

Diseño de divisores de potencia tipo T dual utilizando guías de onda cuadrada

Cisneros Bustillos, David Ismael

Departamento de Eléctrica, Electrónica y Telecomunicaciones

Carrera de Ingeniería en Electrónica y Telecomunicaciones

Trabajo de titulación, previo a la obtención del título de Ingeniero en Electrónica y Telecomunicaciones

Msc. Haro Báez, Raúl Vinicio

27 de julio del 2021

Curiginal

Document Information TESIS_TOTAL_rh_v9_Urkund.pdf (D110798660) Analyzed document 7/27/2021 7:06:00 PM Submitted Submitted by Submitter email david.ismcb@gmail.com 16. POUL HARD BRIDZ Similarity 5% Analysis address rvharo.espe@analysis.urkund.com Sources included in the report Universidad de las Fuerzas Armadas ESPE / Tesis_JuanPablo.docx Document Tesis_JuanPablo.docx (D32681273) 2 SA Submitted by: jpburbano2@espe.edu.ec Receiver: rvharo.espe@analysis.urkund.com URL: https://docplayer.es/87493853-Departamento-de-electrica-y-electronica-carrera-de-88 1 W ingenieria-en-electronica-y-telecomunicaciones.html Fetched: 8/15/2020 8:42:29 PM URL: http://rfcas.eps.uam.es/web/sites/default/files/trabajos_academicos/Memoria_TFG_ACABADO 88 2 W _V2_madrid_VERSIONIMPRIMIR.pdf Fetched: 12/5/2020 4:37:36 AM URL: https://repositorio.espe.edu.ec/bitstream/21000/13779/1/T-ESPE-057506.pdf W 88 1 Fetched: 11/24/2019 9:33:07 AM 1576949752_553_PRÁCTICA_#_4_componentes_de_guias_de_onda.docx SA Document 1576949752_553__PRÁCTICA_#_4_componentes_de_guias_de_onda.docx 1 (D61605891) URL: http://repositorio.espe.edu.ec/bitstream/21000/14061/1/T-ESPE-057621.pdf 88 1 W Fetched: 7/16/2021 10:21:24 PM Universidad de las Fuerzas Armadas ESPE / Tesis_Pregrado_Edwin_Llugsha.pdf Document Tesis_Pregrado_Edwin_Llugsha.pdf (D35617359) SA 1 Submitted by: erllugsha@espe.edu.ec Receiver: rvharo.espe@analysis.urkund.com URL: https://docplayer.es/8604221-Medios-de-transmision-guia-de-onda-fibra-optica-cable-88 1 W coaxial-atmosfera.html Fetched: 7/27/2021 7:07:00 PM

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y

TELECOMUNICACIONES

CARRERA DE INGENIERÍA EN ELECTRÓNICA Y TELECOMUNICACIONES

CERTIFICACIÓN

Certifico que el trabajo de titulación "Diseño de divisores de potencia tipo T dual utilizando guías de onda cuadrada" fue realizado por el señor Cisneros Bustillos David Ismael el cual ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenido; por lo tanto cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Sangolquí, 27 de julio del 2021

Msc. Haro Baez Raúl Vinicio

C.C. 171350029-4

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES CARRERA DE INGENIERÍA EN ELECTRÓNICA Y TELECOMUNICACIONES

RESPONSABILIDAD DE AUTORÍA

Yo, **Cisneros Bustillos David Ismael**, con cédula de ciudadanía nº 1722243373, declaro que el contenido, ideas y criterios del trabajo de titulación "**Diseño de divisores de potencia tipo T dual utilizando guías de onda cuadrada**" es de mi autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Sangolquí, 27 de julio del 2021

Cisneros Bustillos David Ismael

C.C. 1722243373

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y

TELECOMUNICACIONES

CARRERA DE INGENIERÍA EN ELECTRÓNICA Y TELECOMUNICACIONES

AUTORIZACIÓN DE PUBLICACIÓN

Yo, **Cisneros Bustillos David Ismael**, con cédula de ciudadanía nº 1722243373, autorizo a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de titulación: "**Diseño de divisores de potencia tipo T dual utilizando guías de onda cuadrada**" en el Repositorio Institucional, cuyo contenido, ideas y criterios son de mi responsabilidad.

Sangolquí, 27 de julio del 2021

Cisneros Bustillos David Ismael

C.C. 1722243373

Dedicatoria

Este trabajo es dedicado a mi madre y abuela, personas que han pasado la mayoría de tiempo junto a mí. Con las cuales comparto varios recuerdos buenos, tristes, felices y un sinfín más. Han sido el mayor apoyo que he tenido en toda mi vida y es gracias a ellas y su dedicación tanto como madres, así como docentes, que he podido crecer en el ámbito académico y como persona.

Cisneros Bustillos David Ismael

Agradecimiento

Agradezco a los docentes de los cuales aprendí en la universidad, gracias a su conocimiento, dedicación y pasión a lo que hacen han inculcado en mí el interés no solo por tópicos relacionados a mi carrera, pero también en aquellos relacionados con las relaciones humana y sociedad. Una buena base para construirse no solo profesionalmente, también como persona.

A mis compañeros, que gracias a ellos pude comprender a fondo la importancia del trabajo en equipo, apreciar el tiempo que paso con ellos o las personas cercanas a mí y que la ayuda es indispensable para superar situaciones que puedan sobrepasar a uno mismo.

A mi familia, que ha sido un apoyo durante la etapa universitaria. Brindándome pequeñas ayudas sin las cuales hubiese pasado momentos difíciles. Ayudándome a comprender y tratar con situaciones o eventos nuevos para mí. Brindándome consejos para mantenerme saludable.

Cisneros Bustillos David Ismael

Índice de Contenidos

Diseño de divisores de potencia tipo T dual utilizando guías de onda cuadrada1
Hoja de resultados de la herramienta Urkund2
Certificación de trabajo de titulación3
Responsabilidad de autoría4
Autorización de publicación5
Dedicatoria6
Agradecimiento7
Índice de Contenidos8
Índice de Tablas13
Índice de Figuras15
Resumen19
Abstract20
Capítulo I21
Introducción21
Antecedentes21
Justificación22
Alcance23
Objetivos24
Objetivo General24
Objetivos Específicos24

Capítulo II					
Guías de Onda26					
Modos de Propagación27					
Guía de Onda Rectangular29					
Guía de Onda Cuadrada31					
Guía de Onda Circular32					
Uniones de Potencia Tipo T34					
Divisor de Potencia Tipo T Truncado35					
Matriz de Parámetros S Generalizada para Uniones Tipo T de Tres Puertos					
Capítulo III					
Elementos Utilizados					
Programa CST STUDIO SUITE					
Optimización39					
Interfaz de Usuario41					
Lectura de Resultados42					
MATLAB43					
Capítulo IV44					
Diseño y Resultados44					
Referencia de Diseño44					
Diseño de Divisor T Inicial47					

Mejora por Ángulos53					
Mejora por Puntos55					
Mejora N°158					
Respuesta en Frecuencia de Mejora N°159					
Mejora N°261					
Respuesta en Frecuencia de Mejora N°262					
Mejora N°364					
Respuesta en Frecuencia de Mejora N°365					
Mejora N°466					
Respuesta en Frecuencia de Mejora N°467					
Mejora N°568					
Respuesta en Frecuencia de Mejora N°569					
Mejora N°670					
Respuesta en Frecuencia de Mejora N°672					
Mejora N°773					
Respuesta en Frecuencia de Mejora N°774					
Mejora N°875					
Respuesta en Frecuencia de Mejora N°877					
Mejora N°978					
Respuesta en Frecuencia de Mejora N°9					

Mejora N°1080				
Respuesta en Frecuencia de Mejora N°1082				
Mejora N°1183				
Respuesta en Frecuencia de Mejora N°1186				
Análisis de Discontinuidades88				
Análisis de Sección 189				
Análisis de Sección 291				
Análisis de Sección 393				
Análisis de Sección 496				
Adaptación de Divisor a Banda Ka9				
Respuesta en Frecuencia100				
Adaptación a Frecuencia Central en 28GHz101				
Respuesta en Frecuencia con k_{28} =1.964104				
Análisis de Fase105				
Respuesta de Fase Previo a Mejoras105				
Respuesta de Fase Después de Mejoras106				
Capítulo V108				
Conclusiones y Recomendaciones108				
Conclusiones108				
Recomendaciones109				

Trabajos Futuros	
Bibliografía	

Índice de Tablas

Tabla 1 Estándares para guías de onda rectangulares	29
Tabla 2 Valores de P'mn para modos TE en guía de onda circular	33
Tabla 3 Requisitos mínimos y recomendados para instalar CST	38
Tabla 4 Parámetros de solución 4	46
Tabla 5 Especificaciones de diseño de divisor T	47
Tabla 6 Parámetros de esquema de curva de codo simplificado	48
Tabla 7 Variación de parámetros (mejora por ángulos)	54
Tabla 8 Puntos de divisor T (mejora por puntos)	55
Tabla 9 Variación de parámetros de mejora 1	58
Tabla 10 Variación de parámetros de mejora 2	61
Tabla 11 Variación de parámetros de mejora 3	64
Tabla 12 Variación de parámetros de mejora 4	66
Tabla 13 Variación de parámetros de mejora 5	68
Tabla 14 Variación de parámetros de mejora 6	71
Tabla 15 Variación de parámetros de mejora 7	73
Tabla 16 Variación de parámetros de mejora 8	76
Tabla 17 Variación de parámetros de mejora 9	79
Tabla 18 Puntos insertados al diseño de divisor T	81
Tabla 19 Variación de parámetros de mejora 10	81
Tabla 20 Nuevo listado de puntos del divisor tipo T	84
Tabla 21 Variación de parámetros de mejora 11 1	86
Tabla 22 Variación de parámetros en coordenadas X y Y de la sección 1	90
Tabla 23 Variación de parámetros en coordenadas X y Y de la sección 2	92

Tabla 24	Variación de parámetros en coordenadas X y Y de la sección 3	94
Tabla 25	Variación de parámetros en coordenadas X y Y de la sección 4	96
Tabla 26	Parámetros de divisor T en banda Ka	99
Tabla 27	Frecuencia central para distintos valores de k ₂₈	L03

Índice de Figuras

Figura 1 Guías de onda 2	6
Figura 2 Modos de propagación de onda 2	8
Figura 3 Guía de onda rectangular2	9
Figura 4 Guía de onda cuadrada	2
Figura 5 Guía de onda circular	2
Figura 6 Líneas de campo de modos TE_{01} y TE_{11} en guía de onda circular	4
Figura 7 Unión T tipo E	5
Figura 8 Unión T tipo H	5
Figura 9 Diafragma capacitivo e inductivo en guía de onda	6
Figura 10 Poste y tornillo en guía de onda	6
Figura 11 Interfaz de usuario de CST STUDIO SUITE	1
Figura 12 Respuesta en frecuencia con nomenclatura 4	2
Figura 13 Interfaz de usuario de MATLAB R2017b 4	3
Figura 14 Respuesta en frecuencia del codo de referencia4	5
Figura 15 Esquema de curva de codo 4	5
Figura 16 Disposición de secciones del codo según Unidad4	6
Figura 17 Esquema de curva de codo simplificado 4	8
Figura 18 Respuesta en frecuencia de codo simplificado 4	9
Figura 19 Respuesta en frecuencia de codo reducido5	0
Figura 20 Diseño inicial de divisor T	1
Figura 21 Respuesta de coeficientes de reflexión (puerto 1)5	2
Figura 22 Respuesta de coeficiente de transmisión a puerto 25	2
Figura 23 Respuesta de coeficiente de transmisión a puerto 35	3

Figura 24	Respuesta de coeficientes de reflexión	54
Figura 25	Respuesta de coeficientes de transmisión	55
Figura 26	Puntos de divisor T, (a) parte izquierda y (b) parte derecha	57
Figura 27	Parámetros modificado en divisor T de la mejora 1	59
Figura 28	Respuesta de coeficientes de reflexión de mejora 1	60
Figura 29	Respuesta de coeficientes de transmisión, mejora 1	61
Figura 30	Parámetros modificado en divisor T de la mejora 2	62
Figura 31	Respuesta de coeficientes de reflexión de mejora 2	63
Figura 32	Respuesta de coeficientes de transmisión, mejora 2	63
Figura 33	Parámetros modificado en divisor T de la mejora 3	64
Figura 34	Respuesta de coeficientes de reflexión de mejora 3	65
Figura 35	Respuesta de coeficientes de transmisión, mejora 3	65
Figura 36	Parámetros modificado en divisor T de la mejora 4	66
Figura 37	Respuesta de coeficientes de reflexión de mejora 4	67
Figura 38	Respuesta de coeficientes de transmisión, mejora 4	68
Figura 39	Parámetros modificado en divisor T de la mejora 5	69
Figura 40	Respuesta de coeficientes de reflexión de mejora 5	70
Figura 41	Respuesta de coeficientes de transmisión, mejora 5	70
Figura 42	Parámetros modificado en divisor T de la mejora 6	72
Figura 43	Respuesta de coeficientes de reflexión de mejora 6	72
Figura 44	Respuesta de coeficientes de transmisión de mejora 6	73
Figura 45	Parámetros modificado en divisor T de la mejora 7	74
Figura 46	Respuesta de coeficientes de reflexión de mejora 7	74
Figura 47	Respuesta de coeficientes de transmisión de mejora 7	75

