramientas en el diseñador Ignition

Se realiza la descarga de un archivo en el diseñador de Ignition con todas las configuraciones previas según lo explicado en la sección 4.1. La creación de un proyecto nuevo y la utilización de todas las herramientas necesarias para realizar el sistema SCADA de mantenimiento se detallan a continuación.

Creación de un Proyecto en el Diseñador (Ignition)

El Navegador Web Ignition permite descargar el diseñador para realizar el HMI/SCADA. (ver Figura 68).

Figura 68

Navegador Web Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

El archivo descargado con extensión .jnlp se utiliza para iniciar y administrar programas Java e integra las configuraciones de conexiones con el PLC y la Base de Datos. (ver Figura 69).

Figura 69

Archivo .jnlp inicio diseñador Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

El programa descargado se ejecuta y aparece el siguiente mensaje. (ver Figura 70).

Figura 70

Ejecución del diseñador descargado del navegador Web

Nota. Obtenido de Software Ignition Versión 7.9.13.

El diseñador requiere el nombre de usuario y una contraseña para el ingreso al software. (ver Figura 71).

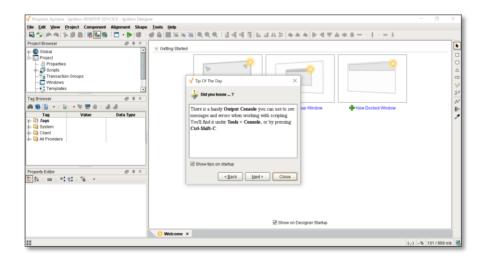
Figura 71

Clave de seguridad del diseñador Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Luego se abre o se crea un nuevo proyecto en Ignition. (ver Figura 72).

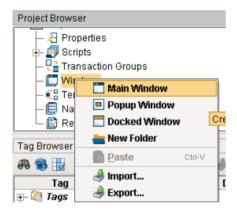
Figura 72


Abrir o crear un nuevo proyecto en Ignition

En la Figura 73 se el proyecto creado con el nombre y las configuraciones por defecto.

Figura 73

Interfaz diseñador Ignition


Nota. Obtenido de Software Ignition Versión 7.9.13.

Creación de ventanas en el Diseñador (Ignition)

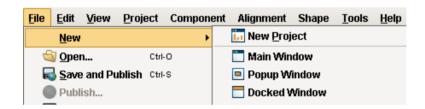
Al finalizar con la creación del proyecto en el diseñador es necesario proceder a crear ventanas en la opción navegador de proyectos (Project Browser) las mismas que son: Main Windows (Ventana Principal), Popup Window (Ventana Emergente), Docked Window (Ventana Acoplada). Al dar clic derecho en la opción Windows se despliega el tipo de ventana a trabajar. (ver Figura 74).

Figura 74

Creación de ventanas en el diseñador Ignition

Nota. Obtenido de Software Ignition Versión 7.9.13.

Existe varias maneras de crear ventanas en el diseñador Ignition. (ver Figura 75 y Figura 76).


Figura 75

Creación de ventanas desde la Bienvenida del diseñador

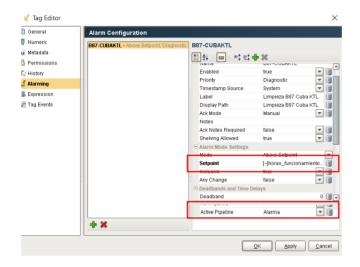
Figura 76

Creación de ventanas desde Archivo>Nuevo>Tipo de ventanas

Nota. Obtenido de Software Ignition Versión 7.9.13.

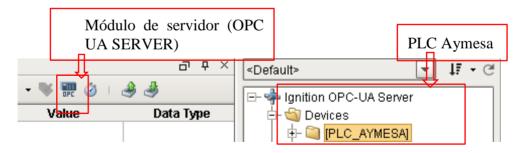
Creación de etiquetas (tags) en el Diseñador Ignition

Las etiquetas son variables globales del sistema que pueden ser usados en cualquier parte de las ventanas del programa, además estas etiquetas pueden ser enlazadas con las variables del proceso del PLC. Existen diferentes tipos de etiquetas que son utilizadas en el proyecto, por ejemplo: OPC Tag (Etiquetas OPC), Memory Tag (Etiquetas de memoria), Query Tag (Etiquetas de consulta con la base de datos), Expression Tag (Etiquetas de expresión de programación) y Derived Tag (Etiqueta derivada de lectura y escritura en la misma etiqueta). (ver Figura 77).


Figura 77

Creación de Tags (Etiquetas en el sistema)

En las opciones de etiquetas que se observa en la Figura 77 existe una opción de alarmas (Alarming) en donde se puede establecer el valor límite (set point) y activarse la alarma. Por requerimientos de la empresa ese valor límite es modificado en pantalla con una etiqueta extra para su manipulación. De tal manera se puede configurar el Pipeline (Canal de información de notificación de alarmas) con el nombre que se creó. (ver Figura 78).


Figura 78
Set Point modificable mediante una etiqueta extra por pantalla

El diseñador Ignition permite seleccionar el OPC del PLC que se configuró en la página Web. (ver Figura 79).

Figura 79

Creación OPC Tags (Etiquetas)

Nota. Obtenido de Software Ignition Versión 7.9.13.

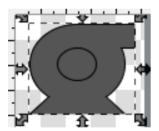
Creación de Plantillas (Templates) en el Diseñador (Ignition)

Para la creación de templates en el diseñador Ignition es necesario establecer cuáles son las variables del proceso a manejar, para poder crear un gráfico que pueda contener

dicha información. La creación de una nueva plantilla. (ver Figura 80).

Figura 80

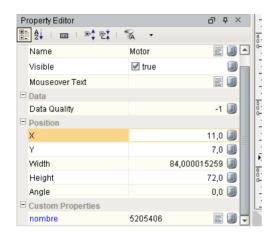
Creación de una nueva plantilla (Template)


Nota. Obtenido de Software Ignition Versión 7.9.13.

Motores/Bombas Industriales usando plantillas (templates).

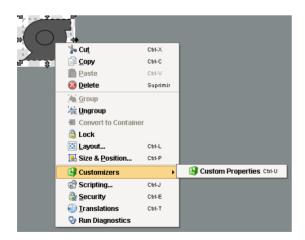
Al crearse el gráfico del motor con las herramientas del diseñador es necesario configurar las variables del proceso. (ver Figura 81).

Figura 81


Diseño del Motor/Bomba industrial

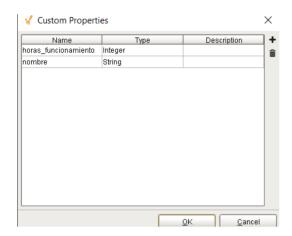
Las variables del proceso que desea manipular la empresa Aymesa son: Tiempo de encendido y apagado con las horas de funcionamiento del equipo electromecánico y su respectiva animación en el sistema SCADA de mantenimiento. (ver Figura 82).

Figura 82


Edición de configuraciones de un Template

Las propiedades de personalización son creadas de acuerdo a los requerimientos. Se maneja un nombre de equipo por cada vez que es utilizado, además la etiqueta (tag) de las horas de funcionamiento. (ver Figura 83).

Figura 83


Propiedades de personalización del Template

Se muestra en pantalla las variables que maneja el motor para su utilización en el sistema SCADA de mantenimiento. (ver Figura 84).

