

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

TRABAJO DE UNIDAD DE INTEGRACIÓN CURRICULAR, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ

TEMA: "ESTUDIO DEL ACERO DULCE Y HIERRO FUNDIDO SOMETIDOS A TRACCIÓN Y COMPRESIÓN UTILIZANDO LABORATORIOS VIRTUALES Y SOFTWARE CAD BAJO NORMAS INTERNACIONALES"

AUTOR: GUAYLLAS GUAMÁN, PABLO FELIPE

TUTOR: ING. CARVAJAL NARANJO, MIGUEL ALBERTO

LATACUNGA, FEBRERO 2022

CONTENIDO

Propiedades mecánicas de los materiales

ENSAYOS DE MATERIALES

- Destructivos
- No destructivos

Máquina de ensayos universal

Curva esfuerzo – deformación

Esfuerzo

Deformación Unitaria

•F: fuerza aplicada

•A: área.

 $\varepsilon = \frac{l - l_o}{l_o}$

•ε: deformación unitaria

•l: longitud final

lo: longitud inicial

Módulo Elasticidad

$$E = \frac{\Delta\sigma}{\Delta\varepsilon}$$

•E: módulo de elasticidad

• $\Delta \sigma$: variación del esfuerzo

• $\Delta \varepsilon$: variación de la deformación

Ensayo de tracción (tensión)

F

Resistencia a la tracción

 $\sigma_{ET} = \frac{carga\ m\acute{a}xima}{A_o}$

Esfuerzo de rotura

 $\sigma_R = \frac{carga\ de\ rotura}{A_o}$

F

INTRODUCCIÓN

Ensayo de compresión

Resistencia a la compresión

 $\sigma_{ET} = \frac{carga\,m\acute{a}xima}{A_o}$

Esfuerzo de rotura

$$\sigma_R = \frac{carga\ de\ rotura}{A_o}$$

Laboratorio Virtual

42	-	-	-	3	1			
43	-	-	-	3.6				
42	-	-	-	5				
41	-	-	-	6				
40	-	-	-	7				
42.5	-	-	-	8.5				
45	-	-	-	11				
47	-	-	-	15				
49	-	-	-	19				
48	-	-	-	23				
46	-	-	-	29				
42	-	-	-	33				
	Download Data							

Cálculos de excel

rchivo	Inicio	Insertar	Dibujar (hisposición (de página	Fórmulas	Da	tos Revisi	ar Vista	Ayuda	Acrobat	Q for	é desea hac	er?		5		id Com
egar 🖏	v Calibri	<u>s</u> - L	- 11 - A] - 0 - 1	* = • =	= <u>-</u> 왕· =	- 28A) ≣I ⊡Co	iustar tex ombinar	to ycentrar ~	General \$ ~ % B	- 38 -88	Formato	Dar form	ito Estilos de	2 Elir	minar *		Jenary Bus	Cery .
tapapeles	5	Fuer	he .	5		Alineación		5	Númer	. 5	condiciona	Estilos	a · ceus ·	4	idas		Edición	Count .
	-		<i>.</i>		_	_	-	_	_	_	_		_	_	_	_		
36		XV	Je	_	_	_	_	_	_	_	_	_	_	_	_	_		
A	B	C	D	E	F I	6		н	1	J	К	L	м	N	0	P.	Q	R
Fuerra	Alargamient	¢.	Esfuerzo Der	formación	Anna Antonia				Do (mm)	19	Of (mm)	9						
10,420	D 0.00	-	e(nin/nin)	(kg/mm^2)	Area bajo ta o	AV8			Ab (mm ² 2)	152,73229	AF (mm ² 2)	63,6172512						
	5 0,00	10	0.00002	4 29435823	4 294365-05				co (mm)	50	n (med)	60,/5						
	130 0.04	15	0.00003	6.2531843	5,273778-05													
1	0,0	120	0.00004	8,21201837	7,29268-05		Modul	o de Young	Modulo ela	usti co	207183.9496	(kg/mm*2)						
1	100 0.00	125	0,00005	10,3968673	9,304448-05		Estuer	to de fluencia	Punto de fli	uencia	24,06207995	(kg/nm*2)						
10	50 0.00	190	0,00006	12,431037	0,00011414		Estuer	o Maximo	Resistencia	a la traccion	34,35486582	(kg/mm*2)						
1	120 0,00	195	0,00007	14,4652067	0,000134481		Estuer	to de ruptura	Punto de ru	iptura	30,28652645	(kg/mm*2)						
2	200 0,00	M0	0,00008	16,574716	0,0001552		Resile	ncia el astica	Resilencia		0,001493608							
2	M60 0,00	45	0,00009	18,533546	0,000175541				Tenacidad		1,182987579	34,3548658						
2	750 0,00	150	0,0001	20,718395	0,00019626				Ductilidad		52,07100592							
	040 0,00	55	0,00011	22,9032439	0,000218108				Education Date	omorión								
3	300 0,00	160	0,00012	24,862074	0,000298827				Lander 20-Liver	ormacion								
3	110 0,01	.00	0,0002	23,4306212	0,001991708		- 40			0,02	0,0575;							
3	140 0,01	100	0,0006	23,6566401	0,009417452		Η.			2	30,28452445	5						
8	120 0,04	00	0,001	23,5059608	0,00943252		"	0,0005.2		-								
3	140 0,00	00	0,0012	23,6566401	0,00471626		- 30	24,84207366										
3	160 0,12	00	0,0024	23,8073193	0,029478376			VV										
	00 0,2	00	0,005	25,3588663	0,065/29041		- 2	2										
	230 0,50	00	0,01	33,0000504	0,245393812		Η.,	Г										
	60 0,75	00	0,005	33,5014636	0,26367532		- 20	+										
	AGO 1.50	00	0,02	33.6014696	0.399231677		1 15	1										
	100 1.2	200	0,005	32 3960358	0.164999263			1										
	1,00	50	0.0375	30.2005264	0.078953203		19	•										
4	120 1.8	50	0.0375	30.2965264	0			1										
-	a,er		49000		~													_

