

UNIDAD DE GESTIÓN DE TECNOLOGÍAS

DEPARTAMENTO DE ELECTRÓNICA Y COMPUTACIÓN

AUTOR: ÁNGELA ELIZABETH QUINGA MEZA

TEMA

"CONFIGURACIÓN DEL TRANSMISOR DE TEMPERATURA SITRANS TH-200 MEDIANTE EL MODEM 7NG3092-8KU PARA ADQUIRIR SEÑALES DE TERMOCUPLA TIPO J Y TIPO K"

OBJETIVOS

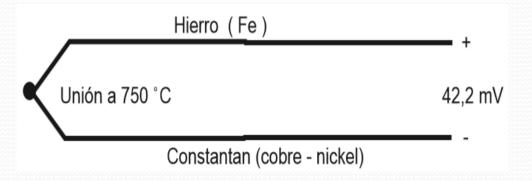
OBJETIVO GENERAL:

Implementar el transmisor de temperatura SITRANS TH-200 mediante el modem 7NG3092-8KU para adquirir señales de termocupla tipo J y tipo K.

OBJETIVOS ESPECÍFICOS:

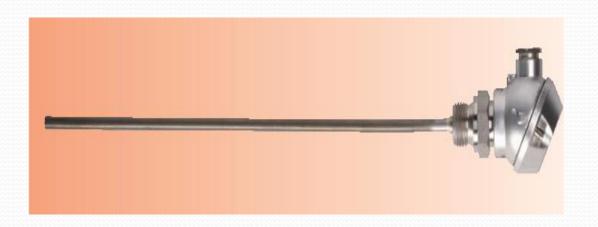
Adquirir el modem 7NG3092-8KU, el transmisor de temperatura SITRANS TH-200 y las termocuplas tipo J y K.

Analizar las características que debe tener el PC para la correcta instalación y manipulación del programa "SIPROM T".


Identificar las indicaciones visuales del modem 7NG3092-8KU y su respectivo significado.

Explicar los diferentes métodos de conexión entre los sensores de temperatura y el transmisor "SITRANS TH-200".

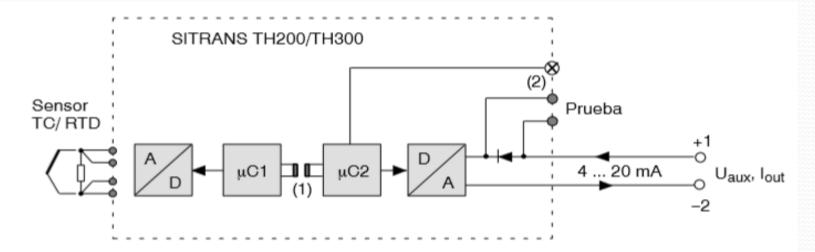
DESARROLLO DEL TEMA


TERMOCUPLAS

Es un sensor de temperatura que se compone de dos alambres de distinto material unidos en un extremo. La variación de temperatura genera una variación de voltaje.

PT100

Es un sensor de temperatura que se basa en la variación de la resistencia.


• <u>VENTAJAS Y DESVENTAJAS DE LAS TERMOCUPLAS</u> <u>Y LA PT100</u>

Características	Termocupla J	Termocupla K	PT100
Rango de medición	-30 °C a 400 °C	o °C a 600 °C	-100 C a 400 °C
Constitución	hierro y constantán (cobre / nickel)	cromel (cromo / aluminio) y alumel (aluminio / nickel),	Platino (o °C / 100 ohms)
Distancia entre el instrumento y sitio de medición	< 10 m	<10 m	>10 m (máx. 30 m)
Precisión de la lectura	Error de ±0.5 °C	Error de ±0.5 °C	Precisa
Costo	Económica	Económica	Cara
Aplicación	En la industria del plástico, en procesos donde el sensor este sometido a vibraciones (motores)	Por lo general en hornos	En el proceso de alimentos (envasados, pasteurizados, cocción, etc.) Ideal en la industria química o cámaras de secado de textiles, papel, etc.