Figura 84

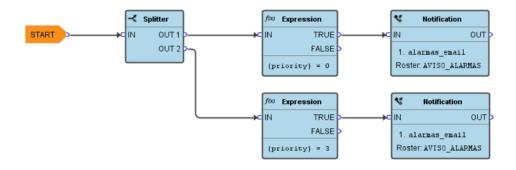
Variables manipuladas del motor

Creación del Canal de información de notificación de alarmas (Alarm Notification Pipeline)

Para el envío de correos electrónicos informativos de las alarmas generadas en el proceso de mantenimiento es necesario crear una canal de notificaciones de alarmas Pipeline que permite establecer una ruta para la información. (ver Figura 85).

Figura 85

Notificación de alarmas mediante Pipeline (Flujo de información)

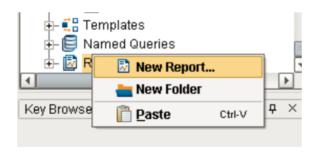

Nota. Obtenido de Software Ignition Versión 7.9.13.

El canal (Pipeline) que se estableció para cumplir con las necesidades de la empresa fue designar dos tipos de alarmas las cuales son Prioridad 0: Alarmas de Mantenimiento, Prioridad 3: Alarmas del proceso Falla. Cuando se cumple la condición de activación de

las alarmas se enviará una notificación según los correos establecidos por el supervisor del Área ELPO. (ver Figura 86).

Figura 86

Canal de envío de información (Pipeline) hacia el correo electrónico

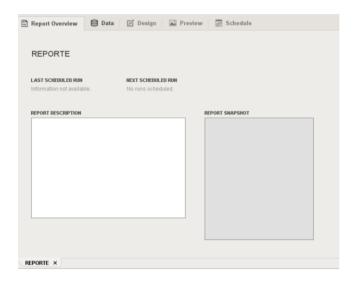


Creación de reportes en Ignition (Reporting Module)

Para la creación de reportes en el diseñador Ignition se escoge la opción Reports > New Reporting. (ver Figura 87).

Figura 87

Creación de un nuevo reporte en el diseñador Ignition



Nota. Obtenido de Software Ignition Versión 7.9.13.

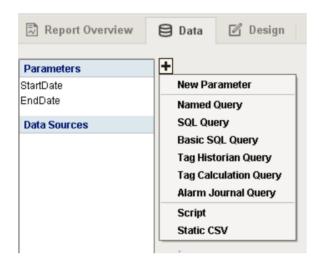
En la Figura 88 se observa una ventana con diferentes opciones de herramientas las mismas que son:

Figura 88

Ventana de diseño de reportes en Ignition

Resumen del informe (Report Overview): Vista previa del diseño de reporte realizado.

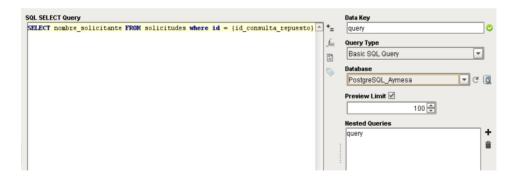
Datos (Data): Realizar consultas con la base de datos y llamado de etiquetas (tags) de las variables de proceso.


Diseño (Design): En el diseño se utilizan dos herramientas: llave del navegador (key browser) que son las consultas realizadas en forma de etiquetas que se pueden arrastrar al documento y barra de herramientas de componentes, gráficos y formas.

Vista previa (Preview): Diseño del documento con las consultas en la base de datos y etiquetas. Se muestra una consola de compilación de errores.

En la opción Datos (Data) se puede crear diferentes consultas con la base de datos e inclusive crear un Guión (Scripting). (ver Figura 89).

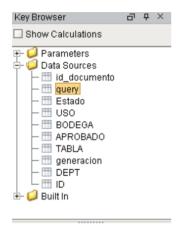
Figura 89


Ventana para agregar una nueva consulta en el reporte

Se muestra un ejemplo de consulta SQL y la conexión a la base de datos PostgreSQL. (ver Figura 90).

Figura 90

Ejemplo de consulta en la base de datos PostgreSQL



Nota. Obtenido de Software Ignition Versión 7.9.13.

Llave del navegador (key browser) son las consultas realizadas en forma de etiquetas que se pueden arrastrar al documento. (ver Figura 91).

Figura 91

Barra de consultas para agregarse al documento en forma de etiqueta

Para el diseño de un reporte es necesario la barra de herramientas de componentes, gráficos y formas para realizar el modelo con los requerimientos de la empresa. (ver Figura 92).

Figura 92

Barra de herramientas de componentes gráficos y formas en el diseño del reporte

Nota. Obtenido de Software Ignition Versión 7.9.13.

Al momento de arrastrar las etiquetas de las llaves del navegador (Key Browser) al documento se muestran con arrobas el nombre de la consulta realizada. (ver Figura 93).

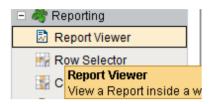
Figura 93

Diseño del reporte Solicitudes de materiales a bodega

Al finalizar el diseño con todos los requerimientos se muestra el documento con una vista previa y su respectiva compilación de errores. (ver Figura 94).

Figura 94

Vista previa de reporte generado



Para observar el reporte generado en una ventana principal es necesario acceder a la barra de herramientas de reporte (Reporting) < Report Viewer y arrastra a la pantalla.

(ver Figura 95 y Figura 96).

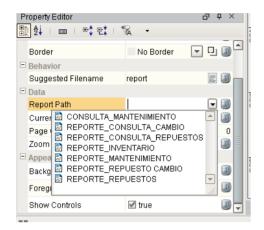
Figura 95

Barra de herramientas de reporte

Nota. Obtenido de Software Ignition Versión 7.9.13.

Figura 96

Vista de reportes para seleccionar en el directorio



Nota. Obtenido de Software Ignition Versión 7.9.13.

Para observar el reporte se ingresa en las propiedades del objeto seleccionado y buscar directorio para mostrar en pantalla. (ver Figura 97).

Figura 97

Propiedades del reporte y su ingreso del directorio

En la Figura 98 se observa el reporte de una solicitud de material a bodega tipo cambio.

Figura 98

Ventana emergente (Pop Up) diseñador Ignition

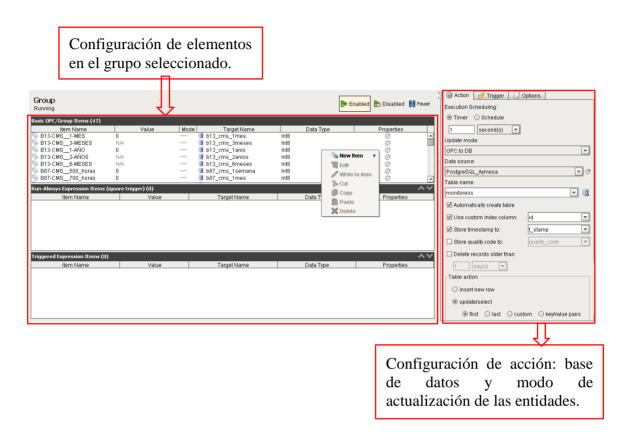
Grupo de Transacciones (Transactions Group)

El Módulo de Puente con la base de datos (SQL Bridge Module) sirve para realizar grupos de transacciones. Con esta opción se almacenan y se sincronizan los valores de

las etiquetas (tags) de las horas de funcionamiento de los equipos electromecánicos con la entidad seleccionada de la base de datos. Cada grupo de transacciones está asociado con una entidad en una base de datos a la que Ignition accede. En la Figura 99 se observa cómo se creó un grupo de transacciones.

