

Development of an Educational Web Application with an architecture base on the cloud,

to facilitate the learning process in programming Logic through pseudocode in Kichwa

Pineda Vega, Jean Pierre y Montalvo Laica, Evelyn Noemí

Departamento de Eléctrica y Electrónica

Carrera de Ingeniería en Software

Artículo académico, previo a la obtención del título de Ingeniera en Software

Ing. Rolando Marcelo Álvarez Veintimilla

03 de septiembre del 2021

Development of an Educational Web Application with an
architecture base on the cloud, to facilitate the learning
process in programming Logic through pseudocode in
Kichwa

Noemí Montalvo L., Jean Pineda V., Marcelo Alvarez V.

Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador
{enmontalvo, jppineda, rmalvarez}@espe.edu.ec

Abstract. The purpose of this project is to develop an educational web applica-
tion that facilitates the learning of programming through the use of pseudocode
syntax in Kichwa. Making use of cloud-based services such as cloud functions
for servers, CloudBuild for deployment and firebase for hosting and database.
This application will link instructions, statements, and operators, which form the
basis of programing logic, enabling the generation of a practical and understand-
able pseudocode that facilitates the teaching of programming.

Throughout the development of this model the follow is defined: the structure
and syntax of the pseudocode in Kichwa; the creation of data dictionaries, re-
stricted words and terms; definition of data typology, int, string; definition of the
control structure syntaxis, statements: if, then, else loop for, while, definition of
the architecture of the code analyzer that determines the process of translation of
the pseudocode in Kichwa, the creation of the graphic interface. The web appli-
cation performs an analysis of the pseudocode written by the user; then a trans-
lation is carried out through the pseudocode in Kichwa, for its further compilation
and execution.

Keywords: Cloud Computing, Pseudocode, Programming logic, Kichwa.

1 Introduction.

Currently, there are more than 8500 programming languages registered, of which 2,400
were developed in the United States, 600 in the United Kingdom, 160 in Canada and
75 in Australia [1]. Most of this programming languages are developed and structured
in English, among the most well-known are Pascal, C, C++, Java, Visual Basic, Php
and the most recent ones Python of Holland, Ruby of Japan, and Lua of Brazil. The
percentage of written languages it’s distributed at the rate of 80% in English, 15% in
French and 2% in other languages [2].

2

There are very few platforms and/or tools in Latin America that allow to program in
Spanish, even less in native languages. Ecuador is no exception, with the Kichwa Lan-
guage [3]. These limitations make the learning process of programming logic complex
for Kichwa-speaking communities due to the unavailability of the content in their na-
tive language. For this reason the programming tools in native languages are a step
towards diminishing the digital gap that has existed in the indigenous communities[4].

Thus, this project of developing an educational web application to facilitate the
learning of programming through pseudocode in Kichwa came to be. It allows users to
train through the application and to acquire programming skills.

This article is divided in six sections: The first section, the Introduction, focuses on
the general details of the project. The second section, Background, shows a study of the
existence of programming languages in the Kichwa language. The third section, Prob-
lem Formulation, describes the problem to be addressed. The fourth section, Method-
ology, details the development and architecture of the platform. The fifth section, Anal-
ysis of Results, where the experimental results that validate the proposal are shown.
The sixth section, Conclusions, where the results obtained are presented to propose fu-
ture works based on it.

2 Background

Currently, the most widely known and used programming languages according to
Stephen Cass are: Phyton, C, Java, C++, C#, R, JavaScript, PHP, Go, Swift; developed
and structured in English [5]. Taking in consideration that in the Latin American region
the majority of the population are Spanish-speaker, a linguistical barrier for the pro-
gramming logic is generated.

There are several native languages, such as, Mazateco (Mexico), Shuar (Ecuador),
Guaraní (Paraguay), but the case of Quechua refers to a linguistic family distributed in
different countries of South America: Colombia, Ecuador, Peru, Bolivia, Chile, and
Argentina. In this extensive territory, the quechuas languages are given different names:
In most parts of Peru and Bolivia the quechua (qhichwa, qhiswa or qichwa in the indig-
enous language); in Ecuador el Kichwa (quichua) [6]. In Latin America it is affirmed
that the Kichwa it’s a language that spread from the north of Argentina to the south of
Colombia, covering the current territories of Ecuador, Perú y Bolivia [7], it is estimated
that approximately 420 indigenous languages belong to 99 families, which make use of
the philology, apart from the Spanish [8].