Figura 48	Parámetros modificado en divisor T de la mejora 87	7
Figura 49	Respuesta de coeficientes de reflexión de mejora 87	7
Figura 50	Respuesta de coeficientes de transmisión de mejora 87	'8
Figura 51	Parámetros modificado en divisor T de la mejora 97	'9
Figura 52	Respuesta de coeficientes de reflexión de mejora 98	80
Figura 53	Respuesta de coeficientes de transmisión de mejora 98	80
Figura 54	Parámetros modificado en divisor T de la mejora 108	32
Figura 55	Respuesta de coeficientes de reflexión de mejora 108	3
Figura 56	Respuesta de coeficientes de transmisión de mejora 108	3
Figura 57	Parámetros modificado en divisor T de la mejora 118	6
Figura 58	Respuesta de coeficientes de reflexión de mejora 118	57
Figura 59	Respuesta de coeficientes de transmisión de mejora 118	57
Figura 60	División de divisor tipo T en secciones de discontinuidad8	9
Figura 61	Respuesta del coeficiente de reflexión del modo TE ₁₀ tras añadir sección 19)1
Figura 62	Respuesta del coeficiente de reflexión del modo TE ₀₁ tras añadir sección 19)1
Figura 63	Coeficientes de reflexión del modo TE ₁₀ tras añadir sección 29	13
Figura 64	Coeficientes de reflexión del mod TE ₀₁ tras añadir sección 29	13
Figura 65	Coeficientes de reflexión del modo TE ₁₀ tras añadir la sección 39)5
Figura 66	Coeficientes de reflexión del modo TE ₀₁ tras añadir la sección 39)5
Figura 67	Coeficientes de reflexión del modo TE ₁₀ tras añadir la sección 49)7
Figura 68	Coeficientes de reflexión del modo TE01 tras añadir la sección 49	8
Figura 69	Coeficiente de reflexión de divisor T para banda Ka10)1
Figura 70	Coeficiente de transmisión de divisor T para banda Ka10)1
Figura 71	Coeficientes de reflexión con k ₂₈ =1.981)3

Figura 72	Coeficientes de reflexión para k ₂₈ =1.964	104
Figura 73	Coeficientes de transmisión para k_{28} =1.964	104
Figura 74	Fase de parámetros S_{21} y S_{31} del modo T E_{10} de diseño de divisor T inicial	105
Figura 75	Fase de parámetros S_{21} y S_{31} del modo TE_{01} de diseño de divisor T inicial	106
Figura 76	Fase de parámetros S_{21} y S_{31} del modo TE_{10} y TE_{01} del divisor T de la Mejora N°11 T	107

Resumen

El presente trabajo muestra el diseño y proceso de optimización de una unión, o divisor, tipo T que trabaja dentro de la banda Ku con polarización dual y utilizando guías de onda cuadrada, el cual ha sido también adaptado para trabajar dentro de la banda Ka. El diseño se basa en un artículo científico, del cual se deriva la primera unión T, sobre el que se realizan los ajustes necesarios para adaptar la guía de onda y que trabaje dentro de la banda Ku. Posteriormente, se prueban dos formas de optimización sobre la guía: mejora por ángulos, donde se varían los ángulos de las secciones que conforman al divisor; y mejora por puntos, variando la posición de los puntos del divisor. Se opta por la segunda mejora como método principal, con el cual se consigue diseñar un divisor T con un ancho de banda de trabajo de 1.007GHz dentro de la banda Ku, dando un total de 7.05% de ancho de banda disponible, con pérdidas de retorno menores a treinta decibelios y consiguiendo dividir equitativamente la potencia de entrada en los puertos de salida. La adaptación a la banda Ka se consigue escalando las dimensiones de la guía de onda que trabaja en la banda Ku, obteniendo un ancho de banda de trabajo de 1.967GHz con una frecuencia central en 28GHz, dando un 6.96% de ancho de banda disponible.

Palabras Clave:

- GUÍA DE ONDA CUADRADA
- DIVISOR TIPO T
- PARÁMETROS S

Abstract

The present work shows the design and optimization process of a T-type junction, or divider, that works within the Ku band with dual polarization and using square waveguides, which has also been adapted to work within the Ka band. The design is based on a scientific article, from which the first T-divider is derived, on which necessary adjustments are made to adapt the waveguide to work within the Ku band. Subsequently, two forms of improvement on the guide are tested: improvement by angles, where the angles of the sections that make up the divider are varied; and improvement by points, varying the position of the divider points. The second improvement is chosen as the main method, with which it is possible to design a T divider with a working band of 1.007GHz within the Ku band, giving a total of 7.05% of available bandwidth, with return losses of less than thirty decibels and managing to divide the input power equally into the two outputs. The adaptation to the Ka band is achieved by scaling the dimensions of the waveguide that works in the Ku band, obtaining a working bandwidth of 1.967GHz with a central frequency of 28GHz, giving 6.96% of available bandwidth.

Key Words:

- SQUARE WAVEGUIDE
- T DIVIDER
- PARAMETERS S

Capítulo I

Introducción

Antecedentes

Las telecomunicaciones han hecho posible comunicarse con cualquier persona utilizando comunicaciones inalámbricas, dentro de este tipo de comunicaciones se encuentran las comunicaciones de microonda. Estas se han vuelto parte importante de la infraestructura de las telecomunicaciones permitiendo a las personas acceder a servicios como internet o televisión en zonas rurales o zonas remotas, presentando un mejor rendimiento en comparación con la alternativa alámbrica. Las comunicaciones satelitales están sujetas a trabajar en la banda de ondas milimétricas y microondas (Pratt & Allnutt, 2020).

Los tubos de onda progresivas (TWT) son capaces de trabajar con ondas milimétricas y microondas actuando como amplificadores de potencia. En este dispositivo la amplificación se da por la interacción entre los campos electromagnéticos de microondas viajeras y un haz de electrones, siendo ambas paralelas entre sí (Golio & Golio, 2008).

Otro dispositivo que trabaja con microondas es el amplificador de potencia de estado sólido (SSPA), cuya salida de potencia es menor que la del tubo de ondas progresivas, pero tiene mejor linealidad, un área de huella más pequeña, así como un tamaño más pequeño en comparación al TWT (Bera, 2019).

Las guías de onda son elementos pasivos que sustituyen a las líneas de transmisión al ser necesario propagar energía electromagnética de varios rangos de potencia y a partir de 1GHz de frecuencia, alcanzando la banda de ondas milimétricas y microondas. La forma de una guía de onda puede ser variada, siendo las más comunes las rectangulares y circulares. Éstas son huecas, rellenas de un dieléctrico, y se construyen con metales conductores para confinar la energía electromagnética dentro de ellas (Tomasi, 2003). Al trabajar con frecuencias elevadas varios fenómenos suceden dentro de una guía de onda dependiendo del diseño y la calidad de construcción. La calidad en la construcción de una guía de onda es de vital importancia ya que de no ser así se puede producir distorsión en la distribución de campos electromagnéticos. Dicha distorsión se atribuye a la excitación de otros modos de orden superior, otorgándoles una característica sea capacitiva o inductiva en cada cambio geométrico. A la vez, estas distorsiones pueden ser deseadas dado que se puede aprovechar de las características antes mencionadas para acoplar correctamente elementos en un sistema de RF disminuyendo las reflexiones en los puntos de contacto al mínimo (Sorrentino & Bianchi, 2010).

Justificación

Con la creciente demanda de capacidad de los servicios de comunicación se requiere la optimización de las pérdidas de inserción y de retorno, así como del ancho de banda y manejo de potencia que los sistemas requieren. En los servicios satelitales, esto viene a ser un punto crucial pues el ancho de banda es un recurso limitado y muy valioso. Varias soluciones se han presentado con la desventaja de que su fabricación es por métodos no convencionales, y por ende costosa, o su eficiencia es baja, alcanzando el 22% del ancho de banda (Cano & Mediavilla, 2016).

La amplificación de las señales de microondas y ondas milimétricas, por lo general, se la realiza a partir de tubo de ondas progresivas (Traveling-Wave Tube o TWT) o amplificadores de potencia de estado sólido (Solid State Power Amplifier o SSPA). La desventaja que conlleva el uso de este elemento es el tamaño, el peso, los costos asociados al elemento, la complejidad y la cantidad elevada de voltaje que requieren los elementos adicionales (Ghanadi, 2012).

La aplicación de guías de onda cuadrada en codos ha demostrado un excelente desempeño permitiendo un ancho de banda disponible del ~34%, en la banda Ku, y

manteniendo las pérdidas de retorno, aislamiento en -30dB en algunos dispositivos de microonda y ondas milimétricas, como filtros, acopladores direccionales, transductor ortomodal (OMT), Matrices de Butler, entre otros; utilizando los modos ortogonales TE₁₀ y TE₀₁ con polarización dual lineal (Cano & Mediavilla, 2016).

Respecto a filtros de banda estrecha utilizados en comunicaciones, es posible reducir el espacio que ocupan usando tanto guías de onda cuadrada como circular, de esta manera, los filtros diseñados presentan menos pérdidas en comparación con diseños Chevychev o Butterworth similares (Atia Ali, 1972).

Debido al excesivo tamaño de los elementos convencionales utilizados con ondas milimétricas (TWT, SSPA) así como el costo asociado al mismo, complejidad y tecnología requerida para fabricarlos, en este documento se detalla el diseño y optimización de una unión T dual, o para polarización dual, utilizando guías de onda cuadrada. A fin de aprovechar las ventajas que presenta la guía de onda cuadrada en comparación con otros dispositivos.

Otra razón para llevar a cabo el proyecto es la mínima cantidad de bibliografía existente acerca de guías de onda cuadrada, siendo mayoritarios las guías de onda rectangulares o circulares y, desde el punto de vista académico, el proyecto permite contribuir con la Universidad de las Fuerzas Armadas ESPE en su misión de formar profesionales e investigadores de excelencia, creativos y humanistas, con capacidad de liderazgo, pensamiento crítico, éticos y con alta conciencia ciudadana; que generen, apliquen y difundan el conocimiento y proporcionen e implanten alternativas de solución a los problemas de la colectividad en el ámbito de la Ingeniería en Electrónica y Telecomunicaciones.

Alcance

Para el desarrollo del proyecto se realizará el diseño de un divisor T dual utilizando guía de onda cuadrada. Para ello se utilizarán diseños presentados en documentos científicos que

serán modificados y optimizados a fin de conseguir reducir las pérdidas de retorno a, al menos, -30dB dentro de la banda Ku dado que es un rango de espectro que no presenta límites con la potencia y por ende los dispositivos físicos, como antenas, pueden ser reducidos en su tamaño.

Para iniciar, se requiere una base de información por lo cual es necesario investigar acerca de la tecnología de guías de ondas y uniones T a fin de familiarizarse con los parámetros que definen a las guías de onda y comprender el comportamiento de las ondas dentro de las éstas. Es importante considerar estudiar sus características, su funcionalidad y diseño.

Acto seguido se procede con el diseño de un divisor T en guía de onda cuadrada con la ayuda del software de computador CST Studio Suite. Este software permite la extracción de características electromagnéticas de los elementos que en él se diseñen. Una de las características importantes son los parámetros de dispersión (*Scattering* o *S*) las cuales definen el comportamiento del dispositivo. En este mismo software se procede con la optimización del divisor T diseñada a fin de conseguir un nivel en las pérdidas de retorno de por lo menos a - 30dB, y a obtener un máximo de banda útil dentro de la banda Ku. ADEMAS, con el resultado del diseño del divisor T adaptado a la banda Ku se procede a adaptarlo a la banda Ka.

Con los resultados arrojados por la simulación, las consideraciones y proceso de diseño se redactará las conclusiones y recomendaciones del proyecto de investigación. Además, se considera una posible construcción de un prototipo.

Objetivos

Objetivo General

Diseñar un divisor T dual en guía de onda cuadrada.

Objetivos Específicos

 Investigar bibliografía relacionada con guías de onda, uniones tipo T y su respectivo diseño.

- Simular el diseño del divisor tipo T en guía de onda cuadrada.
- Optimizar el diseño del divisor T en guía de onda cuadrada.
- Implementar el prototipo del divisor T en guía de onda cuadrada a partir de impresión 3D.
- Validar el diseño del divisor tipo T para una posible construcción.

Capítulo II

Guías de Onda

Una guía de onda es un tuvo hueco que generalmente es rectangular o circular, que funciona como confinamiento para ondas electromagnéticas que se propaga en su interior. Para ello, la guía de onda se diseña con material conductor a fin de reflejar la energía de la onda en su superficie interna. La propagación de la energía se produce no en las paredes de la guía, pero en su dieléctrico interno, generalmente aire, rebotando en las paredes en forma de zigzag (Pozar, 2011).

Si se usa un buen conductor para las paredes de la guía, así como las mismas son delgadas, las pérdidas de energía por corriente inducida en las paredes tienden a ser mínimas (Tomasi, 2003).

Figura 1

Guías de onda

Nota. Esta imagen es obtenida de: (Igor, 2016)

Las guías de onda funcionan como filtros pasa-altos y la frecuencia que limita el punto de atenuación y transmisión se la conoce como frecuencia de corte del modo fundamental, para la guía de onda rectangular el modo fundamental es el TE₁₀ y para la guía circular es el modo TE₁₁. Toda onda que posea una frecuencia menor a la de corte no se transmitirá por la guía de onda. La frecuencia de corte para el modo fundamental de una guía de onda rectangular se define con la Ecuación 1 y para el modo fundamental de una guía de onda circular se define con la Ecuación 2 (Tomasi, 2003).

$$f_{c_{10}} = \frac{c}{2a}$$
(1)

$$f_{c_{11}} = 1.841 \left(\frac{c}{2\pi a}\right) \tag{2}$$

Donde *c* define la velocidad de propagación de onda en espacio libre en ambas ecuaciones y, para la Ecuación 1, *a* es el valor del lado de guía de onda más largo; para la Ecuación 2, *a* es el valor del radio de la guía de onda. Estas ecuaciones son tratadas a fondo más adelante.