Software CAD

JUSTIFICACIÓN

Ante la situación actual de pandemia y falta protocolos de bioseguridad se deberá

explorar opciones a los laboratorios físicos, además, la falta de recursos monetarios para la adquisición de nuevas máquinas o ajustes bajo normas de las máquinas antiguas, se dificulta

el aprendizaje de los estudiantes que no accedan a un laboratorio físico.

El adquirir conocimientos prácticos es fundamental en una carrera ingenieril, lo que da pie al desarrollo de nuevas alternativas para lograrlo. La adopción de laboratorios virtuales

brindará una ayuda estratégica para la adquisición de saberes y destrezas en el campo

práctico.

Objetivo General

 Determinar las propiedades mecánicas de los materiales sometidos a tracción y compresión bajo normas utilizando laboratorios virtuales y software CAD.

Objetivos Específicos

- Determinar las propiedades mecánicas del acero dulce y hierro fundido sometidos a tracción y compresión bajo normas utilizando laboratorios virtuales.
- Determinar las propiedades mecánicas del acero dulce y hierro fundido sometidos a tracción y compresión bajo normas utilizando el software CAD.

METODOLOGÍA

Simulación en el laboratorio virtual "VirtualLabs" Tensión en Acero Dulce A36

• Medición de la probeta

• Puntos de referencia

Realizados a una distancia de D*2,5=28,75 mm

METODOLOGÍA

Fijar la probeta en la máquina de ensayos universal

Verificación del extensómetro
 Least Count of Extensometer = 0.01mm

6

- - Aplicación de carga

Datos de carga y lectura de extensómetro

METODOLOGÍA

• Gráfica esfuerzo carga - alargamiento

Load Vs Ivory Scale Reading

Medición del diámetro en el punto más cercano a la rotura

METODOLOGÍA

• Medición de la longitud entre puntos de referencia

Final Length between the punch mark = 77.31mm

Cálculos en excel

- Aplicación de fórmulas para calcular:
 - Deformación
 - Esfuerzo
 - Área bajo la curva
 - Módulo elástico
 - Punto de fluencia
 - Resistencia a la tracción
 - Punto de rotura
 - Resiliencia
 - Tenacidad

Ductilidad
Se mide por el % de elongación y por el
% de reducción de área

Cálculos en excel

Deformación	Esfuerzo	
e(mm/mm)	(N/mm^2)	Área bajo la curva
0	0	0,000
0,000	19,255	0,000
0,003	38,510	0,098
0,008	57,765	0,244
0,017	77,020	0,569
0,017	96,275	0,000
0,017	115,530	0,000
0,025	134,785	1,056
0,034	154,040	1,219
0,034	173,295	0,000
0,037	192,550	0,618
0,051	211,805	2,730
0,051	231,060	0,000
0,059	250,316	2,031
0,068	269,571	2,194