In Ecuador, two major Kichwa-speaking areas can be distinguished: the Andean
zone and the Amazonian zone; the former extends along almost the entire Andean cor-
ridor, from the northern provinces of Imbabura and Carchi to the south of Zamora-
Chinchipe; the latter covers four of the five Amazonian provinces: Sucumbíos, Orel-
lana, Napo and Pastaza. Additionally, Kichwa speakers have been recorded in Guayas
and El Oro, on the coast of the country, as well as in two of the Galapagos Islands
(Santa Cruz and San Cristóbal) [9].

3

Currently, programming logic is considered one of the most demanded skills, there-
fore, its approach in the educational context [10], the fact that educational material is
taught in a language different from the native one in the case of programming, decreases
the participation and motivation of people in the teaching and learning process [11].
For this reason, programming platforms in native languages are a step towards decreas-
ing the difficulty in learning programming that has existed for a long time in indigenous
communities.

3 Formulation of the problem

The platforms for teaching programming logic are not designed for its use in indig-
enous communities. These tools are mainly offered in English [12], which hinders the
teaching and learning process in other languages. In the case of Ecuador there is no
platform that facilitates the introduction of the basics of programming logic for indige-
nous communities.

In Latin America as a whole, 50% of the indigenous population lives in the country-
side. Considering that the Kichwa language is the most widely used indigenous lan-
guage in Ecuador, even though it is not spoken throughout the country; 7 out of 10
people who identify themselves as indigenous live in rural areas [13] located mainly in
the Sierra and eastern [14].

According to Howard, the last INEC census on population and housing was con-
ducted in Ecuador in 2010. It recorded a proportion of 4.08% of the Kichwa-speaking
population in absolute terms [15], i.e., indigenous people who do not speak Spanish or
another second language. Within this population, 50% have the need to learn to pro-
gram as part of their high school and higher education studies [16].

The indigenous population still faces difficulties within the education in new tech-
nologies, unlike its counterpart in the city.[17] A fact that is aggravated by the reforms
to the Organic Law of Intercultural Education (LOEI) which caused the closure of ap-
proximately 13,834 community schools that were suspended in 2017. This has a nega-
tive impact on the indigenous communities, as evidenced by the desertion of 50% of
the students belonging to this sector of the population.[19] This causes stagnation in the
development of the towns and creates difficulties in learning subjects related to new
technologies such as programming logic [20].

There are different systems that seek to support the education in indigenous commu-
nities using the native language, like the web application for teaching the Kichwa lan-
guage [21]. However, this system is focused on the divulgation of the language, it serves
of no use for the new technologies. Given that the documentation of programming lan-
guages such as Python is in Spanish, English or other more commonly used languages,
we can assume that there is no educational web application that facilitates the teaching-
learning process of programming logic through pseudocode in Kichwa. Taking into
consideration the above mentioned, the present research work aims to develop a web
application that teaches program logic. This allows students to learn programming, de-
veloping their skills through a GUI. This is done with the intention to provide a learning
opportunity for a globalized world.

4

4 Methodology

4.1 Kichwa Code

Kichwa Code was created with the purpose of aiding students who start learning
programming logic. As a first step, the pseudocode is used to introduce basic principles
regarding the handling of basic programming expressions, variables, control structures,
etc. Avoiding the existing complexity of a programming language such as Python or
Java for the new users. Thus, it is intended to facilitate the writing of algorithms through
a pseudocode that uses expressions in Kichwa.

Upon logging into the application the user will be presented with the registration and
login option, that provides access to the main page of the web application and its two
modules:

Module 1 Code Editor. - This is one of the main components in the web application,
consisting of four panels: i) Kichwa pseudocode editor, ii) Activities, iii) Python code
visualization, iv) Results visualization. Visualization of Python code, iv) Visualization
of results, where the first panel allows to enter code in Kichwa, where the text adopts a
different color depending on the type of syntax that handles the pseudocode. The second
panel presents the following options: translate, compile and clean screen, that facilitates
the interaction with the editor. The third panel allows the user to visualize the Python
code generated from the pseudocode. The fourth panel simulates a computer terminal
and displays the result of the compilation and the detected errors.