Modos de Propagación

Las ondas electromagnéticas pueden propagarse a través de un medio o vacío con diferentes modos, cada una con sus propiedades respectivas. Estos modos de propagación se conocen como Transversal Electromagnético (TEM), Transversal Eléctrico (TE) y Transversal Magnético (TM) (Pozar, 2011).

- El modo TEM no presenta componentes perpendiculares a la dirección de propagación tanto para el campo magnético como eléctrico. Este modo es comúnmente usado en cable coaxial o alimentadores de alambre abierto. $E_z = H_z = 0$ (Pozar, 2011).
- El modo TE no contiene componente eléctrica en la dirección de propagación, pero si magnética. También es conocido como onda H, y se caracteriza por que el campo

eléctrico es siempre perpendicular a la dirección de propagación. $E_z = 0$ y $H_z \neq 0$ (Pozar, 2011).

El modo TM no contiene componente magnética en la dirección de propagación y se las conoce también como ondas E, caracterizadas por su campo magnético siempre perpendicular a la dirección de propagación. H_z = 0 y E_z ≠ 0 (Pozar, 2011).

Los diferentes tipos de modos de guía de onda TE y TM se representan según números enteros después de ellos representados por las letras m y n: $TE_{m,n}$. La letra "m" y "n" pueden tomar valores de 0 hasta el infinito, pero solo un número limitado de estos puede viajar a través de guías de ondas (MI-WAVE, 2007).

En la Figura 2 se muestra el campo eléctrico (E), magnético (H) y densidad de corriente eléctrica (J), de los modos TE₁₀, TE₀₁ y TE₂₀. Cada uno de estos modos es bien diferenciado por el número de patrones que genera. El modo TE₁₀ y TE₀₁ posee un solo patrón, mientras que el modo TE₂₀ posee dos patrones en el campo eléctrico, magnético y de densidad de corriente eléctrica.

Figura 2

Modos de propagación de onda

Nota. Esta imagen es obtenida de: (radaruax, 2017)

Guía de Onda Rectangular

Consta de cuatro paredes conductoras conectadas las cuales guían la energía de la onda electromagnética, como resultado se genera una cantidad mínima de corriente en ellas, pero manteniendo las pérdidas resistivas al mínimo (MI-WAVE, 2007). Por lo general, las paredes de este tipo de guías tienen una proporción de 2 a 1, siendo el ancho el doble de la altura, representados por las letras "a" y "b", respectivamente. Las guías de onda rectangulares son comúnmente fabricadas con aluminio, latón o cobre (Berger, 2003).

Figura 3

Guía de onda rectangular

Nota. Esta imagen es obtenida de: (Tomasi, 2003)

Las dimensiones de ancho y alto están estandarizadas según la banda de frecuencia en

la que trabajará a guía. Este estándar se muestra en la Tabla 1.

Tabla 1

Banda	de	Estándar de guía de	Límites de	Dimensiones
frecuencia		onda	frecuencia [GHz]	internas [mm]
Banda R		WR-430	1.70 a 2.60	109.22 x 54.61
Banda D		WR-340	2.20 a 3.3	86.36 x 43.18

Estándares para guías de onda rectangulares

	de Estandal de guia de	Limites de	Dimensiones
frecuencia	onda	frecuencia [GHz]	internas [mm]
Banda S	WR-284	2.60 a 3.95	72.136 x 34.036
Banda E	WR-229	3.30 a 4.90	58.166 x 29.21
Banda G	WR-187	3.95 a 5.85	47.548 x 22.148
Banda F	WR-159	4.90 a 7.05	40.386 x 20.193
Banda C	WR-137	5.85 a 8.20	34.848 x 15.798
Banda H	WR-112	7.05 a 10.00	28.498 x 12.623
Banda X	WR-90	8.2 a 12.4	22.86 x 10.16
Banda Ku	WR-60	12.4 a 18.0	15.798 x 7.899
Banda K	WR-51	15.0 a 22.0	12.954 x 6.477
Banda K	WR-42	18.0 a 26.5	10.668 x 4.318
Banda Ka	WR-22	26.5 a 40.0	7.112 x 3.556
Banda Q	WR-28	33 a 50	5.689 x 2.844
Banda U	WR-19	40 a 60	4.775 x 2.387
Banda V	WR-15	50 a 75	3.759 x 1.879
Banda E	WR-12	60 a 90	3.098 x 1.549
Banda W	WR-10	75 a 110	2.54 x 1.27
Banda F	WR-8	90 a 140	2.032 x 1.016
Banda D	WR-6	110 a 170	1.651 x 0.825
Banda G	WR-5	140 a 220	1.295 x 0.647
Banda Y	WR-2	325 a 500	0.508 x 0.254

Nota. Esta tabla es obtenida de (MI-WAVE, 2007) y de la cual se ha modificado la columna Dimensiones internas, pues originalmente se presentan los datos en pulgadas. Por lo general, solo se transmite el modo de onda $TE_{1,0}$ en este tipo de guía, siendo el modo dominante y su frecuencia de corte, considerando el dieléctrico aire, se relaciona con sus dimensiones, "*a*" y "*b*", definiéndose en la Ecuación 3.

$$f_c = \frac{c}{2\pi} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} \tag{3}$$

Siendo *c* la velocidad de propagación en espacio libre, f_c la frecuencia de corte, "*a*" y "*b*" las dimensiones de la guía de onda, "m" y "n" los números que definen al modo. Al trabajar solo con el modo TE₁₀, la Ecuación 3 se reduce a la Ecuación 1, mostrada al inicio de este capítulo.

Idealmente se trabaja con la guía de onda rectangular dentro del rango limitado por las frecuencias de corte del modo TE_{10} y TE_{20} . Donde, utilizando la Ecuación 3 con el modo TE_{20} se obtiene que la frecuencia máxima de trabajo de la guía de onda rectangular es el doble de la frecuencia de corte para el modo TE_{10} (Pozar, 2011), Ecuación 4.

$$f_{c_{20}} = \frac{c}{a} \tag{4}$$

Guía de Onda Cuadrada

Son una variante de las guías de onda rectangulares siendo su forma cuadrada su principal diferencia. En este tipo de guía se puede propagar las ondas con modos TE₁₀ y TE₀₁ polarizadas ortogonalmente, sin experimentar interacción entre sí, manteniendo una sola frecuencia de corte para ambos, definida por la Ecuación 1 (Olivares, 2018).

Guía de onda cuadrada

Guía de Onda Circular

Las guías de onda circulares son básicamente tubos huecos conductores de radio r=a y longitud *l*. Son similares en propiedades a las guías de onda rectangulares con la diferencia que la atenuación disminuye al incrementar la frecuencia, razón de su uso en enlaces de comunicaciones largos de bajas pérdidas.

Figura 5

Guía de onda circular

Nota. Esta imagen es obtenida de: (Kumar, 2018).

El modo mínimo y dominante para las guías de onda circulares es el TE₁₁ y su frecuencia de corte se define por la Ecuación 5, considerando aire como dieléctrico.

$$f_c = \frac{p'_{nm}c}{2\pi a} \tag{5}$$

Siendo *c* la velocidad de propagación de las ondas en espacio libre, "*a*" es el radio de la guía y P'_{nm} es un valor adimensional definido por el modo que atraviesa la guía de onda (Kumar, 2018), listado en la Tabla 2.

Tabla 2

Valores de P'mn para modos TE en guía de onda circular

n	m=1	m=2	m=3
0	3.832	7.016	10.173
1	1.841	5.331	8.536
2	3.054	6.706	9.969

Nota. Esta tabla ha sido extraída de (Kumar, 2018) y ha sido restructurada para facilitar la lectura de datos.

En la Figura 6 se muestran como son las líneas de campo de los modos TE_{01} y TE_{11} una guía de onda circular.

Líneas de campo de modos TE₀₁ y TE₁₁ en guía de onda circular

Nota. Esta imagen es obtenida de: (Pozar, 2011).

Uniones de Potencia Tipo T

La unión, entre las redes de distribución de potencia, más comunes el tipo T en guía de onda rectangular. Esta se consigue uniendo una rama de guía ortogonalmente a la guía de onda principal en el plano E o plano H (Sorrentino & Bianchi, 2010).

Este tipo de uniones son usados para combinar, dividir o extraer la potencia dentro de la guía de onda. Existen varios tipos de uniones siendo los principales la unión tipo E y unión tipo H (Poole, 2016).

La unión tipo E se obtiene al ubicar la rama de guía de onda en la misma dirección que el campo eléctrico (E), Figura 7. Al usar este tipo de guía se obtiene como resultado dos salidas desfasadas de la señal de entrada 180° (Poole, 2016).

Unión T tipo E

Nota. Esta imagen es obtenida de: (Sorrentino & Bianchi, 2010)

La unión tipo H ubica la rama de guía de onda paralelo al campo magnético H. Esto permite que la onda en el puerto de entrada, cualquiera que sea, esté en fase con las ondas en los puertos de salida (Poole, 2016). La Figura 8 muestra este tipo de guía de onda.

Figura 8

Unión T tipo H

Nota. Esta imagen es obtenida de: (Sorrentino & Bianchi, 2010)

Divisor de Potencia Tipo T Truncado

Por si mismos los divisores de potencia tipo T genera una discontinuidad en una guía de onda principal, lo que produce distorsión en las distribuciones de campos electromagnéticos dentro de la guía dada su sensibilidad a discontinuidades (Pozar, 2011).

Para tratar con las distorsiones generalmente se utilizan diafragmas, o irises, capacitivos o inductivos; así como barras de metal (Berdnik, Katrich, Nesterenko, & Penkin, 2016), como tornillos o postes, esto para compensar la reactancia asociada a la discontinuidad.

Diafragma capacitivo e inductivo en guía de onda

Nota. Esta imagen es obtenida de: (Tomasi, 2003)

Figura 10

Poste y tornillo en guía de onda

Nota. Esta imagen es obtenida de: (Tomasi, 2003)

Matriz de Parámetros S Generalizada para Uniones Tipo T de Tres Puertos

Debido a la dificultad de representar la respuesta de una guía de onda en términos de voltaje y corriente, se usan los parámetros de dispersión (*scattering*, S) para describirlas en términos de la amplitud de los modos que se propagan por la guía hacia atrás y adelante. Los parámetros de dispersión se agrupan en la matriz de parámetros de dispersión, o matriz S; relaciona las amplitudes de las ondas incidentes y reflejadas de cada modo en cada puerto de la guía de onda. Para una guía de onda de tres puertos la matriz S se define por la Ecuación 6.
Los parámetros S_{11} , S_{22} y S_{33} son los coeficientes de reflexión, representando la amplitud de una onda reflejada en un puerto dado; los términos restantes, son los coeficientes de transmisión, representan la amplitud de una onda transmitida de un puerto a otro. Los términos a y b refieren a las ondas de potencia incidente y reflejada en cada puerto, respectivamente (Martínez, 2008). Para una guía de múltiples puertos, m puertos, la Ecuación 6 se puede generalizar como la Ecuación 7.

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1m} \\ S_{21} & S_{22} & \cdots & S_{2m} \\ \vdots & \vdots & \ddots & S_{3m} \\ S_{m1} & S_{m2} & \cdots & S_{mm} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$
(7)

Capítulo III

Elementos Utilizados

Programa CST STUDIO SUITE

CST STUDIO SUITE es un programa alto rendimiento para diseño, análisis y optimización de modelos y sistemas 3D electromagnéticos (EM). Permite el acoplamiento de elementos separados para realizar simulaciones híbridas, además, presenta todo resultado en una sola interfaz de usuario lo que permite flexibilidad para análisis (Dassault Systems, 2002).

Debido a que las simulaciones electromagnéticas se clasifican como tareas de alto rendimiento, se requieren componentes específicos para un computador, garantizando el sistema de enfriamiento y potencia para que no se presenten problemas durante la simulación (ej, apagado forzado, congelamiento del computador). Los requisitos mínimos que un computador debe tener para utilizar CST sin problemas son los mostrados en la Tabla 3 (Dassault Systems, 2002).

Tabla 3

Requisitos mínimos y recomendados para instalar CST

Componente	Mínimo	Recomendado
Procesador	Intel o AMD de arquitectura x86	Intel Xeon Scalable de
	o x64	2da generación o AMD
		EPIC dual de 2da
		generación.
Memoria RAM	16GB	32 – 64GB por CPU
Tarjeta gráfica	Tarjeta gráfica 100% compatible	Tarjeta NVIDIA
	con OpenGL	dedicada a

Componente	Mínimo	Recomendado
		aplicaciones CAD/CAE.
Espacio de	30GB	Mínimo 500GB.
almacenamiento		
GPU (opcional)	Tarjeta GPU soportada	Tarjeta NVIDIA Cuadro
		o Tesla de última
		gama.

Nota. Esta tabla es obtenida de (Dassault Systems, 2002).

Optimización

CST cuenta con optimización automática para sistemas electromagnéticos. Junto con la capacidad de parametrización que posee el programa sobre cualquier modelo, se puede estudiar el comportamiento del modelo ante cualquier variación de parámetro.

CST cuenta con varios algoritmos de optimización automáticos, dividiéndose en globales y locales. Los optimizadores locales convergen rápido, pero tienen la desventaja de poder caer en un mínimo local en lugar de la mejor solución general. Por otra parte, el optimizador global analiza todo el espacio del problema, pero requiere más cálculos y tiempo (Dassault Systems, 2002). Estos optimizadores son:

- Estrategia Evolutiva de Adaptación de la Matriz de Covarianza: O denominado CMA-ES, por sus siglas en inglés, es uno de los optimizadores globales más sofisticados, de rápida convergencia y capaz de "recordar" interacciones previas lo que permite evitar óptimos locales. Este optimizador es usado para propósito general (Dassault Systems, 2002).
- Marco de Región de Confianza: También conocido como TRF, por su acrónimo inglés, es un optimizador local usado para propósito general, de preferencia con

información sensible. Puede hacer uso de la información de sensibilidad de los parámetros S para reducir el número de interacciones (Dassault Systems, 2002).