Figura 99

Creación de un grupo de transacciones



Nota. Obtenido de Software Ignition Versión 7.9.13.

Se presenta un ejemplo de las etiquetas (tags) enlazados con los atributos de la base de datos, además se puede observar la configuración asignada para la comunicación de dichos elementos. (ver Figura 100).

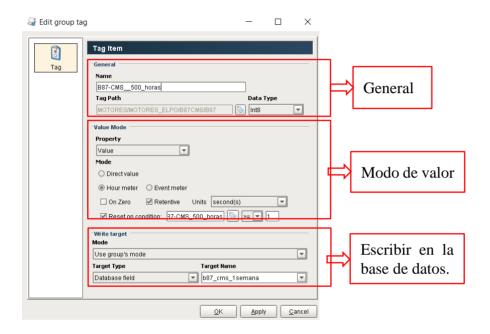
Figura 100

Pantalla principal de Transacciones de grupo

Se creó un nuevo artículo (item) al control del proceso (OPC) estándar de comunicación en el campo del control y supervisión. (ver Figura 101).

Figura 101

Nuevo artículo (Item) al control de proceso de comunicación (OPC)



Nota. Obtenido de Software Ignition Versión 7.9.13.

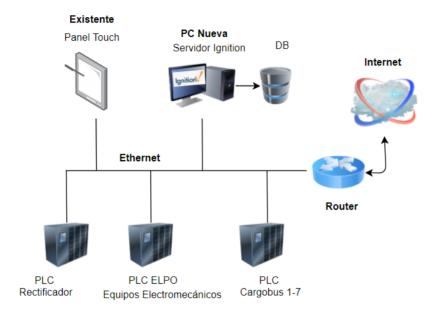
En la Figura 102 se observa la edición de una etiqueta de grupo se divide en tres partes:

Figura 102

Etiqueta de grupo elementos de configuración

Nota. Obtenido de Software Ignition Versión 7.9.13.

General: Nombre de la etiqueta (tag) de grupo y directorio de la etiqueta (tag) del diseñador Ignition.

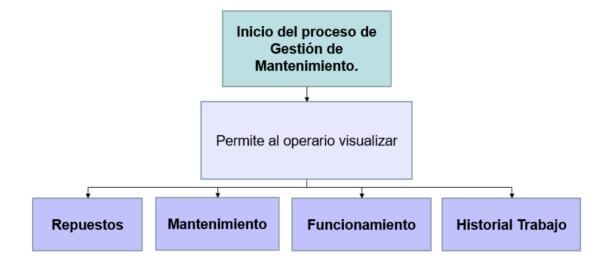

Modo de valor: Es un contador de tiempo de prueba: segundos, minutos, horas y días. Las etiquetas (tags) del diseñador Ignition son configuradas para reiniciar el valor de la variable.

Escribir a la base de datos: Atributo designado de (escritura) en la base de datos.

Arquitectura actualizada de la red ELPO

Figura 103

Arquitectura de la red actualizada tipo bus



Estructura del sistema SCADA de mantenimiento

La ventana de Información de cada equipo presenta cinco opciones: Repuestos, Mantenimiento, Funcionamiento e Historial Trabajo. (ver Figura 104).

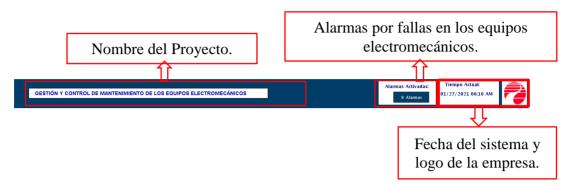
Figura 104

Inicio del proceso de Gestión de Mantenimiento

Al ingresar al sistema SCADA se puede observar la ventana de inicio del proceso que está dividida de la siguiente manera: ventana principal, ventana de navegación, ventana de encabezado y el nombre de usuario que ingresa con el panel de herramientas. (ver Figura 105).

Figura 105

Pantalla de Inicio del SCADA de mantenimiento



Ventana de Encabezado.

Se puede observar el título del proyecto, estado de las alarmas del proceso que se generan por fallas en los equipos y el tiempo actual del sistema. (ver Figura 106).

Figura 106

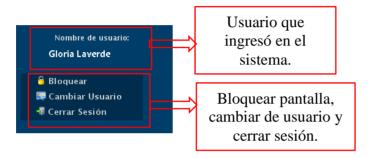
Ventana de Encabezado detallando sus elementos

Ventana de Navegación.

Consiste de una lista de árbol desplegable como se observa en la Figura 107.

Figura 107

Ventana de Navegación detallando sus elementos



Panel de herramientas del usuario.

La utilidad del panel es mostrar el nombre y apellido del usuario que ingresa al sistema y un panel de herramientas de seguridad. (ver Figura 108).

Figura 108

Ventana de Herramientas de seguridad Usuario

Al ingresar en la opción Cambio de Usuario el personal puede ingresar de la siguiente manera. (ver Figura 109).

Usuario: Operario y Contraseña: 12345.

Figura 109

Ventana de cambio de Usuario

Ventana Principal.

Se detallan los elementos. (ver Figura 110).

Figura 110

Ventana Principal del Sistema SCADA

HMI producción

El HMI de Producción permite visualizar todo el proceso del Área ELPO, mediante los P&ID (Diagramas de Flujo de Tuberías) de cada etapa. A través del diseño de un HMI (Interfaz Humano Máquina) de alto rendimiento se puede visualizar las bombas industriales con todos los estados: Apagado, Encendido, Peligro y Falla como se observa en el esquema HMI. (ver Figura 111 y Figura 112).

Figura 111

Estados Bombas Industriales

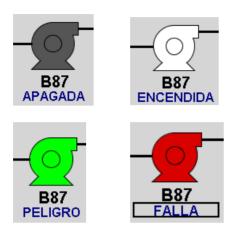
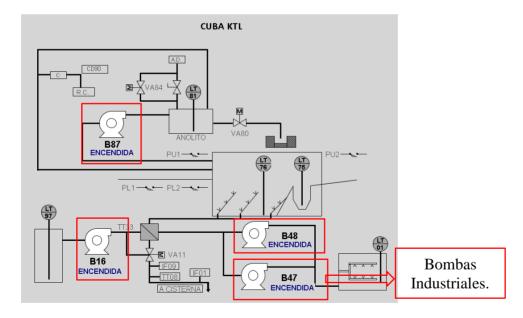



Figura 112

Proceso 2-C Cuba KTL empresa Aymesa S.A.

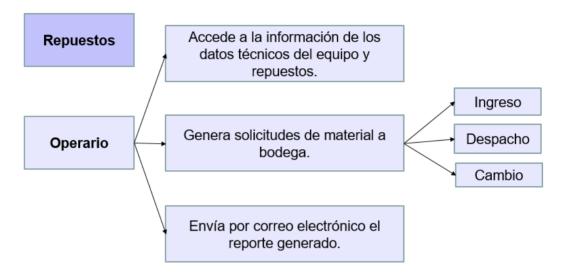
El estado Apagado indica que la conexión con la bomba no se ha establecido. El estado Encendido indica que está conectado con la etiqueta del PLC y en funcionamiento. El estado Peligro es una alarma no crítica preventiva de la bomba el cual indica al supervisor del Área ELPO y a las personas designadas mediante notificación por correo

electrónico que debe tomar medidas antes que ocurra el evento de falla del equipo. Cabe mencionar que las alarmas de mantenimiento pueden ser generadas por adelantado por el operario con la debida autorización del supervisor de la planta, para que se anticipe una orden de trabajo en caso de que el mantenimiento deba realizarse en un día feriado. El estado Falla es una alarma crítica que requiere acción correctiva que debe ser atendida por el operario para generar una orden de mantenimiento, ya que si no se genera la orden respectiva el equipo electromecánico no puede salir del estado falla.