Module 2 Training - It is an implementation of the code editor that consists of two
options: 1. Student progress, 2. Documentation. In the first option the user can find
tasks proposed for the training course, which consists of exercises designed to generate
new knowledge in programming logic using pseudocode in Kichwa. In the second op-
tion there are located the definitions and necessary concepts about the use of different
terms and syntax used when writing pseudocode in Kichwa. The user's progress on the
web application is tracked, as shown in Fig 1.

Fig 1. Module 2 Training

5

4.2 System Architecture

The platform has a cloud-based web architecture, consisting of a Frontend, which is
implemented through firebase Hosting; and the Backend, designed from a set of cloud
functions. Those functions are methods that encapsulate a specific logic, interconnected
between components and functionally isolated, which allows a high scalability and
maintenance. Each server exposes an API for its consumption, as shown in Fig 2.
Since the project uses google cloud platform services for its execution, the system has
the capability of supporting Hight traffic of users, given the deployment executed with
CloudBuild [29].

Fig 2. Model structure of the Kichwa Code System

The website consumes the backend API, which has a variety of endpoints for regis-

tration, user management, courses, translation and compilation.

6

In the case of translation, the website sends the pseudocode to the translation and
compilation server, which in turn consumes an endpoint of the pseudocode server to
obtain the respective Python translation, track errors and return the result for later vis-
ualization.

The core of the platform is the pseudocode server, which is responsible for generat-
ing Python code from the pseudocode in Kichwa. For the realization of this functional-
ity Lex and Yacc are used.

Lex y Yacc

Lex is a program designed to generate lexical analyzers, which are the initial phase of
a compiler that receives as an input a sequence of characters equivalent to the source
code of another program, and returns an output consisting of tokens (lexical compo-
nents) or symbols, which serve as input for a syntactic analyzer [22].

Yacc on the other hand is a program designed for the generation of syntactic parsers,
which provides a tool to validate whether a sequence of characters respects the rules of
a specific grammar [23].

4.3 Model of the structure and syntax of the pseudocode in Kichwa

This model defines the specification of the syntax of the pseudocode based on struc-
tures, which can be a token or a rule. A token being defined as a restricted word within
the Python programming language, with its respective equivalence in Kichwa and a
rule as a regular expression associated to a specific grammar as shown in Fig 3.

Fig 3. Model specification

7

Syntax of the Pseudocode

The terms used for the construction of the pseudocode syntax in Kichwa are not in-
tended to be a literal translation of the English terms of the Python language, but rather,
a semantic and syntactic equivalence of them, which were obtained from the Kichwa-
Spanish dictionary issued by the Ecuadorian Ministry of Education [24], as shown in
Table 1.

Table 1. Model tokens

TOKEN Keyword Python Keyword Kichwa Example

WHILE While kaman kaman(x==5)rurana
IF If mikuni if(x=='munay')
ELSE Else shina shina
E kuturi kuturi
DEF def kallari kallari main()
RETURN return kutiman kutiman 'munay'
VAR var or empty text willana willana x='munay'
PRINT print rikuchina rikuchina('munay')
ASK input tapuna x=tapuna('munay')
THEN Rurana kaman(x==5) rurana

Rules

The existing rules in our algorithm are those mentioned in Table 2, which are associated
to a regular expression. This allows to execute a certain logic in the translation of the
pseudocode. The regular expression associated to an assignment rule is the following:

def t_ASIG(t):
r':=|\+=|-=|*=|/='
if t.value == ':=':

t.value = '='
return t

8

Table 2. Model rules.