- Algoritmo Genético: Genera puntos en el espacio de parámetros y los refina con múltiples generaciones usando mutaciones de parámetros aleatorias. Este optimizador es usado en dominios de problemas complejos y modelos que contengan muchos parámetros (Dassault Systems, 2002).
- Optimización de Enjambre de Partículas: Este optimizador global trata a los puntos en el espacio de parámetros como partículas en movimiento. Se producen cambios de las partículas de acuerdo con su posición más conocida, así como en función de todo el enjambre. Es usado en modelos que tengan muchos parámetros (Dassault Systems, 2002).
- Algoritmo Simplex Nelder Mead: Este optimizador local depende menos del punto de inicio a diferencia de otros optimizadores locales. Usa los puntos en el espacio de parámetros para buscar el óptimo. Es comúnmente usado en dominios de problemas complejos con pocos parámetros o sistemas con un buen modelo inicial (Dassault Systems, 2002).
- Quasi Newton Interpolado: Es un optimizador local rápido, de rápida convergencia que usa interpolación para aproximar el gradiente del espacio de parámetros. Es usado en modelos que demandan mucha carga computacional (Dassault Systems, 2002).
- Powell Clásico: Usado para optimizaciones de una sola variable. Es un optimizador local robusto y simple (Dassault Systems, 2002).
- Optimización Decap: Es un optimizador usado en diseños de placas de circuito impreso (Dassault Systems, 2002).

Interfaz de Usuario

La interfaz de usuario es simple en CST. Toda la información se encuentra agrupada en carpetas al lado izquierdo de la interfaz. En la parte superior se encuentran las pestañas para simulación, post procesamiento, modelado y vista. En la parte central se halla el espacio de modelado 3D. La Figura 11 muestra la distribución de pestañas, carpetas y espacio de modelado.

Figura 11

Interfaz de usuario de CST STUDIO SUITE

Las carpetas más importantes para el presente proyecto son "Components", "1D Results" y "2D/3D Results". Dentro de la primera se encuentra el modelo en sí, la guía de onda. La segunda y tercera carpeta contienen los resultados del modelo tras ser ejecutado.

"1D Results" contiene la respuesta en frecuencia de los parámetros de dispersión para cada cambio realizado. "2D/3D Results" contienen carpetas donde se guardan las animaciones de los modos en los puertos, animaciones de los campos magnéticos y eléctricos, y su comportamiento a través de la guía de onda; finalmente, animaciones de las corrientes inducidas. Lectura de Resultados. La lectura de resultados en CST es sencilla. Tratándose de la carpeta "1D Results", cada respuesta se representa con la nomenclatura: S<puerto destino>(<modo de puerto de destino>), <puerto origen>(<modo de puerto de origen>). Cada una de las frases dentro de los símbolos de mayor qué y menor qué, incluyendo los símbolos en sí, son reemplazados por un número mayor a cero que representan el número de puerto que constituye a una guía de onda y el modo que interactúa con dicho puerto. El <puerto origen> es el puerto en el cual incide la onda, el <puerto destino> es aquel hacia donde la onda se dirige o viaja, el <modo de puerto de destino> define al modo que interactúa con el puerto destino, y el <modo de puerto de origen> define al modo de la onda que incide en el puerto de origen. La Figura 12 muestra ejemplos de esta nomenclatura para varias respuestas de una guía de onda de tres puertos.

Figura 12

Respuesta en frecuencia con nomenclatura

En este ejemplo el modo TE_{01} es representado por "(2)" y TE_{10} por "(1)". Por lo tanto, la interpretación de S2(2),1(2) es "amplitud de onda del modo TE_{01} que viaja del puerto 1 al puerto 2", es decir, S2(2),1(2) representa al coeficiente de transmisión S₂₁ del modo TE_{01} . Tomando en cuenta lo anterior, se interpreta que el modo TE_{01} se atenúa hasta un nivel cercano a -10dB al viajar del puerto 1 al puerto 2. En el caso de S1(1),1(1), se deduce que éste es un coeficiente de

reflexión pues considera un mismo puerto como origen y destino, y su interpretación es "amplitud de onda del modo TE_{10} que incide y se refleja en el puerto 1".

MATLAB

MATLAB es un programa que permite construir procesos y analizar datos directamente utilizando un lenguaje de programación que expresa arreglos y matrices. También puede ser usado para crear scripts, combinar código, datos de salida y creación de texto. Ofrece la posibilidad de crear gráficos que pueden ser personalizados, brindando diferentes tipos de visualizaciones para un conjunto de datos, además de marcadores o texto que se puede agregar (MathWorks, s.f.). La importación de datos en texto es una manera de obtener información para generar gráficas.

Figura 13

Interfaz de usuario de MATLAB R2017b

📣 MATLAB R2017b		- o ×
HOME PLOTS APPS	EDITOR PUBLISH VIEW	🛃 🔚 🎸 🗟 🛱 🦃 🔗 🔁 🕐 Search Documentation 🛛 👂 Log In
Image: Section of the section of	teset Commet 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
← → 🔁 🔁 🖡 → C: → Program Files → MA	LAB + R2017b + bin +	٩ •
Current Folder	Z Editor - Untitled	
Name *	Untitled × +	fx >>
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	1	
Details ^		
Workspace 🔘		
Name • Value		

Capítulo IV

Diseño y Resultados

El desarrollo del proyecto propone el diseño de un divisor tipo T dual en guía de onda cuadrada usando como referencia un modelo de codo desarrollado en guía de onda cuadrada a partir de un esquema de secciones detallado en (Cano & Mediavilla, 2016), simplificando parte de su estructura para agilizar su simulación.

El proyecto utilizó dos alternativas de diseño para el divisor tipo T. La primera alternativa se varía los ángulos (en función de un arco de circunferencia) formados en cada sección de codo que conforman la guía de onda, mientras que en la segunda alternativa se varía la posición de los puntos formados por cada sección. En cada una de estas se verifica la respuesta en frecuencia para corroborar la existencia de mejora con la ayuda de simulaciones que fueron realizadas en CST STUDIO SUITE 2016.

Referencia de Diseño

El codo de referencia seleccionado para modificar es una guía de onda cuadrada diseñada para trabajar en la banda Ku, cuya solución 4 obtiene un nivel de pérdidas de retorno de -40dB dentro del rango de frecuencia de 11GHz a 15GHz para ambos modos TE₀₁ y TE₁₀, siendo esta la mejor respuesta presentada. Los resultados para ambos modos se muestran en la Figura 14.

Respuesta en frecuencia del codo de referencia

Nota. Las imágenes presentadas son obtenidas de: (Cano & Mediavilla, 2016). La imagen de la izquierda y derecha representan la respuesta del coeficiente de reflexión para el modo TE_{10} y TE_{01} respectivamente.

El codo es generado a partir de un esquema de (arco de circunferencia) curva presentada en la Figura 15, obtenida de (Cano & Mediavilla, 2016). Con esto se obtienen porciones curvas que al unirse forman al codo.

Figura 15

Esquema de

curva de codo

Nota. Imagen de esquema obtenido de (Cano & Mediavilla, 2016)

Las variables φ_k , l_i , l_k , l_a y r_i tienen diferentes valores para cada sección del codo dependiendo de la solución exceptuando por la dimensión de lado *a* cuyo valor es 14.1mm. Dado que solo interesa la solución con la mejor respuesta en frecuencia solo se detalla los datos de la solución 4 en la Tabla 4.

Tabla 4

Parámetros de solución 4

arphi [grados]	φ_k [grados]	ri	l_i	la	l_k
15	19,59	0,199	0,014	0,108	0,595
15	18,34	0,063	0,027	0,07	0,596
15	18,11	0,0885	0,123	0,078	0,596
	φ [grados] 15 15 15	φ [grados] φ _k [grados] 15 19,59 15 18,34 15 18,11	φ [grados] φ _k [grados] r _i 15 19,59 0,199 15 18,34 0,063 15 18,11 0,0885	φ [grados] φ _k [grados] r _i l _i 15 19,59 0,199 0,014 15 18,34 0,063 0,027 15 18,11 0,0885 0,123	φ [grados] φ _k [grados] r _i l _i l _a 15 19,59 0,199 0,014 0,108 15 18,34 0,063 0,027 0,07 15 18,11 0,0885 0,123 0,078

Nota. El contenido de esta tabla es una extracción parcial de la tabla presentada en (Cano & Mediavilla, 2016) y ha sido reestructurada para facilitar la lectura de los datos.

El término Unidad en la tabla previa permite establecer el orden de las secciones del codo según la Figura 16.

Figura 16

Disposición de secciones del codo según Unidad

UNIDAD 1	UNIDAD 2	UNIDAD 3	UNIDAD 3	UNIDAD 2	UNIDAD 1
<i>φ</i> = 15°	<i>φ</i> = 15°	<i>φ</i> = 15°	<i>φ</i> = 15°	φ = 15°	$\varphi = 15^{\circ}$

Diseño de Divisor T Inicial

Para el diseño del divisor T se consideran seis especificaciones, las cuales son mostradas en la Tabla 5.

Tabla 5

Especificaciones de diseño de divisor T

Especificación	Valor
Número total de puertos	3 (una entrada y dos salidas)
Modos de trabajo aceptados	2 (modo TE ₁₀ y TE ₀₁)
Banda de trabajo	Banda Ku
Frecuencia mínima de trabajo	12GHz
Ancho de banda de trabajo	5.00%
mínimo	
Atenuación máxima en	-3.3dB
coeficientes de transmisión	
Límite de atenuación mínimo	-30dB
por pérdidas de retorno	

El esquema de referencia es simplificado uniendo I_a y I_i , ignorando la distancia I_k , obviando la curvatura producida por r_i y omitiendo la inclinación formada de la sección de I_a hasta llegar a la base del cono; los demás parámetros no se cambian. La Figura 17, refleja los cambios realizados.

Esquema de curva de codo simplificado

Los valores asignados a los parámetros de la Figura 17 se muestran en la Tabla 6. En este caso se ha optado por utilizar el esquema de tres unidades.

Tabla 6

Unidad a (mm) l_a (mm) l_i (mm) φ_k (grados) φ (grados) 1 2.5574 19.59 12 0.3315 15 2 12 1.6576 0.6394 18.34 15 3 12 1.8471 2.9126 18.11 15

Parámetros de esquema de curva de codo simplificado

La simplificación produce un cambio en la respuesta de los coeficientes de reflexión, dando como resultado las curvas de la Figura 18.

Respuesta en frecuencia de codo simplificado

Se ha establecido que "(1)" represente al modo TE_{10} y "(2)" al modo TE_{01} , y se considera así en adelante.

En este caso la respuesta del coeficiente de reflexión del modo TE₁₀ presenta un nivel mayor a -20dB en más de la mitad de la banda Ku siendo mayor al límite de atenuación establecido de -30dB desde, la mitad de los 13GHz y 14GHz, y en frecuencias superiores; por otro lado, la respuesta del modo TE₀₁ siempre se mantiene bajo el límite de atenuación.

El problema surge porque la guía de onda tiene una dimensión de lado, "a", igual a 14.1mm, la cual, utilizando la Ecuación 1, establece una frecuencia de corte en 10.638GHz. Para solventar este problema se redimensiona la guía de onda, cambiando la longitud de lado "a" de 14.1 mm a 12.0 mm, estableciendo la frecuencia de corte en 12.5GHz y generando la respuesta de la Figura 19.

Respuesta en frecuencia de codo reducido

Nota. En esta figura se ha añadido dos puntos de referencia (punto y cruz rojos) para definir el ancho de banda de la respuesta en frecuencia y cuyo límite debe ser -30dB según las especificaciones de diseño.

El resultado permite trabajar sin inconvenientes en el ancho de banda de 12.733GHz hasta 17.554GHz de la banda Ku, representando un 31.83% de ancho de banda disponible y que será la banda de interés del presente proyecto.

Con el diseño de codo reducido a 12mm se genera un divisor T, duplicándolo y volteándolo para dar una forma T. El diseño del divisor tipo T y la distribución de los puertos se muestran en la Figura 20.

Diseño inicial de divisor T

Desafortunadamente, como se observa en la Figura 21, la respuesta de los parámetros de dispersión, específicamente, del coeficiente de reflexión S_{11} del modo TE_{10} , representado por S1(1),1(1), y el coeficiente de reflexión S_{11} del modo TE_{01} , representado por S1(2),1(2), presentan un nivel de atenuación que difícilmente baja de -10 dB y -20dB, respectivamente. Por otra parte, los coeficientes de transmisión S_{21} y S_{31} del modo TE_{10} , representados por S2(1),1(1) y S3(1),1(1) respectivamente; y del modo TE_{01} , representados por S2(2),1(2) y S3(2),1(2) respectivamente, se mantienen a un nivel de -3dB, por lo que presentan el nivel establecido en las especificaciones (Figura 22 y 23). Por lo tanto, es necesario realizar ajustes en la estructura de la guía para mejorar en lo posible el coeficiente de reflexión S_{11} del modo TE_{10} , y del modo TE_{01} , disminuyéndolo a un nivel por debajo de -30dB, intentando que no se altere la respuesta de los coeficientes de transmisión.

Respuesta de coeficientes de reflexión (puerto 1)

Figura 22

Respuesta de coeficiente de transmisión a puerto 2

Respuesta de coeficiente de transmisión a puerto 3

A partir de este punto se presentan dos alternativas que se estudiaron, investigaron e implementaron a fin de mejorar la respuesta del coeficiente de reflexión: la alternativa de mejora por ángulos (planteamiento en base al codo de referencia) y la alternativa de mejora por puntos (nuevo enfoque). Posteriormente, y de ser necesario, se considera modificar el diseño para mejorar la respuesta de los coeficientes de transmisión.

