

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE SEDE LATACUNGA

CARRERA DE INGENIERÍA EN PETROQUÍMICA

"MODELADO Y SIMULACIÓN DE UNA COLUMNA PARA LA ABSORCIÓN DE CO2 GENERADO EN LA PRODUCCIÓN DE ENERGÍA ELÉCTRICA EN LA CENTRAL TÉRMICA DE ESMERALDAS, USANDO UNA SOLUCIÓN DE AMINOMETIL
PROPANOL (AMP)"

AUTOR: GALLO TAPIA, MARCELO JAVIER DIRECTOR: Ph.D. RODRÍGUEZ MAECKER, ROMÁN NICOLAY

CONTENIDO

2

• Centrales Térmicas

CONTENIDO

OBJETIVO GENERAL

 Modelar y simular una columna para la absorción de CO₂ generado en la producción de energía eléctrica en la central térmica de Esmeraldas, usando una solución de aminometilpropanol (AMP).

OBJETIVOS

OBJETIVO ESPECÍFICOS

- Construir un modelo matemático en estado estable que describa la variación de la concentración de CO₂ con la longitud de la columna.
- Simular el proceso de absorción de CO₂ con una solución de AMP.
- Validar el modelo matemático comparando los resultados de solubilidad con datos bibliográficos obtenidos de experimentación en plantas piloto.
- Comparar los resultados de solubilidad del modelo matemático con los resultados obtenidos mediante el simulador.
- Determinar la influencia de los principales parámetros de operación en la eficiencia de la columna.

CONTENIDO

CONSTRUCCIÓN DEL MODELO MATEMÁTICO

Modelo de columna empaquetada

Balances de masa y energía

Trasferencia de calor y masa

Equilibrio termodinámico líquido-vapor

Cinética de reacción

Factor de mejora por la reacción química

METODOLOGÍA

COLUMNA **EMPAQUETADA** ОШ MODELO

La reacción se lleva a cabo en la película liquida

La resistencia para el solvente volátil en el líquido es significante

La temperatura en la interfase es la misma que la temperatura de la película liquida

El área de transferencia de masa y de calor es el mismo

No se considera la dispersión axial

La columna de absorción trabaja de forma adiabática

Ambas fases serán consideradas ideales

METODOLOGÍA

BALANCE DE MASA Y ENERGÍA

FASE GASEOSA

• $\frac{dG}{dz} = -S(N_{CO_2} + N_{H_2O})$

•
$$\frac{dy_{CO_2}}{dz} = \frac{S(N_{CO_2}(y_{CO_2}-1)+N_{H_2O}y_{CO_2})}{G}$$

•
$$\frac{dy_{H_2O}}{dz} = \frac{S(N_{H_2O}(y_{H_2O}-1)+N_{CO_2}y_{H_2O})}{G}$$

•
$$\frac{dT_G}{dz} = \frac{-Sa_Wq}{Gc_{p,G}}$$

FASE LÍQUIDA

•
$$\frac{dL}{dz} = -SN_{H_2O}$$

•
$$\frac{dx_{CO_2}}{dz} = \frac{S(N_{CO_2} - N_{H_2O}x_{CO_2})}{L}$$

•
$$\frac{dx_{H_2O}}{dz} = \frac{S(N_{H_2O}(x_{H_2O}-1)+N_{CO_2})}{L}$$

•
$$\frac{dT_G}{dz} = \frac{S(N_{CO_2} C_{p,CO_2} + N_{H_2O} C_{p,H_2O})(T_L - T_G) - Sq + (N_{CO_2} \Delta H_{CO_2} + N_{H_2O} \Delta H_{H_2O})}{Lc_{p,L}}$$