SITRANS TH-200

Transmisor de temperatura que genera una señal de corriente entre 4 y 20 mA. Permite conectar sensores como RTD y Termocuplas

Entrada:

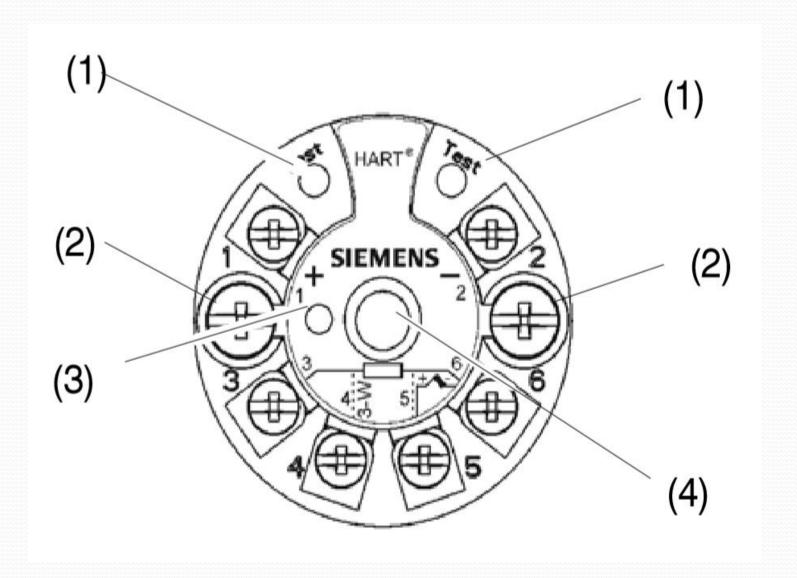
A/D Convertidor analógico-digital

Sensor Termorresistencia, termopar, emisor de resistencia, transmisor de milivoltios

μC1 Microcontrolador, secundario

Salida:

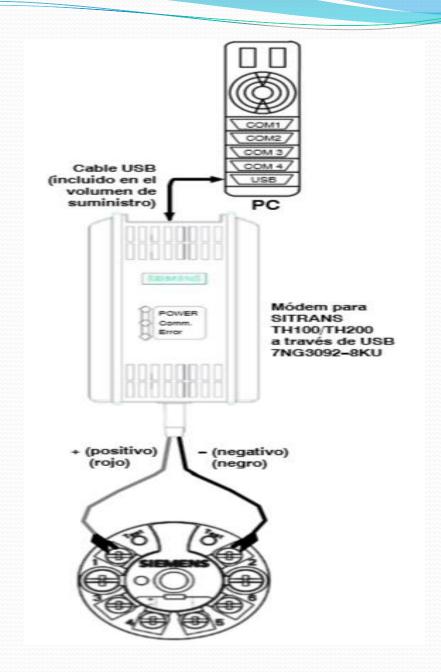
μC2 Microcontrolador, primario


D/A Convertidor digital-analógico

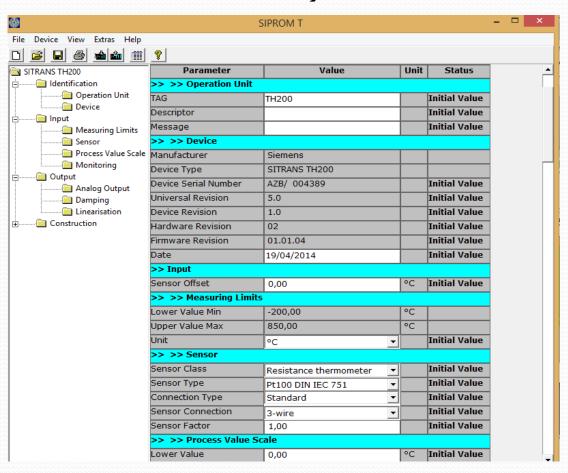
U_{aux} Energía auxiliar

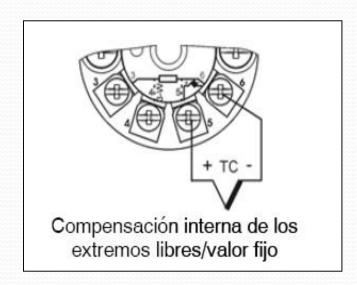
I_{out} Corriente de salida


(1) Separación galvánica

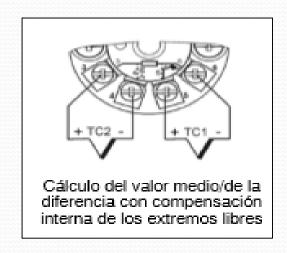

(2) LED

MODEM 7NG3092-8KU


Dispositivo electrónico que sirve como enlace entre el PC y el transmisor de temperatura para la adquisición y transmisión de datos.


SIPROM T

Software que permite la parametrización del transmisor de temperatura SITRANS TH-100 y SITRANS TH-200.