HMI de mantenimiento

El HMI de mantenimiento permite que el operario visualice los estados de las bombas industriales, además se muestra la información de los datos técnicos del equipo electromecánico. (ver Figura 113).

Figura 113


Ventana de información del equipo por ubicación Cuba KTL B87-CMS

Opción Repuestos HMI de Mantenimiento.

Figura 114

Opción Repuestos

La ventana de Repuestos es una lista informativa completa de existencia de repuestos en bodega con sus respectivos filtros de búsqueda. El operario/supervisor puede generar una solicitud de material a bodega como: Ingreso, Despacho y Cambio. El supervisor es el único que tiene la opción de crear un nuevo repuesto si amerita el caso para agregar a la lista. (ver Figura 115).

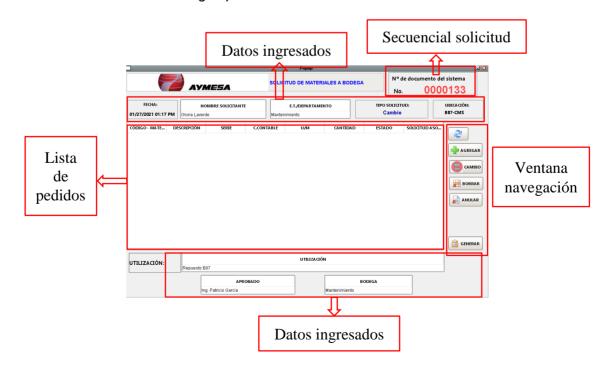
Figura 115

Lista de repuestos informativa del equipo seleccionado

Ingreso de una nueva solicitud con todos los requerimientos. (ver Figura 116).

Figura 116

Ingreso nueva Solicitud: Despacho, Ingreso y cambio con sus elementos


Todos los registros que se llenaron en la solicitud, se muestran en una pantalla completa con su respectiva edición. Además, se muestra una herramienta de navegación para agregar, eliminar y anular los repuestos de la solicitud. Si es necesario adjuntar un

repuesto de otra ubicación a la solicitud se lo puede hacer con la opción Otros. (ver Figura 117 y Figura 118).

Figura 117
Solicitud de Material a bodega tipo: Despacho o Ingreso


Figura 118
Solicitud de Material a bodega tipo: Cambio

Al terminar de agregar los repuestos necesarios es importante generar un reporte .pdf y enviar por correo electrónico (Mail) a las personas designadas por el supervisor. (ver Figura 119).

Figura 119

Reporte de solicitud de materiales a bodega tipo: Despacho

Al momento de dar clic en enviar solicitud se muestra un mensaje de nota y confirmación de envío del correo electrónico. (ver Figura 120).

Figura 120

Mensaje de confirmación de envío y nota por añadir al correo electrónico

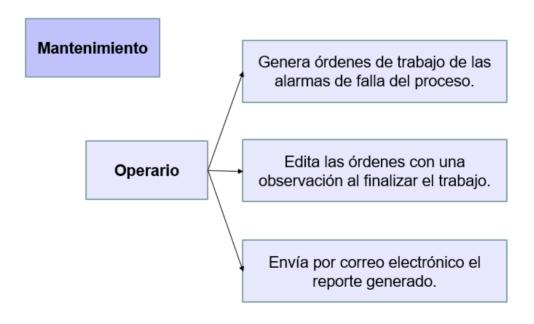
Se comprueba el correo electrónico enviado ingresando a la cuenta del supervisor, además se adjunta el nombre del usuario que envió esa solicitud de material a bodega tipo: Despacho. (ver Figura 121).

Figura 121

Comprobación por correo electrónico de solicitud de material a bodega tipo: Despacho

SOLICITUD DE MATERIALES
A ROCEGA
No. (COUNTS)

SOURCE COUNTS


SOUR

Adjunto reporte de repuestos. POR Gloria Laverde

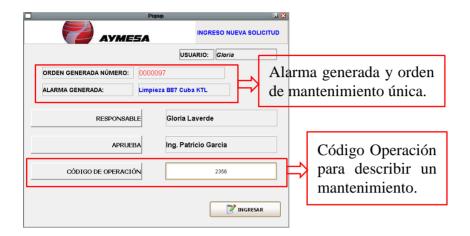
Opción Mantenimiento Área ELPO

Figura 122

Opción Mantenimiento

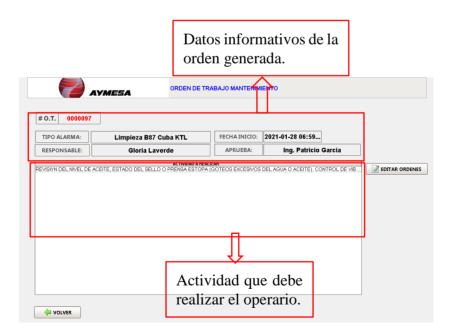
La ventana de mantenimiento del equipo seleccionado distingue las alarmas del estado-proceso, se puede actualizar la tabla y seleccionar el tipo de alarma activada en la lista desplegable y el operario/supervisor puede generar la orden de trabajo. (ver Figura 123).

Figura 123


Ventana de mantenimiento de los equipos electromecánicos Área ELPO

Ingreso de una nueva orden de trabajo con el nombre de la alarma y por ingresar el código de operación. (ver Figura 124).

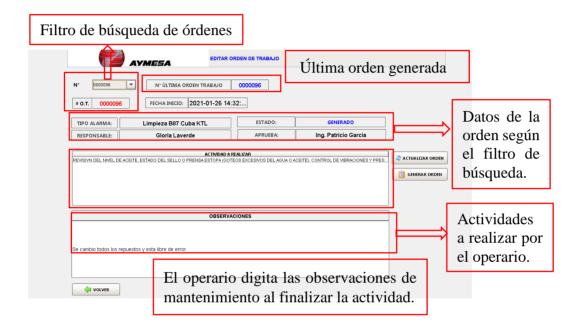
Figura 124


Ingreso de una nueva orden de mantenimiento del equipo electromecánico

Al momento que se genera la orden se puede visualizar la actividad que debe realizar el operario. (ver Figura 125).

Figura 125

Orden de mantenimiento generado por el operario de turno



La opción edición órdenes sirve finalizar la actividad de mantenimiento designado al operario de turno. El operario puede filtrar las órdenes de mantenimiento para ingresar

las observaciones y a su vez enviar por correo electrónico el documento generado al supervisor del Área ELPO. (ver Figura 126).

Figura 126

Editar ordenes de trabajo para finalizar la actividad

El operario al finalizar las observaciones de la orden, puede pulsar el botón ACTUALIZAR ORDEN y el sistema envía un mensaje informativo: orden de mantenimiento finalizada con éxito. (ver Figura 127).

Figura 127

Actualizar orden de trabajo con las observaciones del operario

El operario después de actualizar la orden ya no puede modificarla y el estado de la orden cambia a FINALIZADO. (ver Figura 128).