Para constatar si existe mejora alguna se obtiene la respuesta en frecuencia de los parámetros S del divisor tipo T, siendo los más importantes el coeficiente de reflexión en el puerto 1 y la respuesta de los coeficientes de transmisión al puerto 2 y 3 respecto al puerto 1.

Mejora por Ángulos

Esta alternativa consiste en modificar los ángulos generados por cada segmento que conforma el divisor tipo T para modificar los parámetros de dispersión. Al existir solo tres ángulos que se repiten en todo el divisor se optó variarlos entre su máximo y mínimo valor posible tomando también valores intermedios con separación equidistante, según la Tabla 7.

Tabla 7

Variable	Valor inicial	Rango de variación	Número de
	[grados]	[grados]	valores tomados
φ ₁	19.59	15 – 40	5
ϕ_2	18.34	15.1 - 30	5
ϕ_3	18.34	15.1 – 33	5

Variación de parámetros (mejora por ángulos)

Los resultados que presentan las mejores respuestas en las pérdidas de retorno y para los coeficientes de transmisión no son suficientes satisfacer las especificaciones de diseño, como se muestra en la Figura 24 y 25. Por tal motivo se descartó esta alternativa de mejora para concentrar todo esfuerzo en la alternativa por puntos.

Figura 24

Respuesta de coeficientes de reflexión

Respuesta de coeficientes de transmisión

Mejora por Puntos

En esta alternativa se utiliza los puntos generados por cada segmento del divisor tipo T generando un total de 53 puntos. Estos puntos se encuentran listados en la Tabla 8.

Tabla 8

	Coordenada en X	Coordenada en Y		Coordenada en X	Coordenada en Y
N°	(parte izquierda)	(parte izquierda)	N°	(parte derecha)	(parte derecha)
	[mm]	[mm]		[mm]	[mm]
01	0	6	27	0	-6
02	30	6	28	30	-6
03	32,8889	6,12	29	32,8889	-6,12
04	35,679363	6,7477	30	35,679363	-6,7477
05	37,898095	7,34221	31	37,898095	-7,34221
06	39,887355	8,49071	32	39,887355	-8,49071

Puntos de divisor T (mejora por puntos)

	Coordenada en X	n X Coordenada en Y Co		Coordenada en X	Coordenada en Y
N°	(parte izquierda)	(parte izquierda)	N°	(parte derecha)	(parte derecha)
	[mm]	[mm]		[mm]	[mm]
07	44,009376	10,87056	33	44,009376	-10,87056
08	47,374992	14,236176	34	47,374992	-14,236176
09	49,754842	18,357197	35	49,754842	-18,357197
10	50,903342	20,347457	36	50,903342	-20,347457
11	51,49785	22,566189	37	51,49785	-22,566189
12	52,245552	25,356652	38	52,245552	-25,356652
13	52,245552	28,245552	39	52,245552	-28,245552
14	52,245552	58,245552	40	52,245552	-58,245552
15	64,245552	58,245552	41	64,245552	-58,245552
16	64,245552	28,245552	42	64,245552	-28,245552
17	64,245552	25,837573	43	64,245552	-25,837573
18	63,71219	21,78629	44	63,71219	-21,78629
19	63,08896	19,46036	45	63,08896	-19,46036
20	62,585003	17,579571	46	62,585003	-17,579571
21	61,120716	14,044467	47	61,120716	-14,044467
22	60,147147	12,358197	48	60,147147	-12,358197
23	57,930176	85,18291	49	57,930176	-85,18291
24	55,629928	55,20548	50	55,629928	-55,20548
25	52,725004	26,15624	51	52,725004	-26,15624
26	49,727261	0,315376	52	49,727261	-0,315376
		53 o medio (mec	d)	49,181181	0

En la Figura 26 (a) y (b), se muestra la ubicación de los puntos en la parte izquierda y derecha del diseño del divisor tipo T, cada punto denotado por la letra P.

Figura 26

Puntos de divisor T, (a) parte izquierda y (b) parte derecha

Cabe mencionar que para agilizar las modificaciones realizadas al divisor tipo T se diseñó al mismo tomando en cuenta la simetría en el plano XZ y debido a que los valores de las coordenadas en X son iguales en la parte derecha como izquierda se pueden parametrizar dos coordenadas usando un único parámetro. Lo anterior se puede aplicar también a las coordenadas en Y, tanto al lado derecho e izquierdo de la guía.

Por lo tanto, solo se parametrizan las coordenadas de la mitad de los puntos, desde el punto 01 hasta el 26, incluyendo el punto 53, nombrándolos x_{01} a x_{26} y y_{01} a y_{26} ; las coordenadas del punto 53 o medio se refieren como *xmed* y *ymed*, esto a fin de agilizar su citación.

Las mejoras del divisor tipo T serán realizadas variando cada parámetro en un rango definido del cual se prueba una cantidad definida de valores equidistantes que puedan reemplazar al parámetro original y mejorar la respuesta en frecuencia.

Mejora N°1

Considerando el resultado del coeficiente de reflexión de la Figura 21, lo necesario es atenuar dicha respuesta, por lo tanto, se cambian los valores de los parámetros y₀₃, y₀₄ y y₀₅, en un rango definido, cada rango dividido en intervalos uniformes; buscando reducir el coeficiente de reflexión en la parte baja de la banda Ku, en ambos modos. La Tabla 9 resume los cambios realizados

Tabla 9

Parámetro	Valor inicial	Rango de variación	Número de	Nuevo
	[mm]	[mm]	valores probados	valor [mm]
У 03	6,12	6.12 - 6.7477	2	6,7477
y ₀₄	6,7477	6.7477 – 7.34221	2	7,34221
Y 05	7,34221	7.34221 - 8.49071	2	8,49071

Variación de parámetros de mejora 1

En la Figura 27 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Figura 27

Parámetros modificado en divisor T de la mejora 1

Respuesta en Frecuencia de Mejora N°1. En la Figura 28 se representa la amplitud del coeficiente de reflexión S₁₁ del modo TE₁₀, como S1(1),1(1), y S₁₁ del modo TE₀₁, como S1(2),1(2), esta nomenclatura se mantiene en adelante. En este caso se observa una mejora en la parte baja de la banda Ku para la respuesta del modo TE₀₁ mientras que el modo TE₁₀ permanece sin mayor cambio.

Respuesta de coeficientes de reflexión de mejora 1

En la Figura 29 se muestran las amplitudes en decibelios de los coeficientes de transmisión, sin presentar mayor cambio tras la primera mejora respecto a la Figura 22 y 23. En este caso, S2(1),1(1) representa la amplitud de onda del modo TE_{10} que viaja del puerto 1 al puerto 2, es decir, es el coeficiente de transmisión S₂₁ del modo TE_{10} ; S3(1),1(1), la amplitud de onda del modo TE_{10} ; Que viaja del puerto 1 al puerto 3, y representa al coeficiente de transmisión S₃₁ del modo TE_{10} ; S2(2),1(2), la amplitud de onda del modo TE_{01} que viaja del puerto 2, representando al coeficiente de transmisión S₂₁ del modo TE_{01} ; y finalmente S3(2),1(2), es la amplitud de onda del modo TE_{01} ; y representa al coeficiente de transmisión S₃₁ del modo TE_{01} que viaja del puerto 1 al puerto 3, y representa al coeficiente de transmisión S₃₁ del modo TE_{01} ; g finalmente S3(2),1(2), es la amplitud de onda del puerto 1 al puerto 3, y representa al coeficiente de transmisión S₃₁ del modo TE_{01} que viaja del puerto 1 al puerto 3, y representa al coeficiente de transmisión S₃₁ del modo TE_{01} ; g finalmente S3(2),1(2), es la amplitud de onda del modo TE_{01} que viaja del puerto 1 al puerto 3, y representa al coeficiente de transmisión S₃₁ del modo TE_{01} . Esta nomenclatura se mantiene en adelante.

Respuesta de coeficientes de transmisión, mejora 1

Mejora N°2

Al realizar variaciones en pocos puntos no garantizaba cambio significativo en la respuesta de los parámetros S, como se observa al comparar la Figura 28 y 29. En esta mejora se realizó cambios en nueve puntos: x₀₇, x₀₈, x₁₈ a x₂₃ y xmed. Los cambios realizados en x₁₈ a x₂₃ fueron pensados en referencia a un divisor tipo T en (Olivares, 2018), donde los brazos del divisor son planos y no curvos al acercarse a los puertos de salida, puerto 2 y 3 para el caso del presente proyecto. Los cambios se presentan en la Tabla 10.

Tabla 10

D ()	Valor inicial	Rango de variación	Número de	Nuevo
Parametro	[mm]	[mm]	valores probados	valor [mm]
X ₀₇	44.009376	44.009376 – 42	2	42
X 08	47.374992	47.374992 - 45.5	2	45.5
X ₁₈	63.712190	63.712190 – 64.245552	2	64.245552

Variación de parámetros de mejora 2

_	Valor inicial	Rango de variación	Número de	Nuevo
Parámetro	[mm]	[mm]	valores probados	valor [mm]
X ₁₉	63.088960	63.088960 - 64.245552	2	64.245552
X ₂₀	62.585003	62.585003 - 64.245552	2	64.245552
x ₂₁	61.120716	61.120716 - 63	2	63
X ₂₂	60.147147	60.147147 - 61.7	3	61.7
X ₂₃	57.9302	57.9302 - 58.2	3	58.2
xmed	49.181	47.5448 - 49.181	3	47.5448

En la Figura 30 se muestran los puntos que son modificados al variar los parámetros de

la tabla anterior.

Figura 30

Parámetros modificado en divisor T de la mejora 2

Respuesta en Frecuencia de Mejora N°2. En este caso, tras modificar los parámetros se obtiene la respuesta de la Figura 31 donde hay un cambio significativo en la respuesta del

coeficiente de reflexión en ambos modos. El coeficiente S_{11} para el modo TE_{10} presenta una disminución hasta -26.77dB mientras que para el modo TE_{01} , hasta -17.66dB.

Figura 31

Respuesta de coeficientes de reflexión de mejora 2

En la Figura 32 se observa que en la frecuencia de 13.730GHz y 16GHz, los coeficientes de transmisión alcanzan un nivel de -3dB de promedio, tomando los valores de -3.368dB y - 3.180dB, respectivamente.

Figura 32

Respuesta de coeficientes de transmisión, mejora 2

En esta modificación se busca reducir el coeficiente de reflexión del modo TE_{01} para que esté con un nivel similar al coeficiente de TE_{10} . Esta vez solo se modifica el parámetro y₀₆ que cambia desde 8.49071mm a 9.2mm tomando en cuenta cuatro puntos separados uniformemente y definiendo el nuevo valor de y₀₆ en 9.2mm. El resumen se observa en la Tabla 11.

Tabla 11

Variación de parámetros de mejora 3

Parámetro	Valor inicial	Rango de	Número de	Nuevo
	[mm]	variación [mm]	valores probados	valor [mm]
Y 06	8.49071	8.49071 - 9.2	4	9.2

En la Figura 33 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Figura 33

Parámetros modificado en divisor T de la mejora 3

Respuesta en Frecuencia de Mejora N°3. Habiendo variado solo un parámetro no se consigue mejora en la respuesta de los coeficientes de reflexión y transmisión tal como se observa en la Figura 34 y Figura 35.

Figura 34

Respuesta de coeficientes de reflexión de mejora 3

Figura 35

Respuesta de coeficientes de transmisión, mejora 3

Mejora N°4

Esta mejora disminuye el valor de y₀₃ y y₀₄, conforme a lo mostrado en la Tabla 12, a fin de mejorar la forma de las paredes a la entrada del divisor.

Tabla 12

Variación de parámetros de mejora 4

Valor inicial Parámetro Rango de Número de Nuevo [mm] variación [mm] valores probados valor [mm] 6,7477 6-6.7477 2 6 **y**03 6-7.34221 3 7,77111 **y**04 7.34221

En la Figura 36 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Figura 36

Parámetros modificado en divisor T de la mejora 4

Respuesta en Frecuencia de Mejora N°4. La modificación de y_{03} a y_{05} produce un cambio considerable en el coeficiente de reflexión del modo TE₁₀ y no tan marcado respecto al modo TE₀₁, observe la Figura 37. El primero consiguiendo un nivel de -53.139dB, generando una banda de trabajo de aproximadamente 512MHz; el segundo alcanza un nivel de -16.657dB a -17.677dB.

Figura 37

Respuesta de coeficientes de reflexión de mejora 4

La respuesta de los coeficientes de transmisión se observa en la Figura 38, donde se aprecia una mejora de -3.232dB a -3.137dB en los puntos que están marcados con un punto y una x.

Respuesta de coeficientes de transmisión, mejora 4

Mejora N°5

Tras obtener una banda de trabajo con el modo TE₁₀ se modifican los parámetros x₀₅, x₀₉, x₁₀, x₁₁ y x₂₁ para mejorar el nivel del coeficiente de reflexión del modo TE₀₁. Los cambios se resumen en la Tabla 13.

Tabla 13

Parámetro	Valor inicial	Rango de	Número de	Nuevo valor
	[mm]	variación [mm]	valores probados	[mm]
X ₀₅	37.898095	37 – 37.898095	2	37
X 09	49.754842	49 – 49.754842	2	49
X ₁₀	50.903342	50 – 50.903342	2	50
X ₁₁	51.49785	50.4 – 51.49785	3	50.949
X ₂₁	62	62-63	3	62.5

Variación de parámetros de mejora 5

Parámetro	Valor inicial	Rango de	Número de	Nuevo valor
	[mm]	variación [mm]	valores probados	[mm]
x ₀₅	37.898095	37 – 37.898095	2	37

En la Figura 39 se muestran los puntos que son modificados al variar los parámetros de

la tabla anterior.