Definition Kichwa Value Python Value Example
Unary Operator ++,-- ++,-- x++
Binary Operator +,-,*./ +,-,*./ x+y
Binary Operator <,>,==,!=,>=,<= <,>,==,!=,>=,<= x>0
Parentheses Open ((x=(y+1)
Closed Parenthesis)) x=(y+1)
Assignment :=, +=,-=,*=./= =, +=,-=,*=./= x:=7
Number 5
String 'Hola'
Boolean Verdadero, Falso Verdadero,Falso
Characters , , ,
Comment $ # $’Texto’

Algorithm of translation

The translation algorithm is developed in Python through the implementation of the
Lex and Yacc libraries [25]: The program receives a sequence of characters and gener-
ates a sequence of strings with an assigned and identified meaning, called Tokens. They
are the input values for our syntactic analyzer, built using Yacc which validates whether
the generated tokens comply with a rule defined in the specification of the pseudocode
model as shown in Fig 2, and if so, they execute the respective logic for translation. In
this way, Python code is obtained from a pseudocode with Kichwa-based syntax.

4.4 Execution of the algorithm

Let’s suppose that the algorithm receives the following input:
willana x:= 'Hello World'

The tokenization process begins, generating a string of characters as the following ones:

“willana”, “x”, “:”, “=”, “´”, “Todo”, “bien”, “´”

The following step is performed to validate whether there is a token or a rule associated
with each value.

Tabla 3. Grammatical structure of the code associated with a token .

Pseudocode Token Name Phyton Equivalent
willana VAR var or empty text

9

Taking as an example the word willana, it is associated with a token, then replaced by
its equivalent in Python code as shown in Table 3.

The following characters are associated to a rule, therefore we proceed to execute the
respective logic for their translation, as shown in table 4.

Table 4. Equivalente a una regla en código Python.

Pseudocode Rule Name Equivalent
x Identifier x
:= Assignment =
“Hello World” Text “Hello World”

Resulting in:

var x= “Hello World”

Compilation

The compilation is done by using the Hackerearth API, which provides endpoints to
compile and execute code in several languages. In order to do this, it is necessary to
register the web application to acquire an Api Key credential, which allows to make
use of all the endpoints that Hackerearth has. Our web application sends the code gen-
erated in Python by our algorithm to the translation and compilation server and this in
turn consumes the Hackerearth API and returns the response to the website for later
display [26].

5 Analysis of Findings:

The tests are conducted with a total of 13 users, 76% are indigenous people who do not
know programming logic and the remaining 24% are indigenous people who poses
prior knowledge of programming logic. The learning experimentation is carried out in
different parts. First the user familiarizes with the operation of the system and the in-
terface. The user must complete the 4 learning scales represented in the application with
8 levels, which are the following ones: 1-3 very easy level, 4-6 easy level, 7 intermedi-
ate level, 8 difficult level.

To assess the learning level of the user in basic programming logic prior to using the
Kichwa Code web application, the participants were given a survey.

A comparison was made between the knowledge level before and after the comple-
tion of the training course. The equation for calculating the normalized conceptual gain,
proposed by Hake, is used:

 𝑔 = %"#%"$
%&&%#%"$

 (27)

10

Accordingly: 𝑔, is the normalized conceptual gain. Vi, is the value of the group average
before completing the training course or initial group average. V, is the value of the
group average after completing the training course, i.e., the final group average.

After the analysis of the results, a substantial improvement can be observed. Initially
the average of the group was 1.9 and in the end the average was 5.9, the conceptual
gain being 0.66 which according to Hake, it corresponds to an average gain. A compar-
ative graph of the results obtained is shown in Fig. 4.

Fig 4. Comparison of the increase in learning before and after the use of the Kichwa Code ap-
plication.

To evaluate the reduction in the learning time, the information stored in the user's track-
ing and monitoring database has been used. Additionally, to this information, we have
used the data obtained in the previously mentioned survey. For this analysis, a scale
measured by hours, consisting of the following levels has been used: 8h, 16h, 120h,
240h.
 A comparison was made between the time it takes for the user to complete the pro-
gramming course in OpenlabEc, with and without the use of the web application. It is
used the equation to calculate the percentage reduction according to Salazar, Castillo
and Del Castillo:

						𝑑 = 𝑉𝑖 − 𝑉							y							𝑃 = !
"#
∗ 100																																				(28)

Accordingly: d, is the difference between the two means found above. P, is the per-
centage of time reduction. Vi, is the value of the average time spent completing the
programming logic course without using the web application or initial average time. V,
is the value of the average time taken to complete the programming logic course using
the web application or final average time.