TRANSFERENCIA DE CALOR Y MASA

Coordenadas de Eckert

Analogías de Chilton-Colbum

$$St_{H, pr} Pr^{2/3} = \frac{h_{pr}}{C_p \bar{u}_x \rho} Pr^{2/3} = j_H = \frac{1}{2}f = \psi(Re)$$

$$\operatorname{St}_{D, \operatorname{pr}} \operatorname{Sc}^{2/3} = \frac{F_{\operatorname{pr}}}{c \overline{u}_{x}} \operatorname{Sc}^{2/3} = j_D = \frac{1}{2} f = \psi(\operatorname{Re})$$

Correlaciones de Billet y Schultes

FACTOR DE MEJORA POR LA REACCIÓN QUÍMICA

Correlación de Krevelen y Hoftijzer

Coeficiente global de transferencia de energía en la fase gaseosa

$$E_A = \frac{\phi_{A,2} \sqrt{\frac{E_{A,\infty}^{film} - E_A}{E_{A,\infty}^{film} - 1}}}{\tanh\left(\phi_{A,2} \sqrt{\frac{E_{A,\infty}^{film} - E_A}{E_{A,\infty}^{film} - 1}}\right)}$$
$$\phi_{A,2} = \frac{\sqrt{D_A k_2 C_B}}{k_{L0}}$$
$$E_{A,\infty}^{film} = 1 + \frac{D_B C_{B,L}}{\nu_B D_A C_{A,Li}}$$

$$\frac{1}{K_G a_W} = \frac{1}{k_G a_W} + \frac{H}{E_A k_L a_W}$$

SIMULACIÓN DEL PROCESO DE ABSORCIÓN

CONTENIDO

MODELO MATEMÁTICO

Composición de la corriente de gas seco

Flujos Molares de operación

Compuesto	Fracción molar
CO ₂	0.1387
H ₂ O	0.0557
N ₂	0.8003
СО	0.0022
NO ₂	0.0031

Concentración de la amina	Flujo min Kmol/h	Flujo Kmol/h
2.5 mol/dm ³	13.2	15.85
3.4 mol/dm ³	11.1	13.32
4.9 mol/dm ³	9.4	11.28

Diámetro y selección de empaque

El diámetro y selección de empaque se determinó para cada uno de los flujos de amina con la curva de caída de presión de $800 \frac{N/m^2}{m}$

Diámetro de la columna y tipo de empaque

Estimación del diámetro de la columna para una solución 2.5 mol/ dm³

Concentración	Empaque	D _c (in)	x	у	<i>D_c</i> (cm)	Relación D _c
2.5 mol/dm ³	Rasching Ceramico	0.75	0.0973	0.11	21.02	11.03
3.4 mol/dm ³	Rasching Ceramico	0.75	0.0818	0.12	20.57	10.80
4.9 mol/dm ³	Rasching Ceramico	0.75	0.0693	0.13	20.16	10.58

Coeficiente de transferencia de calor

Concentración	2.5 mol/dm ³	3.4 mol/dm ³	4.9 mol/dm ³
Sc	1366.59920 6	1366.599206	1366.59921
Sh	12.83980834	12.42809374	12.0571349
Re	382.4362824	374.2490166	366.793831
St	2.45673E-05	2.42998E-05	2.4054E-05
bl	0.00302542	0.002992472	0.00296216
Pr	0.750132099	0.750132099	0.7501321
h	4.028266011	3.984396422	3.94403524

Coeficientes y área interfacial de transferencia de masa

Concentración	2.5 mol/dm ³	3.4 mol/dm ³	4.9 mol/dm ³
a _w (m²/m³)	53.6635289	56.9256943	59.6121686
k _{L CO2} (m/s)	0.000107046	0.00010861	0.00011007
kсно (m/s)	0.089623351	0.09265525	0.09553567
$k_{a,aa}$ (m/s)	0.060251203	0.06228946	0 06422589
$-\mathbf{K}_{G,CO_2}$ (1173)	0.000231203	0.00220340	0.00722303