Figura 128

Estado de la orden de mantenimiento: FINALIZADO

La orden de mantenimiento con estado FINALIZADO se puede generar un reporte en .pdf de la actividad realizada por el operario y proceder al envío del correo electrónico al supervisor del Área ELPO. (ver Figura 129).

Figura 129

Gestión de Mantenimiento finalizada y lista para enviar al supervisor

Al momento de dar clic en ENVIAR ORDEN se muestra un mensaje de nota y confirmación de envío del correo electrónico. (ver Figura 130).

Figura 130

Mensaje de confirmación de envío y nota por añadir al correo electrónico.

Comprobación de correo electrónico enviado, además se adjunta el nombre del usuario que envió la orden de trabajo finalizada. (ver Figura 131).

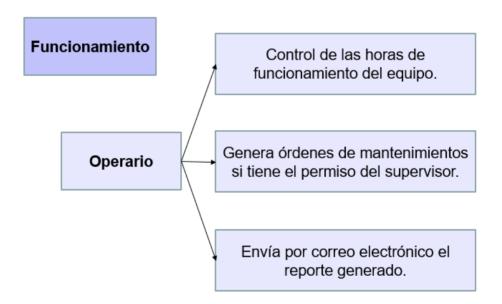
Figura 131

Comprobación por correo electrónico de la orden de trabajo enviada

ORDEN DE TRABAJO

TAX. 000006

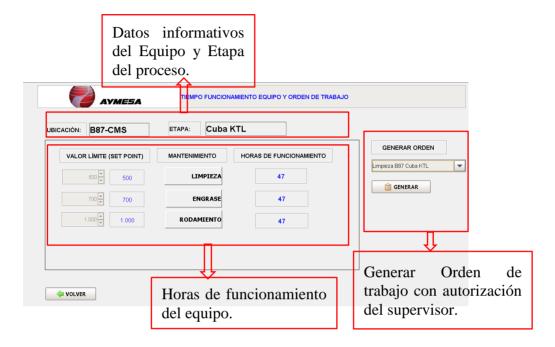
FEON RE HEIO PECANAMIZACIÓN TROCER ALARMA


DE CONTROL DE

Se envia orden de repuesto finalizada. POR Gloria Laverde

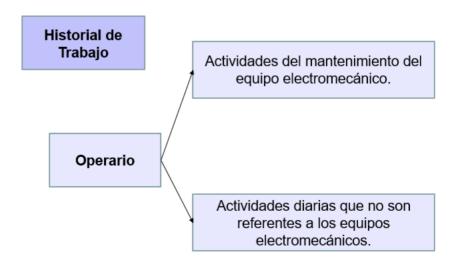
Opción Funcionamiento Área ELPO.

Figura 132


Opción Funcionamiento

La ventana de Funcionamiento indica tanto al operario como al supervisor del Área ELPO el tiempo de funcionamiento medido en horas de cada equipo electromecánico, como información y a su vez generar una orden de mantenimiento. (ver Figura 133).

Figura 133


Tiempo de funcionamiento del equipo seleccionado

Opción Historial de Trabajo Área ELPO.

Figura 134

Opción Historial de Trabajo

La ventana de historial de trabajo contiene las actividades diarias que realiza el operario de turno en el día y la información ingresada será guardada en la base de datos para que el supervisor del Área ELPO controle y verifique las actividades de trabajo. (ver Figura 135).

Figura 135

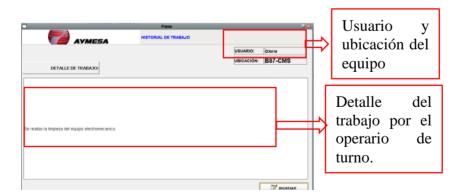
Historial de trabajo por equipo electromecánico

El operario puede ingresar actividades que no se refieren a los equipos electromecánicos en la opción OTROS. (ver Figura 136).

Figura 136

Actividades diarias de todos los equipos electromecánicos y la opción de ingresar un

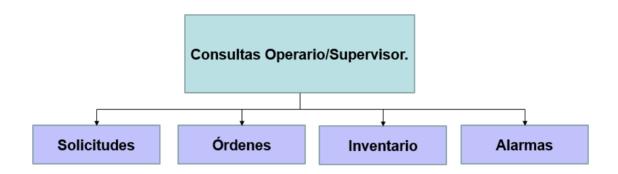
trabajo diferente


Filtro de búsqueda. HISTORIAL TRABAJO DE TODOS LOS EQUIPOS CONSULTA POR USUARIO CONSULTA POR DESCRIPCIÓN: SELECCIONAR EQUIPO Se realizaron los cambios respectivos de rodete y lim... nov 13, 2020 11:48 PM Andres Jaramillo Andres Jaramillo Andres Jaramillo Andres Jaramillo Detalle cambin de hombas motor Andres Jaramillo Andres Jaramillo Cambio Realizado con exito nov 14, 2020 12:55 AM
Se realizo la limpieza respectiva del equipo bomba mo... nov 14, 2020 12:03 AM Andres Jaramillo Se realizo los cambios en el equipo y se limpio todo nov 20, 2020 4:07 PM Andres Jaramillo Andres Jaramillo Mantenimiento de los rodetes sin problemas nov 26, 2020 8:55 PM
Se realizaron tareas en el equipo y limpieza dic 2, 2020 6:51 PM Andres Jaramillo Andres Jaramillo Andres Jaramillo Se realizaron los cambios respectivosnen el equipo ene 13, 2021 10:23 AM Registro Se realizo la limpieza del equipo electromecanico ene 26, 2021 12:13 PM Lista de Andres Jaramillo equipos y opción OTROS. Lista historial de

Cuadro de texto para ingresar las actividades diarias por cada operario. (ver Figura 137).

trabajo.

Figura 137


Cuadro de texto de la actividad realizada por el operario en el día.

Consultas Área ELPO

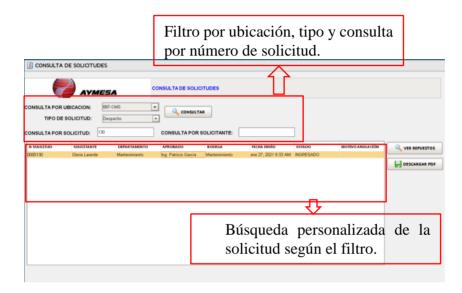
Figura 138

Consultas

Consulta de Solicitudes

La consulta de Solicitudes de material a bodega tipo: Ingreso, Despacho y Cambio se pueden descargar como un sustento de prueba y respaldo de información de cada solicitud emitida por el operario de turno. (ver Figura 139).

Figura 139


Consulta de todas solicitudes generadas en el proceso

Se puede filtrar las solicitudes por diferentes atributos y encontrar la requerida. (ver Figura 140).

Figura 140

Consulta de solicitudes de material a bodega tipo: Despacho

Consulta órdenes de mantenimiento

En la ventana Consulta órdenes de trabajo están todas las órdenes generadas por los operarios y su inspección por parte del supervisor del Área ELPO con sus respectivos filtros de búsqueda. (ver Figura 141).

Figura 141

Consulta de órdenes de trabajo de todo el proceso

Se puede filtrar la orden por diferentes atributos y encontrar el requerido. (ver Figura 142).

Figura 142
Filtro exacto de búsqueda del repuesto

Se muestra la orden enviada por correo electrónico como respaldo de información, además al dar clic derecho en el documento el operario/supervisor puede descargar en la unidad el documento he imprimir si es necesario. (ver Figura 143).