Figura 39

Parámetros modificado en divisor T de la mejora 5

Respuesta en Frecuencia de Mejora N°5. En este caso se consigue una mejora en el coeficiente S_{11} de TE_{01} , aumentando la atenuación a -19.552dB. Así también el coeficiente S_{11} de TE_{10} se ve afectado, reduciendo la banda de trabajo a 445MHz y aumentando el pico de atenuación a -53.832dB, observe la Figura 40.

Respuesta de coeficientes de reflexión de mejora 5

En este caso, los puntos que limitan la banda de trabajo experimentan una ligera

variación a -3.135dB y -3.147dB, Figura 41.

Figura 41

Respuesta de coeficientes de transmisión, mejora 5

Mejora N°6

En la Mejora N°2 se optó por aplanar la parte superior de los puertos de salida del divisor T por lo que en esta mejora se retoma la forma original de los brazos del divisor T para explorar otras posibles soluciones y mejorar la respuesta del coeficiente de reflexión del modo TE₀₁. Por lo tanto, se asignó un valor fijo a los parámetros x_{16} a x_{22} , a fin de obtener una forma curva, así como se modifican los parámetros x_{03} a x_{05} y x_{09} a x_{12} según la Tabla 14.

Tabla 14

Variación de parámetros de mejora 6

Parámetro	Valor inicial	Rango de	Número de	Nuevo
	[mm]	variación [mm]	valores probados	valor [mm]
X ₀₃	32.8889	32.3654 -	2	32.3654
		32.8889		
X 04	35.679363	35 -35.679363	2	35
X 05	37	36.5741 – 37	2	36.5741
X 09	49	48.215 – 49	2	48.215
X ₁₀	50	49.234 – 50	2	49.234
x ₁₁	50.949	49.893 – 50.949	3	50.421
X ₁₂	52.2456	51.657 –	3	51.657
		52.2456		
X ₁₆	64.245552	valor fijo		64.24
X ₁₇	64.245552	valor fijo		64
X ₁₈	64.245552	valor fijo		63.8
X 19	64.245552	valor fijo		63.45
X ₂₀	64.245552	valor fijo		63.1
x ₂₁	62.5	valor fijo		62
X ₂₂	61.7	valor fijo		61.2

En la Figura 42 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Figura 42

Parámetros modificado en divisor T de la mejora 6

Respuesta en Frecuencia de Mejora N°6. Las modificaciones realizadas reflejan cambios en la respuesta del coeficiente de reflexión según la Figura 43, donde la respuesta S₁₁ del modo TE₁₀ ha aumentado a -26.421dB, pero la del modo TE₀₁ disminuye a -21.818dB.

Figura 43

Respuesta de coeficientes de reflexión de mejora 6

Los coeficientes de transmisión en los puntos ubicados a 13.732GHz y 14.699GHz han aumentado a -3.1dB y -3.01dB respectivamente, Figura 44.

Figura 44

Respuesta de coeficientes de transmisión de mejora 6

Mejora N°7

Esta mejora explora solo el parámetro y_{04} cambiándola de 7.77111mm a 8.123mm según los datos de la Tabla 15.

Tabla 15

Variación de parámetros de mejora 7

Parámetro	Valor inicial	Rango de variación	Número de	Nuevo
	[mm]	[mm]	valores probados	valor [mm]
y 04	7.77111	7.77111 - 8.82678	7	8.123

En la Figura 45 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Parámetros modificado en divisor T de la mejora 7

Respuesta en Frecuencia de Mejora N°7. Solo mejorando el parámetro y₀₄ se consigue disminuir las pérdidas de retorno de ambos modos, acercándolos al límite objetivo de -30dB. La respuesta S₁₁ para el modo TE₁₀ alcanza -29.420dB y la del modo TE₀₁ -22.273dB, Figura 46.

Figura 46

Respuesta de coeficientes de reflexión de mejora 7

Con esta mejora, la atenuación de los coeficientes de transmisión en los puntos a 13.711GHz y 14.649GHz es de -3.01dB, Figura 47.

Figura 47

Respuesta de coeficientes de transmisión de mejora 7

Mejora N°8

En esta mejora se realizan dos cambios, en los primeros parámetros y en los últimos. Se modificaron los primeros parámetros pues, como se ve en la respuesta en frecuencia de la mejora anterior, el ampliar la sección previa a la división en brazos produjo una mejor respuesta para el modo TE₀₁ y TE₁₀; los últimos son modificados para ensanchar la parte en forma de V del divisor T, observe Tabla 16.

Tabla 16

	Valor inicial	Rango de	Número de	Nuevo valor
Parámetro	[mm]	variación [mm]	valores probados	[mm]
Y 03	7	6.9178 – 7.8164	4	7.51687
Y 04	8.123	8.123 - 9.0008	4	8.4156
y 05	8.49071	8.5168 – 9.416	3	8.5168
y 06	9.2	8.6158 – 9.1816	2	8.6158
Уоэ	18.357197	18.357197 –	3	19.1194
		19.1194		
X ₂₃	58.2	58.2 – 59.5833	5	59.2375
X ₂₄	55.6299	55.2838 –	4	55.976
		56.3221		
X ₂₅	52.725	52.725 –	4	53.6178
		53.6178		
X ₂₆	49.7273	49.7273 –	4	51.2145
		51.2145		

Variación de parámetros de mejora 8

En la Figura 48 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Parámetros modificado en divisor T de la mejora 8

Respuesta en Frecuencia de Mejora N°8. En este caso la respuesta en frecuencia de los parámetros S₁₁ mejora, Figura 49, superando el nivel definido de -30dB tanto para el modo TE₁₀ y TE₀₁, generando una banda de trabajo de 852MHz. Por otra parte, se generan dos picos en ambos modos en la misma banda de trabajo, alcanzando -33.373dB para el modo TE₁₀ y - 34.677dB para el modo TE₀₁.

Figura 49

Respuesta de coeficientes de reflexión de mejora 8

Debido a que se ha obtenido una banda de trabajo se considera únicamente el ancho de banda de los coeficientes de transmisión coincidentes con el ancho de banda de los coeficientes de reflexión.

En este caso, las modificaciones no han alterado en absoluto los coeficientes de transmisión en la banda de trabajo de ambos modos, siendo la atenuación de -3.01dB, observe Figura 50.

Figura 50

Respuesta de coeficientes de transmisión de mejora 8

Mejora N°9

Las mejoras de aquí en adelante tienen como fin el aumentar el ancho de banda de trabajo hasta 1 GHz, por lo tanto, se busca aumentar la atenuación de la respuesta ya obtenida en los coeficientes de reflexión para, posteriormente, aumentar el ancho de banda y que cualquier disminución ocasionada por las mejoras en el aumento de ancho de banda no superen el límite de -30dB. En esta mejora se modifican los parámetros x₀₃ y x₀₄ como muestra la Tabla 17.

Tabla 17

Darámatra	Valor inicial	Rango de variación	Número de	Nuevo valor
Parametro	[mm]	[mm]	valores probados	[mm]
x ₀₃	32.3654	32.2498 - 33.0206	6	32.7123
X ₀₄	35	34.9229 – 35.0514	6	34.9743

Variación de parámetros de mejora 9

En la Figura 51 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Figura 51

Parámetros modificado en divisor T de la mejora 9

Respuesta en Frecuencia de Mejora N°9. La mejora en el coeficiente de reflexión S₁₁ se ve en ambos modos, aumentando la atenuación de las elevaciones en la banda de trabajo a - 35.819dB y -35.482dB para el modo TE_{10} y TE_{01} respectivamente, pero a costa del ancho de banda de trabajo, disminuido a 779MHz, Figura 52. Esta mejora es el punto de partida para ensanchar la banda de trabajo.

Respuesta de coeficientes de reflexión de mejora 9

En esta modificación no altera en absoluto la respuesta de los coeficientes de transmisión, siendo -3dB en la banda de trabajo, Figura 53.

Figura 53

Respuesta de coeficientes de transmisión de mejora 9

Mejora N°10

En esta mejora se insertan cinco puntos extras al modelo actual entre los puntos 2 y 3, 7 y 8, 8 y 9, 23 y 24, 24 y 25; utilizando el promedio de las posiciones de estos para ubicar los nuevos puntos. Los nombres de los nuevos parámetros se conforman por el eje y el número de puntos que lo forman, por ejemplo, x_{2_3} , y_{8_9} , etc. La Tabla 18 muestra las coordenadas de los nuevos puntos.

Tabla 18

Puntos insertados al diseño de divisor T

Nomenclatura	Coordenada en	Coordenada en
de punto	X [mm]	Y [mm]
2_3	32.0832	7.15825
7_8	43.6278	16.67788
9_8	46.4247	16.67788
23_24	57.60675	7.01942
24_25	54.7969	4.068086

En la Mejora 8 se modifica los parámetros cercanos a la entada del divisor T (puerto 1) en y. Ahora se modifican los parámetros en x e y, según se muestra en según la Tabla 19, en la entrada de la guía.

Tabla 19

Variación de parámetros de mejora 10

Parámetro	Valor inicial	Rango de variación	Número de valores	Nuevo valor
	[mm]	[mm]	probados	[mm]
X ₀₃	32.7123	32.7123 - 34.1464	4	34.1464
y 03	7.51687	7.51687 - 8.3165	3	8.3165
X ₀₇	42	41.1812 – 42	4	41.1812
X ₀₈	45.5	44.7448 - 45.5	3	45.1224

X ₀₉	48.215	47.6615 – 48.215	3	47.6615
X _{8_9}		46.2083 - 46.8575	4	46.4247

En la Figura 54 se muestran los puntos que son modificados al variar los parámetros de la tabla anterior.

Figura 54

Parámetros modificado en divisor T de la mejora 10

Respuesta en Frecuencia de Mejora N°10. Según la Figura 55, la atenuación en respuesta de los coeficientes de reflexión S₁₁ ha disminuido para el modo TE₁₀ hasta -31.638dB mientras mejora para el modo TE₀₁ a -35.895dB. Aun así, se consigue incrementar el ancho de banda de trabajo a 873MHz.

Respuesta de coeficientes de reflexión de mejora 10

Los coeficientes de transmisión no se ven afectados dentro de la banda de trabajo,

Figura 56.

Figura 56

Respuesta de coeficientes de transmisión de mejora 10

Mejora N°11

Para una mejor la lectura de los puntos modificados y agregados hasta el momento se renombran los mismo según la Tabla 20.

Tabla 20

Nuevo list	ado de	puntos de	el d	livisor	tipo	Т
------------	--------	-----------	------	---------	------	---

N° actual	Valor de	Valor de	N°
N actual	punto en X	punto en Y	antiguo
01	0	6	01
02	30	6	02
03	32.0832	7.15825	2_3
04	34.1464	8.3165	03
05	34.9743	8.4156	04
06	38.952	8. 5168	05
07	39.887355	8.6158	06
08	41.1812	10.87056	07
09	43.6278	12.553368	7_8
10	45.1224	14.236176	08
11	46.4247	16.67788	8_9
12	47.6615	19.1194	09
13	49.234	20.347457	10
14	50.421	22.566189	11
15	51.657	25.356652	12
16	52.245552	28.245552	13
17	52.245552	58.245552	14
18	64.245552	58.245552	15
19	64.24	28.245552	16
20	64	25.837573	17

N ^o actual	Valor de	Valor de	N°
N actual	punto en X	punto en Y	antiguo
21	63.8	21.786290	18
22	63.45	19.460360	19
23	63.1	17.579571	20
24	62	14.044467	21
25	61.2	12.358197	22
26	59.2375	8.518291	23
27	57.60675	7.01942	23_24
28	55.976	5.520548	24
29	54.7969	4.068086	24_25
30	53.6178	2.615624	25
31	51.2145	0.543584	26
63 o med.	47.5548	0	53 o med.

En esta mejora se modifican los parámetros y_{03} , y_{06} y y_{07} , nuevamente ensanchando la entrada del divisor T. Los cambios de esta mejora se resumen en la Tabla 21.

Tabla 21

Parámetro	Valor inicial	Rango de variación	Número de valores	Nuevo valor
Falametro	[mm]	[mm]	probados	[mm]
Y 03	7.15825	7.15825 – 7.8893	4	7.40193
Y 06	8.5168	8.5168 - 9.3256	4	8.7864
Y 07	8.6158	8.6158 – 9 .1421	4	9.14211

Variación de parámetros de mejora 11

En la Figura 57 se muestran los puntos que son modificados al variar los parámetros de

la tabla anterior.

Figura 57

Parámetros modificado en divisor T de la mejora 11

Respuesta en Frecuencia de Mejora N°11. El resultado de cambiar los tres parámetros da la Figura 58. Se ha conseguido un ancho de banda de 1.007GHz, pero como era esperar la atenuación de los coeficientes de reflexión S₁₁ aumenta a -31.302dB y -32.051dB para el modo TE₁₀ y TE₀₁, respectivamente.

Respuesta de coeficientes de reflexión de mejora 11

En la respuesta de los coeficientes de transmisión, Figura 59, se puede ver que ahora existen alteraciones en la gráfica desde 15GHz en adelante, tendiendo a disminuir. Aun así, se mantienen los -3.01dB necesario en la banda de trabajo del diseño para todos los coeficientes de transmisión en el modo TE_{10} y TE_{01} .