0,068	288,826	0,000
0,068	308,081	0,000
0,076	327,336	2,682
0,084	346,591	2,844
	356,218	5,932
0,118	346,591	5,932
0,152	336,963	11,539
0,169	356,218	5,851
0,203	385,101	12,514
0,228	404,356	9,995
0,287	423,611	24,459 -
0,329	442,866	18,283
0,422	462,121	42,011
0,523	481,376	47,780
0,625	500,631	49,730
0,709	519,886	43,067
0,793	539,141	44,692
0,878	548,769	45,911
1,013	500,631	70,858
1,047	491,004	16,739
1,063	481,376	8,207
	0,068 0,076 0,076 0,084 0,101 0,118 0,152 0,169 0,203 0,228 0,229 0,229 0,229 0,709 0,709 0,709 0,709 0,703 0,703 0,709	0,068288,8260,068308,0810,076327,3360,084346,5910,101356,2180,152336,9630,169356,2180,203385,1010,203385,1010,228404,3560,287423,6110,329442,8660,422462,1210,523481,3760,625500,6310,709519,8860,793539,1410,878548,7691,013500,6311,047491,0041,063481,376

- Geometría
 - Se toman las medidas dadas por el laboratorio virtual

- Selección de material
 - Utilizar las propiedades que da el laboratorio virtual como base para la simulación.

Density	7,85e-06	kg/mm³
Structural		
▼Isotropic Elasticity		
Derive from	Young's Modulus a	and Poisson's Ratio
Young's Modulus	2,09e+05	MPa
Poisson's Ratio	0,27000	
Bulk Modulus	1,5145e+05	MPa
Shear Modulus	82283	MPa

Other	~
♥Johnson Cook Strength	
Strain Rate Correction	First-Order
Initial Yield Stress	356,30 MPa
Hardening Constant	233,00 MPa
Hardening Exponent	0,36000

• Mallado

Model (A4) > Me	sh > Mesh Controls						
Object Name	Body Sizing						
State	Fully Defined						
Scope							
Scoping Method	Geometry Selection						
Geometry	1 Body						
Definition							
Suppressed	No						
Туре	Element Size						
Element Size	2, mm						
Advanced							
Defeature Size	Default						
Behavior	Soft						

» Carga

Model (A4) > Explicit Dynamics (A5) > Loads								
Object Name	Fixed Support Displacement		Force					
State	Fully	Defined	Suppressed					
Scope								
Scoping Method Geometry Selection								
Geometry	1 Face							
Definition								
Туре	Fixed Support	Displacement	Force					
Suppressed	d No Yes							
Define By		Components						
Coordinate System		Global Coordinate System						
X Component		Free 0, N (step applied						
Y Component		Free	0, N (step applied)					
Z Component		-63, mm (ramped) -50000 N (step applied						

METODOLOGÍA

 Para el ensayo de tensión en el laboratorio virtual utilizando el material Hierro fundido (Gray Cast Iron) se repite el proceso anteriormente mencionado

• Gráfica carga - alargamiento

Load Vs Dial Reading

Dial Reading in div

Cálculos en excel

- Aplicación de fórmulas para calcular:
 - Deformación
 - Esfuerzo
 - Área bajo la curva
 - Módulo elástico
 - Punto de fluencia
 - Resistencia a la tracción
 - Punto de rotura

- Geometría
 - Se toman las medidas dadas por el laboratorio virtual

Cálculos en excel

Deformación	Esfuerzo				
e(mm/mm)	(KN/mm^2)	Área bajo la curva	0,0046	99,5527	0,0309
0,0000	0,0000	0,0000	0,0050	106,1896	0,0440
0,0001	6,6368	0,0004	0,0054	112,8264	0,0410
0,0005	13,2737	0,0037	0,0058	119,4633	0,0497
0,0008	19,9105	0,0053	0,0063	126,1001	0,0525
0,0011	26,5474	0,0075	0,0067	132,7370	0,0554
0,0014	33,1842	0,0080	0,0073	139,3738	0,0800
0,0017	39,8211	0,0117	0,0078	146,0107	0,0687
0,0019	46,4579	0,0092	0,0083	152,6475	0,0878
0,0023	53,0948	0,0186	0,0089	159,2844	0,0917
0,0026	59,7316	0,0151	0,0096	165,9212	0,1130
0,0029	66,3685	0,0202	0,0103	172,5581	0,1086
0,0033	73,0053	0,0261	0,0110	179,1949	0,1223
0,0036	79,6422	0,0245	0,0120	185,8318	0,1952
0,0039	86,2790	0,0222	0,0136	192,4686	0,3034
0,0043	92,9159	0,0383	0,0139	199,1055	0,0523

- Selección de material
 - Utilizar las propiedades que da el laboratorio virtual como base para la simulación.