Figura 143

Consulta de reportes de mantenimiento

Consulta de Inventarios

La ventana inventarios muestra el movimiento de los repuestos existentes desde su ingreso hasta su despacho con sus respectivos filtros de búsqueda y se genera un reporte de mantenimiento. (ver Figura 144).

Figura 144

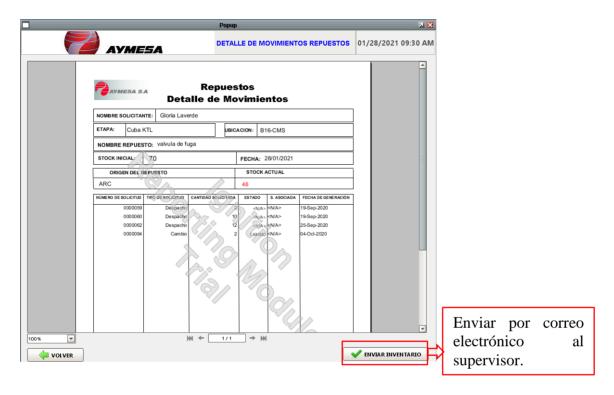
Se puede filtrar el repuesto por diferentes atributos y encontrar el requerido. (ver Figura 145).

Figura 145
Filtro exacto de búsqueda del repuesto

Se muestra en una pantalla el flujo o movimiento de los ingresos, despachos y cambios que tienen durante cada pedido por solicitud, además se puede visualizar si el

repuesto fue ingresado por sistema (SIS) o archivo (ARC). (ver Figura 146).

Figura 146


Consulta de movimientos del repuesto por cada solicitud generada

Se puede generar un informe de flujo de movimientos del repuesto y enviar por correo electrónico al supervisor si es necesario para su revisión. (ver Figura 147).

Figura 147

Reporte de flujo o movimientos del repuesto

Al momento de ENVIAR INVENTARIO se muestra un mensaje de nota y confirmación de envío del correo electrónico. (ver Figura 148).

Figura 148

Mensaje de confirmación de envío y nota por añadir al correo electrónico

Comprobación del correo electrónico enviado, además se adjunta el nombre del usuario que envió el detalle de movimientos de los repuestos. (ver Figura 149).

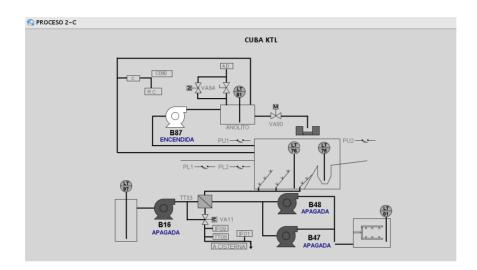
Figura 149

Mensaje informativo de la orden enviada por correo electrónico

Comprobación de correo electrónico enviado, además se adjunta el nombre del usuario que envió el detalle de movimientos. (ver Figura 150).

Figura 150

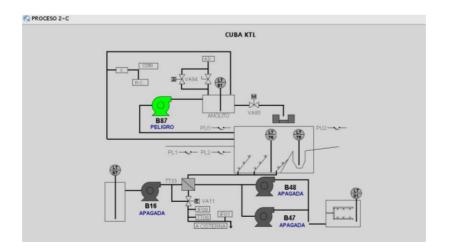
Comprobación por correo electrónico de la orden de trabajo enviada


Estado Alarmas Mantenimiento.

Son alarmas generadas por las horas de funcionamiento, pero no son activadas en el proceso ya que solo se envían por notificaciones de correo electrónico con el nombre, ubicación, fecha y hora.

Se muestra un ejemplo del proceso de Cuba KTL con la bomba industrial B87 ENCENDIDA. (ver Figura 151).

Figura 151


Proceso Producción Cuba KTL

Al cumplir el tiempo de valor límite (Set Point) de limpieza el equipo entra en estado de peligro que es una alarma no crítica. (ver Figura 152).

Figura 152

Proceso Producción Cuba KTL Equipo B87 en estado Peligro

Para no buscar las alarmas en cada proceso se ingresa a la pestaña Estado Alarmas Mantenimiento y se verifica si está activada cualquier alarma en el proceso color naranja de prioridad media. Si una alarma no está activa su fila es de color gris. (ver Figura 153).

Figura 153

Estado Alarmas Mantenimiento pantalla principal

Al cumplir con el valor límite y activarse la alarma de mantenimiento se envía la notificación por correo electrónico a los destinatarios seleccionados por el supervisor del Área ELPO. (ver Figura 154).

Figura 154

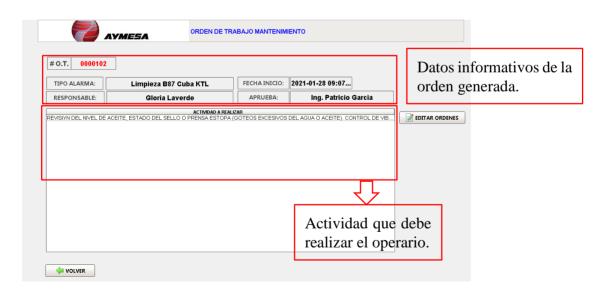
Mensaje enviado por correo electrónico de la alarma generada

Nota. Obtenido de Cuenta de Gmail (2021)

https://myaccount.google.com/?utm_source=OGB&tab=mk&utm_medium=act&pli=1&ga r=1

Al recibir el correo electrónico el operario genera una orden de trabajo de la alarma generada que recibió por notificación. (ver Figura 155).

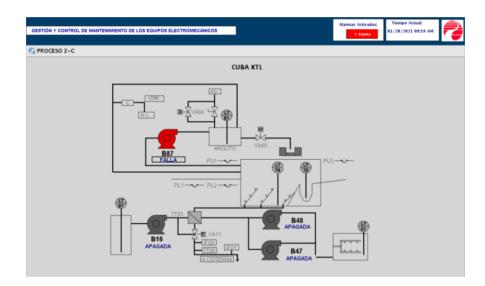
Figura 155


Ingreso de una nueva orden de mantenimiento del equipo electromecánico

La orden de mantenimiento es generada por el operario de turno. Al momento que se genera la orden la hora de funcionamiento se resetea a cero. (ver Figura 156).

Figura 156

Orden de mantenimiento generado por el operario de turno



Estado Alarmas Proceso.

Son alarmas críticas de falla del equipo generadas por las horas de funcionamiento, son de alta prioridad y se envían por notificaciones de correo electrónico con el nombre, ubicación, fecha y hora. (ver Figura 157).

Figura 157

Proceso Producción Cuba KTL Equipo B87 en estado Falla

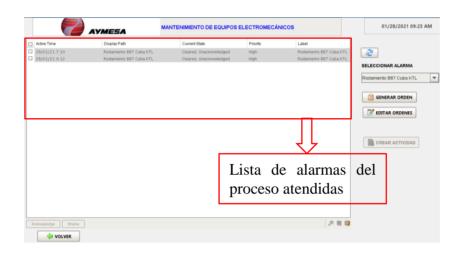
Se ingresa a la pestaña Estado Alarmas Proceso o en la ventana de encabezado de esta manera se muestran las alarmas de prioridad alta. Se verifica si está activada cualquier alarma en el proceso: color rojo de prioridad alta. Si una alarma no está activada su fila es de color gris. (ver Figura 158).