Through the analysis of the results, it is determined that a substantial reduction of
time is obtained with the use of the Kichwa Code web application. Initially the average
time in hours without using the application was 56 h. and with the use of the application

11

the average time dropped to 21 h. With a difference of 35 h., the percentage of time
reduction is 62.5%, which according to Salazar, Castillo and Del Castillo, corresponds
to a high percentage of reduction. The Fig. 5 shows a comparative graph of the obtained
results.

Fig 5. Comparison of the reduction of learning time without and with the use of the Kichwa
Code application.

6 Conclusions

In the methodology it is detailed the theoretical framework about the different concepts
that exist in the field of programming logic learning, and about the statements and basic
instructions in programming.

Based on this theoretical framework, a model of the structure and syntax of the pseu-
docode in Kichwa was developed as shown in Fig. 3.

Based on this model, an algorithm that acts as a pseudocode interpreter in Kichwa
has been developed and a web application has been implemented to facilitate the learn-
ing process of programming through the use of pseudocode.

Finally, it is necessary to mention the support of OpenLabEc by acting as an inter-
mediary between this project and the Kichwa-speaking users. The functionality of this
project was validated using the web application by the users. The results obtained were
organized in comparative graphs to show the increment in learning and used to measure
the impact of the application. A normalized conceptual gain indicator was used, giving
s 0.66 that according to Hake, corresponds to an average gain. A 62.5% reduction in
learning time was achieved, demonstrating that the use of the proposed web application
fulfills the function of facilitating the learning of programming through pseudocode in
Kichwa.

Although the results were positive, it is important to mention that by working with
all the components of the application, the learning process is facilitated in a very broad
way. It is recommended that for the use of the web application to be complemented

12

with the assistance of a computer or programming teacher for a better understanding
for the student.

7 Future Works

The following project consists of an algorithm of translation of a pseudocode whose
syntax of entry can be parametrized for other native languages. The interface of the
website its highly scalable. Which allows to aggregate functionalities focused on the
entry of values. This represents an opportunity for the user of being able to develop
even more complex algorithms.

8 References

1. Gómez, C. M.: Origen y evolución de la mediación: el nacimiento del movimiento ADR.
Anuario de derecho civil, 67(3), 931-996. Estados Unidos y su expansión a Europa (2014).

2. Flores Sáez, E.: Reutilización de código fuente entre lenguajes de programación (2012).
3. Dávila, M. R.: Investigación en Progreso: Estudio Comparativo de la Incidencia de los

Lenguajes de Programación en la Productividad Informática. Revista Latinoamericana de
Ingenieria de Software, 4(6), 255-258 (2016).

4. Pacheco Patiño, M. A.: Elementos de programación Algoritmos, herramientas,
programación estructurada. Aplicación a los lenguajes de programación Pascal, el lenguaje
de programación “C” y C++ y otros lenguajes actualizados. Introducción al lenguaje de
programación Matlab lenguajes de programación orientado a objetos. Aplicaciones a la re-
alidad cotidiana (2019).

5. Cass, S.: The 2017 top programming languages, pp. 1. IEEE Spectrum, 31 (2018).
6. Howard, R.: Las lenguas quechuas en tres países andino-amazónicos: de las cifras a la acción

ciudadana. Káñina, 45(1), 7-38 (2021).
7. Cárdenas, J. O.: PROBLEMAS INTERGENERACIONES EN LA CONTINUIDAD DEL

QUECHUA. Revista de la Facultad de Derecho y Ciencias Políticas (Cusco), (12), 39-60
(2020).

8. Nuñez, M., Duran, Y., Mojica, Z., & Stewart, M. A.: Descubriendo los Recursos Culturales
de Estudiantes Indígenas Latinoamericanos a través de la Literatura. Journal of Latinos and
Education, 1-8 (2021).

9. Howard, R.: Las lenguas quechuas en tres países andino-amazónicos: de las cifras a la acción
ciudadana, pp. 9-11. Káñina, 45(1), 7-38 (2021).