Property	Value	Unit
Material Field Variables	III Table	
🔁 Density	7150	kg m^-3
Isotropic Elasticity		
Derive from	Young's Modulus and Pois	
Young's Modulus	21,36	GPa 📃
Poisson's Ratio	0,27	
Bulk Modulus	1,5478E+10	Pa
Shear Modulus	8,4094E+09	Pa
🔀 Specific Heat Constant Pressure, C ₂	452	J kg^-1 C^-1
🖃 🔛 Johnson Cook Strength		
Strain Rate Correction	First-Order	
Initial Yield Stress	156,71	MPa 💌
Hardening Constant	2,39E+08	Pa 💌
Hardening Exponent	0,4	
Strain Rate Constant	0,055	
Thermal Softening Exponent	0,55	

• Mallado

Defaults	
Physics Preference	Explicit
Element Order	Linear
Element Size	2, mm
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (4
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Slow
Span Angle Center	Coarse
Initial Size Seed	Assembl
Bounding Box Diagonal	243,66 m
Average Surface Area	3340,8 mi
Minimum Edge Length	68,801 m

» Carga

Model (B4)	> Explicit Dyna	amics (B5) > Loads		
Object Name	Fixed Support	Displacement		
State		Fully Defined		
	Scope			
Scoping Method	Geo	metry Selection		
Geometry	1 Face			
Definition				
Туре	Fixed Support	Displacement		
Suppressed		No		
Define By		Components		
Coordinate System		Global Coordinate System		
X Component		Free		
Y Component		Free		
Z Component		-100, mm (ramped)		

METODOLOGÍA

38

Simulación en el laboratorio virtual "VirtualLabs" Compresión en Acero Dulce A36

• Medición de la probeta

Fijar la probeta en la máquina de ensayos universal

• Aplicación de carga

METODOLOGÍA

• Gráfica esfuerzo carga - alargamiento

Load Vs Dial Reading

Cálculos en excel

- Aplicación de fórmulas para calcular:
 - Deformación
 - Esfuerzo
 - Área bajo la curva
 - Módulo elástico
 - Esfuerzo de Prueba
 - Resistencia a la compresión
 - Módulo Secante
 - Módulo tangente

43

Cálculos en excel

	Deformación	Esfuerzo	Área bajo la curva	0,0255	222,59710	0,57	0,1767	680,15781	8,07
	0	0,000	0	0,0283	234,96361	0,65	0 1074	711 07/08	14 41
	0,0012	12,36651	0,00	0,0314	247,33011	0,75	0,1974	711,07400	14,41
	0,0021	24,73301	0,02	0,0343	259,69662	0,72	0,2186	741,99034	15,40
	0,0031	37,09952	0,03	0,0381	272,06313	1,01	0,2386	772,90661	15,15
	0,0040	49,46602	0,04	0,0417	284,42963	0,99	0,2660	803,82287	21,59
	0,0052	61,83253	0,07	0,0452	296,79614	1,04	0,2976	834,73914	25,94
	0,0064	74,19903	0,08	0,0510	309,16264	1,73	0 3 4 0 2	865 65540	36.73
	0,0074	86,56554	0,08	0,0602	340,07891	3,01	0,5402	805,05540	50,25
	0,0086	98,93205	0,11	0,0710	370,99517	3,81			
	0.0096	111.29855	0.11	0,0795	401,91144	3,31			
	0.0112	123.66506	0.18	0,0869	432,82770	3,08			
	0.0124	136.03156	0.15	0,0929	463,74396	2,67			
	0.0138	148,39807	0.20	0,1021	494,66023	4,45			
ľ	0.0155	160.76457	0.26	0,1171	525,57649	7,65			
ľ	0.0169	173,13108	0.24	0.1267	556,49276	5.15			
ľ	0.0183	185 49759	0.26	0.1395	587.40902	7.35			
	0.0000	107.06400	0.27	0.1483	618.32529	5.31			
	0,0202	197,86409	0,37	0 1645	640 24155	10.26			
	0,0229	210,23060	0,53	0,1045	049,24155	10,20			

- Geometría
 - Se toman las medidas dadas por el laboratorio virtual

- Selección de material
 - Utilizar las propiedades que da el laboratorio virtual como base para la simulación.