CONEXIÓN DE SENSORES AL TRANSMISOR DE TEMPERATURA

• CONEXIÓN DE UNA TERMOCUPLA

CONEXIÓN DE DOS TERMOCUPLAS

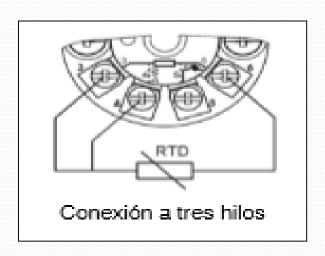
Si se coloca los siguientes valores:

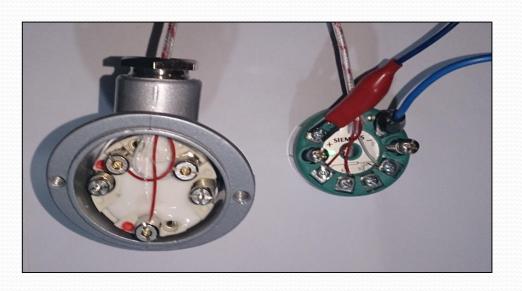
Sensor Offset =
$$20$$

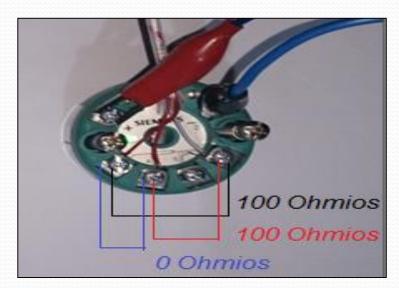
Sensor Offset
$$2 = 25$$

Y la temperatura en los sensores es:

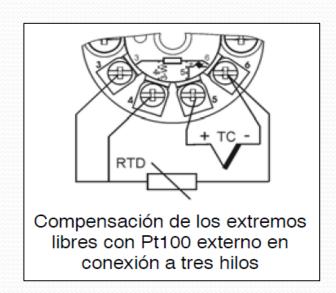
Sensor
$$1 = 15$$


Sensor
$$2 = 18$$


La temperatura que se obtendra es:


Sensor
$$1 = 20 + 15 = 35$$
 °C

Sensor
$$2 = 25 + 18 = 43$$
 °C


• CONEXIÓN DE UNA PT100 DE TRES HILOS

CONEXIÓN DE UNA PT100 Y UNA TERMOCUPLA

CONCLUSIONES

- Se implementó exitosamente el transmisor de temperatura SITRANS TH-200 mediante el modem 7NG3092-8KU para la adquisición de señales de termocuplas tipo J y tipo K en el Laboratorio de Instrumentación Virtual para las futuras prácticas de los estudiantes.
- Se adquirió el modem 7NG3092-8KU, el transmisor de temperatura SITRANS TH-200 y las termocuplas tipo J y tipo K, se comprobó que son equipos robustos y de fácil utilización.
- Se analizó las características que debe tener el PC para la correcta instalación y manipulación del programa SIPROM T, verificando que el software trabaja en forma óptima en Windows XP y Windows 7, pero en Windows 8 el programa se vuelve lento, lo que disminuye su eficiencia al momento de realizar las pruebas ON LINE.

- Se identificó las indicaciones visuales del modem 7NG3092-8KU y su respectivo significado recalcando que es fundamental identificar de manera rápida y precisa las condiciones en que está operando el equipo y en caso de existir algún problema dar una solución ágil y adecuada para retornar a condiciones óptimas de funcionamiento lo más pronto posible.
- Se explicó los diferentes métodos de conexión entre los sensores de temperatura y el transmisor SITRANS TH-200, es importante tener a la mano el manual, porque la conexión que existe entre la termocupla y la PT 100 es distinta y en caso de conectar mal los sensores el equipo emitirá una señal de error y no se podrá adquirir datos.

RECOMENDACIONES

- Adquirir más transmisores de temperatura para que así el estudiante tenga en cada uno de los módulos de trabajo los dispositivos necesarios para realizar sus prácticas.
- Tener cuidado al momento de conectar o polarizar mal el transmisor de temperatura, el modem de programación y las termocuplas porque la precisión de la adquisición de datos disminuirá con el pasar del tiempo dependiendo del mal uso que se de a los equipos.
- La eficiencia del programa es de suma importancia para poder trabajar rápidamente con el SITRANS TH-200 para la adquisición y transmisión de datos por lo que se debe probar la funcionalidad del software SIPROM T en el nuevo Windows 8.1 ya que es uno de los últimos sistemas operativos.

- Memorizar o tener una tabla a la mano de las indicaciones visuales del modem 7NG3092-8KU para poder dar soluciones de manera veloz cuando existan fallos en el equipo.
- Tener en cuenta los diagramas correctos de todas y cada una de las conexiones posibles entre el transmisor y los sensores de temperatura no solo para evitar errores en la lectura de datos sino también para evitar que el equipo genere indicaciones de error.

GRACIAS