10. Roig-Vila, R. & Moreno-Isac, V.: El pensamiento computacional en Educación. Análisis
bibliométrico y temático. Revista De Educación a Distancia (RED), 20(63) (2020).

11. Aguilera Nicolalde, D. E.: Cierre de instituciones de educación intercultural bilingüe y sus
repercusiones en los pueblos indígenas del Ecuador, pp. 120-123. (Bachelor's thesis, Quito:
UCE) (2021).

12. Cass, S.: The 2017 top programming languages, pp. 2. IEEE Spectrum, 31 (2018).
13. Garcés, F.: La revitalización de las lenguas Indígenas del Ecuador: una tarea de todos

(2020).
14. Paronyan, H., & Díaz, M. C.: CONSIDERACIONES EN TORNO A LA

IMPLEMENTACIÓN DE LOS DERECHOS LINGÜÍSTICOS DE LOS PUEBLOS
INDÍGENAS DE ECUADOR, pp. 84-85. ISSN 2528-7842 (2019).

13

15. Howard, R.: Las lenguas quechuas en tres países andino-amazónicos: de las cifras a la acción
ciudadana, pp. 8. Káñina, 45(1), 7-38 (2021).

16. Grefa Grefa, L. D., & Ojeda Contreras, J. A.: Monitoreo espacio-temporal y socio ambiental
de acceso para jóvenes indígenas de Pastaza a las unidades educativas secundarias y
educación superior-UEA (Bachelor's thesis, Universidad Estatal Amazónica) (2019).

17. Paronyan, H., & Díaz, M. C.: CONSIDERACIONES EN TORNO A LA
IMPLEMENTACIÓN DE LOS DERECHOS LINGÜÍSTICOS DE LOS PUEBLOS
INDÍGENAS DE ECUADOR, pp. 86-88. ISSN 2528-7842 (2019).

18. Aguilera Nicolalde, D. E.: Cierre de instituciones de educación intercultural bilingüe y sus
repercusiones en los pueblos indígenas del Ecuador, pp. (Bachelor's thesis, Quito: UCE)
(2021).

19. Grefa Grefa, L. D., & Ojeda Contreras, J. A.: Monitoreo espacio-temporal y socio ambiental
de acceso para jóvenes indígenas de Pastaza a las unidades educativas secundarias y
educación superior-UEA ,pp. 5. (Bachelor's thesis, Universidad Estatal Amazónica) (2019).

20. Vázquez-Maguirre, M.: El desarrollo sostenible a través de empresas sociales en
comunidades indígenas de América Latina. Estudios sociales. Revista de alimentación
contemporánea y desarrollo regional, 29(53) (2019).

21. Buitrón Cachipuendo, B., Díaz Gispert, L. I., & Cahuasquí Anrango, J. A.: Diseño de un
aplicativo web para la enseñanza del idioma kichwa. RIDE. Revista Iberoamericana para la
Investigación y el Desarrollo Educativo, 11(21) (2020).

22. Levine, J. R., Mason, J., Levine, J. R., Mason, T., Brown, D., Levine, J. R., & Levine, P.:
Lex & yacc. O'Reilly Media, Inc. (1992).

23. Niemann T.: A Compact Guide to Lex and Yacc.Portland, Oregon (2018).
24. Chango M., Potosí C.: Diccionario Kichwa-Castellano, Ministerio de Educación, Ecuador

(2009)
25. D. Beazley. PLY (Python Lex-Yacc). http://www.dabeaz.com/ply/. last accessed

2021/01/08.
26. HackerEarth Docs. https://www.hackerearth.com/docs/wiki/developers/v4/. last accessed

2021/01/16.
27. Hake, R. R.: Interactive-engagement versus traditional methods: A six-thousand-student

survey of mechanics test data for introductory physics courses. American journal of Physics,
66(1), 64-74 (1998).

28. Salazar Pinto, C., Castillo Galarza, S. D., & Del Castillo Galarza, S.: Fundamentos básicos
de estadística (2017).

29. Documentation Google Cloud. https://cloud.google.com/docs . last accessed 2021/02/07.