Figura 59

Análisis de Discontinuidades

Si bien se ha diseñado un divisor tipo T en guía de onda cuadrada para polarización dual, el proceso ha sido desordenado por lo que no se interpreta específicamente qué beneficio aportan las partes con mayor relieve en la guía de onda. Por lo tanto, se ha divido el lado derecho e izquierdo de la guía en cuatro secciones, según la Figura 60, para analizar las mejoras que aporta cada una en el coeficiente de reflexión S₁₁ del modo TE₁₀ y TE₀₁ en el puerto de entrada (puerto 1). Los parámetros de los puntos de cada sección serán variados desde sus valores iniciales (Tabla 8) hasta sus valores finales (Tabla 20 y Tabla 21), añadiendo dos conjuntos de valores intermedios equidistantes, obteniendo en total cuatro respuestas a comparar. Cada sección se añadirá consecutivamente al diseño del divisor tipo T inicial (Figura 20) hasta conseguir la forma del diseño final (Figura 57).

Cabe aclarar que la Figura 60 es una variación del diseño de divisor tipo T inicial con la diferencia que se agregan nuevos puntos intermedios de la misma manera que se agregaron puntos en la mejora N°10, es decir, entre los puntos 2 y 3, 7 y 8, 8 y 9, 23 y 24, 24 y 25; utilizando el promedio de su posición para ubicar los nuevos puntos. De esta manera se consigue la misma cantidad de puntos de la Tabla 20 al agregar los puntos intermedios a la Tabla

8.

División de divisor tipo T en secciones de discontinuidad

La sección 1 abarca los puntos P03 hasta el punto P07 y P56 hasta el punto P60, la sección 2 consta de los puntos P29 hasta el punto P34, incluyendo el punto medio o P63; la sección 3 contiene los puntos P08 hasta P16 y P47 hasta P55, y la sección 4 abarca los puntos P20 hasta P28 y P35 hasta P43. En estas secciones no se agregan los puntos que conforman los puertos de entrada y salida (P01, P17, P18, P45, P46 y P62), así como los puntos P02, P19, P61 y P44, pues no se modifican. En el caso de los puntos de los puertos de entrada y salida, estos no son modificados en ningún momento pues es indispensable mantenerlos invariantes para conservar la forma de guía de onda cuadrada.

Cabe recordar que las variaciones solo se realizan en los parámetros de los puntos menores a P32 pues, como se mencionó antes, en el simulador CST se aprovechó la simetría con el plano XZ para parametrizar dos parámetros usando uno solo.

Análisis de Sección 1

Partiendo del diseño de divisor tipo T inicial, ésta ya posee en sí un septum en su estructura, atribuido a la forma original del codo del cual se deriva la guía de onda tipo T,

ayudando al guiado de la onda desde el puerto de entrada hacia los puertos de salida. Por lo tanto, con añadir un ensanchado previo al septum se espera favorecer aún más el guiado de la onda. Este ensanchado se consigue variando los parámetros tanto en coordenadas X e Y de la sección 1 según la Tabla 22.

Tabla 22

	Valor inicial	Valor intermedio	Valor intermedio	Valor final
Parámetro	[mm]	1 [mm]	2 [mm]	[mm]
X ₀₃	31,4450	31,6577	31,8705	32,0832
Уоз	6,0610	6,5080	6,9550	7,4019
X ₀₄	32,8889	33,3081	33,7272	34,1464
y 04	6,1200	6,8522	7,5843	8,3165
x ₀₅	35,6794	35,4443	35,2093	34,9743
Y 05	6,7477	7,3037	7,8596	8,4156
X 06	37,8981	38,2494	38,6007	38,9520
Y 06	7,3422	7,8236	8,3050	8,7864
X ₀₇	39,8874	39,8874	39,8874	39,8874
У 07	8,4907	8,7078	8,9250	9,1421

Variación de parámetros en coordenadas X y Y de la sección 1

El resultado de usar cada conjunto de valores se observa en la Figura 61 y 62, donde se aprecia una mejora significativa en la respuesta de los parámetros S. El coeficiente de reflexión para el modo TE_{10} se ve mejorado en la parte baja de la banda Ku, acercándose a un nivel de -15dB de atenuación. Por otro lado, la respuesta del modo TE_{01} es la que beneficia en mayor medida del ensanchamiento previo al septum pues se consigue obtener un ancho de banda cuyo nivel de atenuación es menor a -30dB.

Figura 61

Respuesta del coeficiente de reflexión del modo TE₁₀ tras añadir sección 1

Figura 62

Respuesta del coeficiente de reflexión del modo TE₀₁ tras añadir sección 1

Análisis de Sección 2

Seguido del ensanchamiento de la sección 1, se agrega la sección 2, la cual profundiza el septum ya existente en la guía de onda, de esta manera se espera una mejoría en la respuesta del coeficiente de reflexión del modo TE_{10} pues enfatiza su guiado hacia los brazos de la guía de

onda. Los cambios realizados al septum se limitan a los puntos de la sección 2 y sus variaciones en las coordenadas de sus parámetros se presentan en las Tabla 23.

Tabla 23

Variación de parámetros en coordenadas X y Y de la sección 2

Dovémetre	Valor inicial	Valor intermedio	Valor intermedio	Valor final
Parametro	[mm]	1 [mm]	2 [mm]	[mm]
X 29	54,1770	54,3836	54,5903	54,7969
Y 29	4,0680	4,0680	4,0680	4,0681
X ₃₀	52,7250	53,0226	53,3202	53,6178
y 30	2,6156	2,6156	2,6156	2,6156
X ₃₁	49,7273	50,2230	50,7188	51,2145
y 31	0,3154	0,3914	0,4675	0,5436
xmed	49,1810	48,6389	48,0969	47,5548
ymed	0,0000	0,0000	0,0000	0,0000

Tal como se esperaba, la respuesta de los parámetros S favorece en mayor medida la respuesta del modo TE₁₀ consiguiendo atenuar su coeficiente de reflexión hasta un nivel aproximado a -25dB, Figura 63. Así también, la atenuación en la respuesta del modo TE₀₁ disminuye, alcanzando un nivel poco mayor a -25dB, Figura 64.

Coeficientes de reflexión del modo TE₁₀ tras añadir sección 2

Figura 64

Coeficientes de reflexión del mod TE₀₁ tras añadir sección 2

Análisis de Sección 3

La tercera sección contiene varias "protuberancias" las cuales recorren ambos brazos de la guía de onda y que lo ensanchan irregularmente. Este ensanchado toma en cuenta los conjuntos de valores presentados en la Tabla 24.

Tabla 24

	Valor inicial	Valor intermedio	Valor intermedio	Valor final
Parámetro	[mm]	1 [mm]	1 [mm] 2 [mm]	
X ₀₈	44,0094	43,0667	42,1239	41,1812
y 08	10,8706	No cambia	No cambia	10,8706
X 09	45,6920	45,0039	44,3159	43,6278
Уоэ	12,5534	No cambia	No cambia	12,5534
X ₁₀	47,3750	46,6241	45,8733	45,1224
Y 10	14,2362	No cambia	No cambia	14,2362
X ₁₁	48,5650	47,8516	47,1381	46,4247
y 11	16,2900	16,4193	16,5486	16,6779
X ₁₂	49,7548	49,0571	48,3593	47,6615
y 12	18,3572	18,6113	18,8653	19,1194
X ₁₃	50,9033	50,3469	49,7904	49,2340
Y 13	20,3475	No cambia	No cambia	20,3475
X 14	51,4979	51,1389	50,7800	50,4210
y 14	22,5662	No cambia	No cambia	22,5662
X ₁₅	52,2456	52,0494	51,8532	51,6570
y 15	25,3567	No cambia	No cambia	25,3567
X ₁₆	52,2400	52,2419	52,2437	52,2456
y 16	28,2456	No cambia	No cambia	28,2456

Variación de parámetros en coordenadas X y Y de la sección 3

Tras agregarse la sección 3 en cada brazo de la guía, se consigue una mejora en la respuesta del coeficiente de reflexión del modo TE₁₀, esta vez generando una porción de ancho de banda que se encuentra bajo el nivel de los -30dB, Figura 65. Por otra parte, el nivel de atenuación del coeficiente de reflexión del modo TE₀₁ disminuye hasta poco menos de -25dB, Figura 66.

Figura 65

Coeficientes de reflexión del modo TE₁₀ tras añadir la sección 3

Figura 66

Coeficientes de reflexión del modo TE₀₁ tras añadir la sección 3

Análisis de Sección 4

Finalmente, la sección 4, al igual que la sección 3, consta de protuberancias irregulares que cubren ambos brazos del divisor tipo, las cuales los ensanchan. Los cuatro conjuntos de valores dados a cada parámetro de la sección 4 se presentan en la Tabla 25.

Tabla 25

	Valor inicial	Valor intermedio	Valor intermedio	Valor final	
Parámetro	[mm]	1 [mm]	2 [mm]	[mm]	
X ₂₀	64,2456	64,1637	64,0819	64,0000	
Y 20	25,8376	No cambia	No cambia	25,8376	
X ₂₁	63,7122	63,7415	63,7707	63,8000	
Y 21	21,7863	No cambia	No cambia	21,7863	
X ₂₂	63,0890	63,2093	63,3297	63,4500	
¥22	19,4604	No cambia	No cambia	19,4604	
X ₂₃	62,5850	62,7567	62,9283	63,1000	
У 23	17,5796	No cambia	No cambia	17,5796	
X ₂₄	61,1207	61,4138	61,7069	62,0000	
У 24	14,0445	No cambia	No cambia	14,0445	
X ₂₅	60,1471	60,4981	60,8490	61,2000	
Y 25	12,3582	No cambia	No cambia	12,3582	
X 26	57,9302	58,3660	58,8017	59,2375	
Y 26	8,5183	No cambia	No cambia	8,5183	

Variación de parámetros en coordenadas X y Y de la sección 4

Destandes	Valor inicial	Valor intermedio	nedio Valor intermedio Va	
Parametro	[mm]	1 [mm]	2 [mm]	[mm]
X ₂₇	56,7800	57,0556	57,3312	57,6068
Y 27	7,0194	No cambia	No cambia	7,0194
X ₂₈	55,6299	55,7453	55,8606	55,9760
У 28	5,5205	No cambia	No cambia	5,5205

A partir de las respuestas de las Figuras 67 y 68, se deduce que la sección 4 ayuda a mejorar el coeficiente de reflexión de ambos modos. En el caso del modo TE10, la respuesta se atenúa, por debajo del nivel de -30dB, alrededor de los 14GHz generando así una banda de trabajo de poco más de 1GHZ. En el caso del modo TE01 la atenuación ocurre alrededor de los 14GHz y 14.5GHz obteniendo una banda de trabajo con un nivel de atenuación menor a -30dB y un ancho de banda poco mayor a 1GHz.

Figura 67

Coeficientes de reflexión del modo TE₁₀ tras añadir la sección 4

Coeficientes de reflexión del modo TEO1 tras añadir la sección 4

Adaptación de Divisor a Banda Ka

Habiendo conseguido una banda de trabajo en la banda Ku se modifica el divisor T para que trabaje en frecuencias altas, en este caso la banda Ka, de 26.5Ghz a 27Ghz. Para esto se realiza una sencilla modificación en las dimensiones de la guía, dividiendo cada parámetro que conforma el divisor T para una constante (*k*) obtenida al dividir el valor de "*a*" de 12 mm para otro valor "*a*" obtenido al utilizar una frecuencia de corte en 23GHz en la Ecuación 1.

$$a = \frac{3x10^8 [m/s]}{2(23x10^9)[Hz]} = 6.5217x10^{-3}[m] \approx 6.52 \ [mm]$$

$$f_c = \frac{c}{2a} = \frac{3x10^8 [m/s]}{2a} = 23x10^9 [Hz]$$

$$k = \frac{a_{12mm}}{a} = \frac{12[mm]}{6.52[mm]} = 1.84049 \approx 1.84$$

Al dividir el valor de k para cada parámetro se obtienen los valores de la Tabla 26, cada valor representado con cinco cifras significativas.

Tabla 26

Parámetros de divisor T en banda Ka

	Valor de puntos en	Valor de puntos en		
N° actual	X [mm]	Y [mm]		
01	0.0000	3.2608		
02	16.304	3.2608		
03	17.436	4.0227		
04	18.557	4.5198		
05	19.007	4.5736		
06	21.169	4.7752		
07	21.677	4.9685		
08	22.381	5.9079		
09	23.710	6.8224		
10	24.523	7.7370		
11	25.230	9.0640		
12	25.902	10.390		
13	26.757	11.058		
14	27.402	12.264		
15	28.074	13.780		
16	28.394	15.350		
17	28.394	31.655		

N° actual	Valor de puntos en	Valor de puntos en		
in actual	X [mm]	Y [mm]		
18	34.916	31.655		
19	34.913	15.350		
20	34.782	14.042		
21	34.673	11.840		
22	34.483	10.576		
23	34.293	9.5541		
24	33.695	7.6328		
25	33.260	6.7164		
26	32.194	4.6295		
27	31.308	3.8149		
28	30.421	3.0002		
29	29.780	2.2109		
30	29.140	1.4215		
31	27.833	0.2954		
63 o med.	25.845	0.0000		

Respuesta en Frecuencia

Tras el escalado de la dimensión, la respuesta en frecuencia del divisor T adaptado a la banda Ka es similar a cuando medía 12 mm de dimensión "*a*", con la diferencia que la respuesta de los coeficientes de reflexión, así como de transmisión se trasladan a la banda Ka, teniendo una banda de trabajo de 25.322GHz a 27.150GHz, de 1.827GHz, Figura 69 y 70.

Coeficiente de reflexión de divisor T para banda Ka

Coeficiente de transmisión de divisor T para banda Ka

Adaptación a Frecuencia Central en 28GHz

Para que la frecuencia central de la banda de trabajo se ubique cercano a 28GHz se opta por una simple solución comparativa utilizando los datos de la Figura 69.