Equilibrio termodinámico Liquido-Vapor

Presión parcial de CO₂, Solución 2.5 mol/dm³

Calor de absorción del CO₂, solución 2,5 mol/dm³

Factor de mejora por la reacción química

Valor del factor de mejora (E_A) por la reacción química

Constante de velocidad

Variación en la concentración de CO₂

Variación de la fracción molar de CO₂ en el Gas, solución 2,5 mol/dm³

Solubilidad

Solubilidad del CO₂ en la solución 2,5 mol/dm³de AMP

SIMULACIÓN DEL PROCESO DE ABSORCIÓN

Análisis de flujos internos de la columna en el simulador

Worksheet		Mole Fractions	Aqueous Phase
Conditions	CO2	0,0001	0,0001
roperties	H2O	0,9492	0,9492
Composition Oil & Gas Feed Petroleum Assay K Value User Variables AMP	0,0000	0,0000	
	0,0000	0,0000	
	0,0008	0,0008	
	0,0499	0,0499	
lotes			

Composición de CO₂ en la corriente liquida

Worksheet Attachm	ents Dynamics			
Worksheet	Stream Name	Amina Rica	Aqueous Phase	
Conditions	Vapour / Phase Fraction	0,0000	1,0000	
Properties Temperature [C] Composition Pressure [kPa]		35,63	35,63	
		100,0	100,0	
Oil & Gas Feed	Molar Flow [kgmole/h]	15,88	15,88	
Petroleum Assay	Mass Flow [kg/h]	342,8	342,8	
User Variables	Std Ideal Liq Vol Flow [m3/h]	0,3483	0,3483	
Notes Molar Enthalpy [kJ/kgmole]		-2,847e+005	-2,847e+005	
Cost Parameters Normalized Yields	Molar Entropy [kJ/kgmole-C]	11,51	11,51	
	Heat Flow [kJ/h]	-4,520e+006	-4,520e+006	
	Liq Vol Flow @Std Cond [m3/h]	0,3450	0,3450	
	Fluid Package	Basis-1		
	Utility Type			

RESULTADOS

COMPARACIÓN DE LAS SOLUBILIDADES OBTENIDAS DEL MODELO MATEMÁTICO Y DATOS EXPERIMENTALES

MODELADO DE LA COLUMNA DE ABSORCIÓN

Diámetro de la columna y tipo de empaque

Concentración	Empaque	\boldsymbol{D}_{c} (in)	x	у	<i>D_c</i> (cm)	Relación D_c / D_a
2.5 mol/dm³	Rasching Ceramico	0.75	0.16	0.057	24.78	13.005

Área interfacial, coeficiente de transferencia de masa y coeficiente de transferencia de calor

Concentración	2.5 mol/dm ³
a _w (m²/m³)	71.02956
k_{L,CO_2} (m/s)	0.000127374
k _{G,H2} O (m/s)	0.070631085
k _{G,CO2} (m/s)	0.047483249
h (W/m²*°C)	1.721168205

Variación en la concentración de CO₂ en el gas

CONTENIDO

CONCLUSIONES

- El modelo se ha resuelto con éxito en la operación de absorción de CO₂ con soluciones de AMP y se ha validado con datos obtenidos de plantas piloto de literatura, los resultados de solubilidad obtenidos tuvieron errores por debajo del 10%.
- El proceso de simulación arrojo resultados muy por debajo de la solubilidad establecida en trabajos experimentales para cada una de las concentraciones de AMP.
- Parámetros como la tensión superficial, el factor de mejora por la reacción y la difusividad del CO₂
 produce cambios significativos en la fracción molar de salida del CO₂, esto se debe a que afectan de forma directa el coeficiente global de transferencia de masa.

• Validar el modelo para nuevas condiciones de temperatura y expresar como es afectada la

fracción molar de CO_2 a la salida del absorbedor.

- Modificar el tamaño y tipo de empaque para ver cómo afecta a parámetros como los coeficientes de transferencia de masa, coeficientes de transferencia de calor y área interfacial de transferencia de masa.
- Realizar un análisis de costos del proceso de absorción-desorción para poder establecer un flujo óptimo de entrada del absorbente y su concentración.