Figura 158

Estado Alarmas Proceso de prioridad alta

Generación de órdenes de mantenimiento desde la ventana de navegación. El operario puede generar órdenes de todos los equipos electromecánicos existentes en el área ELPO. (ver Figura 159).

Figura 159

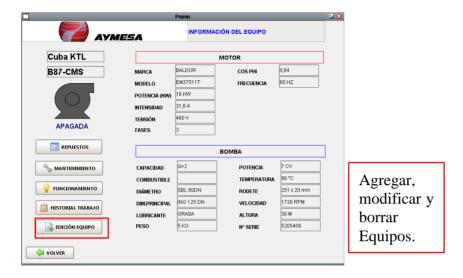

Mantenimiento de todos los equipos electromecánicos si se genera cualquier alarma

Al atender todas las alarmas del proceso se muestra un historial general de color gris en cada fila. (ver Figura 160).

Figura 160

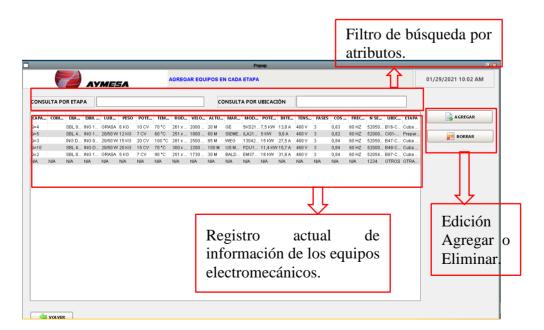
Lista de alarmas del proceso atendidas

Edición Supervisor Área ELPO.


Figura 161

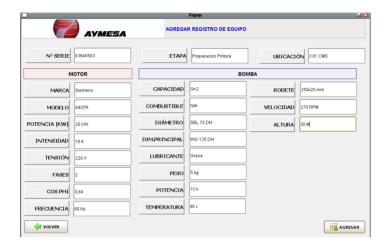
Edición Supervisor

En la ventana información del equipo se habilita un botón EDICIÓN EQUIPO, ya que si tiene los privilegios de usuario administrador o supervisor puede agregar a la base de datos un registro informativo y visualizar en el sistema SCADA. (ver Figura 162).


Figura 162
Información del equipo y Edición Equipo

Al ingresar en la opción EDICIÓN EQUIPO el supervisor o administrador puede visualizar en pantalla todos los registros de los equipos ingresados en la base de datos con sus respectivos filtros de consulta. (ver Figura 163).

Figura 163


Agregar Equipos electromecánicos en cada etapa

Al ingresar en la opción AGREGAR el supervisor o administrador puede visualizar en pantalla una plantilla de ingreso de datos del equipo. (ver Figura 164).

Figura 164

Agregar registro de Equipo a la base de datos

Al momento de agregar los datos ingresados el sistema envía un mensaje informativo al usuario supervisor o administrador. (ver Figura 165).

Figura 165

Mensaje informativo al usuario Administrador o supervisor

Se puede visualizar en pantalla el registro agregado. (ver Figura 166).

Figura 166

Registro del equipo ingresado en la base de datos

Ventana de navegación para BORRAR un equipo

Al seleccionar la fila y dar clic en la opción borrar, se puede visualizar en pantalla el registro eliminado y a su vez un mensaje informativo del equipo borrado. (ver Figura 167).

Figura 167

Mensaje informativo del equipo borrado con éxito

En la ventana información>Repuestos del equipo se habilita un botón EDICIÓN REPUESTOS, ya que si tiene los privilegios de usuario administrador o supervisor puede agregar a la base de datos un registro y visualizar en el sistema SCADA. (ver Figura 168).

Figura 168

Agregar, modificar y eliminar de repuestos de la base de datos

Al ingresar en la opción EDICIÓN REPUESTOS el supervisor o administrador puede visualizar en pantalla todos los registros de los repuestos ingresados en la base de datos. (ver Figura 169).

Figura 169

Agregar repuestos a los equipos en cada ubicación

SERIE	DESCRIPCIÓN	CANTIDAD DISPONI	CÓDIGO AYMESA	REFERENCIA DE FAB	ORIGEN	STOCK INICIAL	TIPO ELEMENTO	SELECCIONAR UBICACIÓN
5205505	RODAMIENTOS	12 800009					Electrico	B87-CMS ▼
5205406	JUEGO DE JUNT	47 800008					Mecanico	
5205596	CASQUILLO PRO	47 8000018					Mecanico	
5205505	RODAMIENTOS T	11 8000011					Mecanico	
5205505	CIERRE MECENI	9 8000012					Electrico	
5207543	BOMBA RODAMI	44 800004					Electrico	₩ BORRAR
5207543	CIERRE MECENI	19 800005					Mecanico	
5207543	CELDAS DIBLISIS	10 800002					Electrico	
5205505	JUEGO DE JUNT	19	3000013	s			Electrico	
5205596	RODAMIENTO EJ						Electrico	
5205596	RODAMIENTO M						Mecanico	
5205596	RETENEDOR G	52	52 8000016				Electrico	
5207543	ELECTRODOS	5 800003					Mecanico	
we	as	22	s	s			Mecanico	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5205596	CIERRE MECBNI	49 8000017		s			Electrico	
5205505	RODAMIENTOS T	OS T 88000010					Mecanico	Diltura ma
5205596	ANILLO DE DESG	NILLO DE DESG 8 8000019					Electrico	Filtro po

Al ingresar en la opción AGREGAR el supervisor o administrador puede visualizar en pantalla una plantilla de ingreso de datos del repuesto. (ver Figura 170).

Figura 170

Agregar un nuevo repuesto a la base de datos

Al momento de agregar el registro el sistema envía un mensaje informativo al usuario supervisor o administrador. (ver Figura 171).

Figura 171

Registro de repuesto agregado a la base de datos

Se puede visualizar en pantalla el registro agregado. (ver Figura 172).

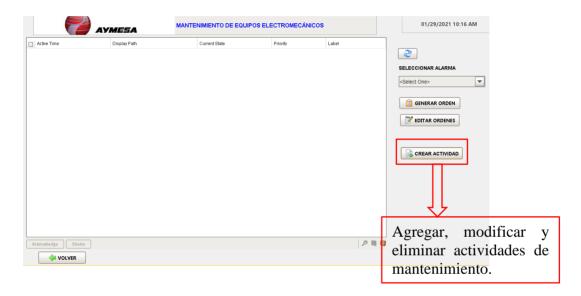
Figura 172

Registro del repuesto ingresado en la base de datos

Ventana de navegación para BORRAR un repuesto

Al seleccionar la fila y dar clic en la opción borrar, se puede visualizar en pantalla el registro eliminado y a su vez un mensaje informativo del repuesto borrado. (ver Figura 173).

Figura 173


Mensaje informativo del repuesto borrado con éxito

Agregar, modificar y borrar Actividades de mantenimiento.

En la ventana órdenes de mantenimiento se habilita un botón CREAR ACTIVIDAD, ya que si tiene los privilegios de usuario administrador o supervisor puede agregar a la base de datos un registro y visualizar en el sistema SCADA. (ver Figura 174).

Figura 174Agregar actividades de mantenimiento en cada ubicación

Al ingresar en la opción CREAR ACTIVIDAD el supervisor o administrador puede visualizar en pantalla todos los registros de las actividades de mantenimiento planificadas. (ver Figura 175).