Se sabe que la banda de trabajo al adaptar la guía a la banda Ka es de 1.827GHz y que existe una separación de 2.322GHz desde la frecuencia de corte hasta la frecuencia mínima de la

banda de trabajo, 25.322GHz. Por lo tanto, para centrar la banda de trabajo lo más cercana a 28GHz, se calcula la frecuencia de corte aproximada ($f_{c_{28}}$) de la nueva banda, restando a 28GHz la mitad de 1.827GHz y la separación de 2.322GHz. Con la nueva frecuencia de corte aproximada se calcula un nuevo valor de "*a*" (Ecuación 1) y, posteriormente, se escala la guía de onda calculando un valor adimensional k_{28} .

$$f_{c_{28}} = 28 - \frac{AB_{Ka}}{2} - separación [GHz]$$

$$f_{c_{28}} = 28 - \frac{1.827}{2} - 2.322 = 24.7645 [GHz]$$

$$f_{c_{28}} = \frac{c}{2a_{28}} \rightarrow a_{28} = \frac{c}{2f_{c_{28}}}$$

$$a_{28} = \frac{3x10^8 \left[\frac{m}{s}\right]}{2(24.7645 x10^9 [Hz])}$$

$$a_{28} = 6.05705 \times 10^{-3} \ [m] \approx 6.057 \ [mm]$$

Para obtener el valor de k_{28} se usa nuevamente como referencia el valor de "a" del divisor tipo T de la Mejora N°11

$$k_{28} = \frac{a_{12mm}}{a_{28}} = 1.98117 \approx 1.981$$

Con los cálculos previos se deduce que k_{28} y a_{28} son inversamente proporcionales y, por lo tanto, k_{28} será directamente proporcional a la frecuencia de corte f_{c28} .

Debido a que esta solución es una propuesta sencilla se espera que la frecuencia central de la respuesta en frecuencia obtenida de la guía de onda redimensionada esté cerca de 28GHz, por lo que es necesario variar el valor de k_{28} para ajustar la respuesta y obtener los 28GHz como

frecuencia central. La Figura 71 muestra los coeficientes de reflexión, corroborando lo redactado previamente.

Figura 71

Coeficientes de reflexión con k₂₈=1.981

Usando los datos de la Figura 71 se obtiene que la frecuencia central es 28.2535GHz, por lo tanto, es necesario disminuir el valor de k_{28} hasta conseguir la frecuencia de 28GHz en el centro de la banda de trabajo. La Tabla 27 muestra las variaciones realizadas a k_{28} y la frecuencia central obtenida para cada una de ellas.

Tabla 27

Frecuencia central para distintos valores de k₂₈

Parámetro	N° de variación					
	1	2	3	4	5	6
k ₂₈	1.9	1.95	1.97	1.96	1.965	1.964
Frecuencia central [GHz]	27.107	27.830	28.102	27.964	28.020	28.009

Respuesta en Frecuencia con k_{28} =1.964

Utilizando la variación N° 6 se obtiene un valor de a_{28} de 6.10997 y centrar la banda de trabajo lo más cerca a 28GHz. Así también se consigue la respuesta de los coeficientes de reflexión de la Figura 72, donde se observa que las pérdidas de retorno permanecen bajo los - 30dB, con una banda de trabajo de 1.967GHz.

Los coeficientes de transmisión se observan en la Figura 73, donde la atenuación hacia los puertos de salida (puerto 2 y 3) es de -3.01dB, dentro de la banda de trabajo.

Figura 72

Coeficientes de reflexión para k₂₈=1.964

Figura 73

Análisis de Fase

En este apartado se compara el cambio experimentado en las fases de los modos de onda al atravesar el divisor tipo T inicial (Figura 20) y el diseño de divisor tipo T de la Mejora N°11 (Figura 57), el cual está diseñado para trabajar en la banda Ku.

Respuesta de Fase Previo a Mejoras

Inicialmente, la respuesta de fase en el diseño inicial de divisor tipo T es el que se muestra en la Figura 74 y 75, donde se han separado la respuesta de fase para cada modo de propagación (modo TE₁₀ y TE₀₁) y se ha dibujado líneas verticales rojas el punto a 13.772GHz y 14.779GHz, las cuales marcan el ancho de banda de trabajo obtenido en la Mejora N°11.

En la Figura 74 se observa que la fase los parámetros S_{21} y S_{31} del modo TE_{10} , representada por S2(1),1(1) y S3(1),1(1) respectivamente, son iguales por lo que la onda propagada al puerto 2 y 3 no experimenta ningún desfase dentro de la banda de trabajo.

Por otro lado, la Figura 75 muestra que la fase de los parámetros S_{21} y S_{31} del modo TE_{01} , representada por S2(2),1(2) y S3(2),1(2) respectivamente, no coinciden y tienen un desfase de 180 grados dentro y fuera de la banda de trabajo.

Figura 74

Fase de parámetros S₂₁ y S₃₁ del modo TE₁₀ de diseño de divisor T inicial

Fase de parámetros S_{21} y S_{31} del modo TE_{01} de diseño de divisor T inicial

Respuesta de Fase Después de Mejoras

Tras realizar todas las mejoras propuestas en este documento se obtiene la Figura 76 donde se agrupan las respuestas de fase del modo TE_{10} y TE_{01} . De igual manera que en la Figura 74 y 75 se han marcado los puntos que limitan la banda de trabajo obtenida en la Mejora N°11 y su nomenclatura es la misma.

En la Figura 76 se puede observar que la fase de las ondas del modo TE_{10} que se propaga al puerto 2 y 3 se mantienen iguales, habiendo experimentado un desplazamiento en frecuencia. Por otro lado, la respuesta del modo TE_{01} sigue siendo diferente para el puerto 2 como para el puerto 3, manteniendo un desfase de 180 grados, además de presentar un ligero desplazamiento en frecuencia.

Fase de parámetros S_{21} y S_{31} del modo TE_{10} y TE_{01} del divisor T de la Mejora N°11

Capítulo V

Conclusiones y Recomendaciones

En este capítulo se presentan las conclusiones obtenidas a lo largo del desarrollo del presente proyecto, así como se dan recomendaciones para agilizar cualquier trabajo futuro llevado a cabo en CST STUDIO. Finalmente, se presenta ideas de qué trabajos podrían llevarse a cabo utilizando el desarrollado en esta tesis.

Conclusiones

Se han cumplido los objetivos y especificaciones establecidas, diseñando un divisor T de guía de onda cuadrada para polarización dual, alcanzando una atenuación -30dB en las pérdidas de retorno mientras se mantiene en -3dB la respuesta del coeficiente de transmisión y obteniendo una banda de trabajo entre 13.772 GHz y 14.779 GHz, representando un 7.05% de banda útil dentro de la banda Ku.

La viabilidad para desarrollar un proyecto de diseño de guía de onda es mayor si se considera trabajar con los puntos de la guía pues aporta mayor cantidad de parámetros los cuales variar y por ende obtener mayor cantidad de resultados en base a pruebas.

El cambio más significativo durante el desarrollo del proyecto fue el ensanchamiento cerca de la entrada de la guía y profundización del septum, específicamente los puntos P03, P04, P05, P06, P29, P30, P31 y xmed; pues al modificarlos se consigue disminuir significativamente la respuesta de los coeficientes de reflexión por debajo de -20dB, siendo los puntos de mayor importancia durante el desarrollo del proyecto. Por otra parte, las modificaciones en los puntos de las secciones 3 y 4 (puntos en los brazos) favorecen la respuesta del modo TE₀₁ permitiendo que alcance los -30dB de atenuación en las pérdidas de retorno, así como ensancha la respuesta del modo TE₁₀, aumentando su banda de trabajo útil.
Al adaptar la guía de onda diseñada para la banda Ku para trabajar en la banda Ka se obtiene un incremento de ancho de banda casi duplicando el valor de la primera guía de onda diseñada, consiguiendo un total de 1.967GHz de banda de trabajo, un 6.96% de banda útil disponible. Además, se obtiene un comportamiento similar en la respuesta de los coeficientes de reflexión si se comparan ambas, Figura 58 y 72.

Tras terminar el diseño y optimización del divisor Tipo T dual, las respuestas en fase de S_{21} y S_{31} del modo TE_{10} son iguales en los puertos de salida (puerto 2 y 3), es decir, no presentan ningún desfase. Por otra parte, las respuestas de fase de S_{21} y S_{31} del modo TE_{01} presentan un desfase de 180 grados entre sí.

Recomendaciones

De tener acceso a un computador de escritorio con componentes recomendables para ejecutar CST, es preferible hacer uso de ella en lugar de usar una computadora portátil dado que sus recursos son superiores y por ende el tiempo requerido en simulaciones es menor y con menos riesgo de experimentar congelamiento del sistema operativo.

A fin de disminuir el número de cálculos realizados por CST durante una simulación es preferible configurar el rango de frecuencia a analizar en la simulación a un rango corto, de preferencia no mayor a 2GHz de ancho de banda, dentro de la banda de trabajo de interés. En el caso del presente proyecto ayudó a reducir el número de cálculos por simulación a poco más de la mitad.

Trabajos Futuros

Dado que el presente proyecto se limita al diseño del divisor tipo T dual en guía de onda cuadrada más no a su implementación, sería adecuado construirlo, probarlo y comparar los resultados teóricos con los prácticos tanto con el diseño final adaptado a la banda Ku así como el diseño adaptado a la banda Ka. Además, dado que la guía de onda diseñada final (de la Mejora N°11) presenta un desfase de 180 grados en los parámetros S_{21} y S_{31} del modo TE_{01} sería adecuado probar alternativas de mejora para ajustar dicho desfase e igualar sus respuestas en la medida de lo posible.

Bibliografía

- Atia Ali, A. W. (1972). Narrow-Bandpass Waveguide Filters. *IEEE Transactions on Microwave Theory and Techniques*, 258-265.
- Bera, S. C. (2019). *Microwave Active Devices and Circuits for Communication*. Singapore: Springer.
- Berdnik, S. I., Katrich, V. a., Nesterenko, M. v., & Penkin, Y. m. (2016). Waveguide T-junctions with resonant coupling between sections of different dimensions. *International Journal of Microwave and Wireless Technologies*, 1-7.
- Berger. (2003). *ScienceDirect*. Obtenido de Rectangular Waveguides: https://www.sciencedirect.com/topics/physics-and-astronomy/rectangular-waveguides
- Cano, L., & Mediavilla, A. (2016). Wideband Dual-Mode Waveguide Bends for Linear and Circular Polarizations. *IEEE Trans. on Microwave Theory and Thechniques*, 831-837.
- Dassault Systems. (2002). Obtenido de CST STUDIO SUITE: https://www.3ds.com/productsservices/simulia/products/cst-studio-suite/
- Dassault Systems. (2002). Obtenido de Automatic Optimization: https://www.3ds.com/products-services/simulia/products/cst-studiosuite/optimization/
- Dassault Systems. (2002). Obtenido de CST Studio Suite Recommended Hardware: https://www.3ds.com/support/hardware-and-software/simulia-system-information/cststudio-suite/cst-studio-suite/
- Ghanadi, M. (2012). *A new Compact Broadband Radial Power Combiner (Tesis doctoral).* Universidad de Berlín, Berlín.

- Golio, M., & Golio, J. (2008). *RF and Microwave Passive and Active Technologies*. Boca Ratón: CRC Press.
- Igor, A. (2016). *Docplayer*. Obtenido de Medios de Transmisión. Guía de Onda, Fibra Óptica, Cable Coaxial, Atmósfera: https://docplayer.es/8604221-Medios-de-transmision-guiade-onda-fibra-optica-cable-coaxial-atmosfera.html

Kumar, P. (2018). *Microwave, Radar & RF Engineering*. Singapore: Springer.

Martínez, I. I. (2008). DESIGN OF WIDEBAND ORTHOMODE TRANSDUCERS BASED ON THE TURNSTILE JUNCTION FOR SATELLITE COMMUNICATIONS (Tesis de grado). Universidad Autónoma de Madrid, Madrid.

MathWorks. (s.f.). Obtenido de Matlab: https://es.mathworks.com/products/matlab.html

- *MI-WAVE*. (2007). Obtenido de Waveguide frequency bands and interior sizes: https://www.miwv.com/millimeter-wave-resources/wiki/waveguide-dimensions/
- *MI-WAVE*. (2007). Obtenido de Understanding TEM, TE, and TM Waveguide Modes: https://www.miwv.com/understanding-tem-te-and-tm-waveguide-modes/
- Olivares, P. S. (2018). AGRUPACIONES PLANAS RECONFIGURABLES SOBRE REDES DE ALIMENTACIÓN DE BAJAS PÉRDIDAS PARA SISTEMAS DE ALTAS PRESTACIONES (Tesis doctoral). Universidad Autónoma de Madrid, Madird.
- Poole, I. (2016). *Electronicsnotes*. Obtenido de Wavwguide Junuctions: https://www.electronicsnotes.com/articles/antennas-propagation/rf-feeders-transmission-lines/waveguidejunctions.php

Pozar, D. (2011). Microwave Engineering. Estados Unidos: John Wiley & Sons.

- Pratt, T., & Allnutt, J. (2020). Satellite Communitcations. West Sussex: JohnWiley & Sons.
- radaruax. (7 de Abril de 2017). *Guías de onda y radares*. Obtenido de Guías de onda: https://radaruax.wordpress.com/2017/04/07/guia-de-ondas/

Sorrentino, R., & Bianchi, G. (2010). *Microwave and RF Engineering*. Singapore: John Wiley & Sons.

Tomasi, W. (2003). Sistemas de Comunicaiones Electrónicas. México: Pearson.