Figura 175

Agregar actividades de mantenimiento por equipo

Al ingresar en la opción AGREGAR el supervisor o administrador puede visualizar en pantalla una plantilla de ingreso de una actividad de mantenimiento. (ver Figura 176).

Figura 176

Plantilla de ingreso de actividades de mantenimiento a la base de datos

Al momento de agregar el registro el sistema envía un mensaje informativo al usuario supervisor o administrador. (ver Figura 177).

Figura 177

Mensaje informativo del registro de actividad ingresada a la base de datos

Capítulo V. Conclusiones Y Recomendaciones

Conclusiones

Se ha desarrollado un Sistema de Supervisión Control y Adquisición de Datos (SCADA), mediante el Software Ignition como herramienta de gestión y control de alarmas para el Mantenimiento de los Equipos Electromecánicos en el Área ELPO de la empresa Aymesa S.A. La configuración de ingreso de acceso de usuarios se logró mediante la página web (Web Page) de Ignition en las listas de llamadas de correos electrónicos (On-Call Rosters) ya que se crearon diferentes usuarios con toda la información tales como: nombre de usuario, cargo que ocupa en la empresa y su respectivo correo electrónico.

Se creó una Base de Datos SQL en el software PostgreSQL, que contiene información de equipos existentes, repuestos más críticos de los equipos, así como toda la información detallada de las órdenes de mantenimiento y solicitudes de material a bodega del Área ELPO. Se logró la comunicación con la base de datos PostgreSQL y Software Ignition de lectura y escritura de datos mediante la configuración de la página web (Web Page) de Ignition. Los comandos SQL de consulta permitirán ingresar a las entidades relacionadas y lograr hacer un filtro de información y mostrar en el documento .pdf. Las creaciones de etiquetas (tags) que se realizó son importantes porque permiten buscar los secuenciales (id llave primaria o llave foránea) en la consulta con el comando Inner Join.

Se desarrolló un Sistema Gráfico HMI que permite a los usuarios (Personal Técnico), monitorear, controlar y gestionar el mantenimiento de los equipos del Área ELPO. El módulo de creación de reportes es importante ya que permitirá comunicarse

exclusivamente con la base de datos asignada en la configuración de la página web (Web Page) de Ignition.

Se implementó un Sistema de notificación de alarmas, avisos o indicadores operacionales de mantenimiento, mediante envío de Mails o SMS, a los operarios y supervisores del Área ELPO. Se creó un código de programación en Phyton y se fijó los cargos jerárquicos que necesita el supervisor para enviar la información de las alarmas generadas en el proceso de mantenimiento SCADA. La opción de envío de SMS no fue implementada debido a que el supervisor del área ELPO consideró que no era necesario.

Se desarrolló una plantilla automatizada para la generación de órdenes de trabajo, solicitudes de materiales a bodega e inventario de repuestos existentes en el Área ELPO. Los reportes que se generó en el sistema SCADA de mantenimiento son enviados a los correos designados por el supervisor de Área ELPO.

En el diseñador Ignition existe una plantilla para agregar más usuarios y cargos que le permitirá ingresar al supervisor del Área ELPO de dos formas tales como: código de programación y sistema SCADA por pantalla. Se logró desarrollar el código de programación en Jhyton y SQL con la ayuda del diagrama de flujo establecido con los requerimientos de la empresa Aymesa en un mismo guión (script) y definir cada elemento del diseñador Ignition. El valor deseado (set point) de las notificaciones de alarmas fueron creadas mediante etiquetas (tags) con los parámetros establecidos por el supervisor del Área ELPO y modificables por pantalla.

El módulo que se utilizó fue Pipeline (canal de información de notificación de alarmas)

estableciendo un control de información según el tipo de alarma generada tales como: estado alarmas mantenimiento y estado alarmas proceso. Este flujo de información es enviado según la alarma generada con los requerimientos como: ubicación, etapa y el trabajo que debe realizar el operario del Área ELPO.

Recomendaciones

Al momento de crear etiquetas (tags) es necesario crear una carpeta específica y llevar un orden ya que al cambiar un registro de información en la programación se dificulta encontrar en donde se ubica el destino de la etiqueta (tag).

Es necesario incorporar al sistema SCADA de mantenimiento las etiquetas (tags) del PLC de las variables del proceso general con la ayuda del diseño HMI de alto rendimiento para que el operario tenga dos pantallas para el desarrollo del proceso.

Hace falta implementar un sistema SCADA de mantenimiento con una base de datos en las otras áreas de la empresa Aymesa S.A. para facilitar las actividades diarias del personal de servicio.

Es necesario capacitar a todo el personal del Área ELPO sobre el manejo de las herramientas del diseño y control del sistema SCADA de mantenimiento ya que implica la habilidad y destreza para manejar adecuadamente todas las actividades que realiza el sistema en el Área ELPO.

Es necesario la aplicación de este proyecto y diseño para mejorar el funcionamiento de los servicios que presta la empresa Aymesa S.A.

Bibliografía

Automation, I. (2020). Web Page Oficial. https://inductiveautomation.com/

Barrera Soriano. (2010). Redes Inalámbricas de Área Local.

http://bibing.us.es/proyectos/abreproy/11761/fichero/Volumen1%252F7-Capítulo3+-+Redes+inalámbricas+de+área+local+%28WLAN%29.pdf+

Copadata. (2017). *Copadata*. https://www.copadata.com/es/productos/zenon-software-platform/visualizacion-control/que-significa-hmi-interfaz-humano-maquina-copadata/

Cuenta de Gmail (2021) Correo Electrónico

https://myaccount.google.com/?utm_source=OGB&tab=mk&utm_medium=act&pli=1&ga r=1

Díez, J. A.; V. G. A. D. (2019). *Metalmecánica*.

https://www.interempresas.net/MetalMecanica/Articulos/244620-El-fosfatado-en-la-industria-control-del-proceso.html

Emewadmin. (2018). *Emew Technologies*. https://emew.com/es/electrodeposicion-101-que-es-la-electrodeposicion/

Eninsoft. (2018). *Comandos básicos PostgreSQL*. https://www.eninsoft.com/comandos-basicos-para-la-administracion-de-postgres/

Formared. (2018). Capacitación Industrial.

http://formared.blogspot.com/2018/02/bombas-y-sistemas-industriales-de-bombeo.html

Group, V. E. (2017). *Directindustry*. https://trends.directindustry.es/project-1105283.html Hollifield, B. (2016). *High Performance HMI Principles and Best Practices*. 32.

Molina, J. (2002). *Pretratamiento de carrocerías*. of-axalta-coating-systems-ltd-website-h.

- PostgreSQL. (2020). PostgreSQL. https://www.postgresql.org/about/
- Rockwell Automation, I. (2016). Rockwell automation.
 - https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1769-um021_-es-p.pdf
- Sarría, A. F. (2016). *Programación en SQL con PostgreSQL*. https://www.um.es/geograf/sigmur/sigpdf/postgresql.pdf
- Technologies, M. (2018). *Procesos industriales*.

 https://procesosindustriales.net/mantenimiento-industrial/como-actualizar-a-un-hmi-de-alto-rendimiento/
- University, I. (2020). *Inductive University*. https://inductiveuniversity.com/courses/whats-new-in-Ignition-v-sevenpointnine/7.9

Anexos

ANEXO A Instalación PostgreSQL.

ANEXO B Instalación Ignition.

ANEXO C Manual de Usuario.

ANEXO D Carta de satisfacción.

ANEXO E Diagramas de Flujo de la programación.