	A	в	с
1	Property	Value	Unit
2	🔀 Material Field Variables	III Table	
3	🔀 Density	7,85	kg m^-3 💌
4	😑 🔀 Isotropic Elasticity		
5	Derive from	Young's Modulus and Poisso	
6	Young's Modulus	20,1	MPa 💌
7	Poisson's Ratio	0,3	
8	Bulk Modulus	1,675E+07	Pa
9	Shear Modulus	7,7308E+06	Pa
10	😑 🤡 Johnson Cook Strength		
11	Strain Rate Correction	First-Order	
12	Initial Yield Stress	213,43	MPa
13	Hardening Constant	2,29E+08	Pa 💌
14	Hardening Exponent	0,6428	
15	Strain Rate Constant	0,0274	
16	Thermal Softening Exponent	1	
17	Melting Temperature	1535	с 💌
18	Reference Strain Rate (/sec)	1	
19	Shock-EOS-Linear		
20	Gruneisen Coefficient	2,17	
21	Parameter C1	3000	m s^-1
22	Parameter S1	1,49	
23	Parameter Quadratic S2	0	sm^-1
24	😑 🔀 Principal Stress Failure		
25	Maximum Tensile Stress	4,7E+08	Pa 💌
26	Maximum Shear Stress	8E+10	Pa 💌

• Mallado

Defaults	
Physics Preference	Explicit
Element Order	Linear
Element Size	2, mm
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (4
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Slow
Span Angle Center	Coarse
Initial Size Seed	Assembl
Bounding Box Diagonal	243,66 m
Average Surface Area	3340,8 mr
Minimum Edge Length	68,801 m

» Carga

Model (B4)	> Explicit Dyna	amics (B5) > Loads			
Object Name	Fixed Support	Displacement			
State	Fully Defined				
	Scope				
Scoping Method	Geo	metry Selection			
Geometry		1 Face			
	Definition				
Туре	Fixed Support	Fixed Support Displacement			
Suppressed		No			
Define By		Components			
Coordinate System		Global Coordinate System			
X Component	Free				
Y Component	Free				
Z Component	-10, mm (ramped)				

METODOLOGÍA

 Para el ensayo de compresión en el laboratorio virtual utilizando el material Hierro fundido (Gray Cast Iron) se repite el proceso anteriormente mencionado

• Gráfica carga - acortamiento

Load Vs Dial Reading

Cálculos en excel

- Aplicación de fórmulas para calcular:
 - Deformación
 - Esfuerzo
 - Área bajo la curva
 - Módulo elástico
 - Esfuerzo de prueba (esfuerzo de fluencia)
 - Resistencia a la compresión

- Geometría
 - Se toman las medidas dadas por el laboratorio virtual

- Selección de material
 - Utilizar las propiedades que da el laboratorio virtual como base para la simulación.

1	Property	Value	Unit
2	🔀 Material Field Variables	III Table	
3	🔀 Density	7150	kg m^-3 💌
4	Isotropic Elasticity		
5	Derive from	Young's Modulus and Poiss	
6	Young's Modulus	19,9	GPa 💌
- 7	Poisson's Ratio	0,26	
8	Bulk Modulus	1,3819E+10	Pa
9	Shear Modulus	7,8968E+09	Pa
10	Specific Heat Constant Pressure, C ₉	452	J kg^-1 C^-1
11	Johnson Cook Strength		
12	Strain Rate Correction	First-Order	
13	Initial Yield Stress	315	MPa 💌
14	Hardening Constant	3,39E+08	Pa 💌
15	Hardening Exponent	0,4	
16	Strain Rate Constant	0,055	
17	Thermal Softening Exponent	0,55	
18	Melting Temperature	1537,9	c 💌
19	Reference Strain Rate (/sec)	1	
20	🔀 Bulk Modulus	1E+11	Pa 💌
21	🔀 Shear Modulus	6E+10	Pa 💌

• Mallado

Model (D4) > Mesh	
Object Name	Mesh
State	Solved
Display	
Display Style	Use Geometry Setting
Defaults	
Physics Preference	Explicit
Element Order	Linear
Element Size	1,5 mm
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (4)
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Slow
Span Angle Center	Coarse
Initial Size Seed	Assembly
Bounding Box Diagonal	52,982 mm
Average Surface Area	1147, mm ²
Minimum Edge Length	62,832 mm

» Carga

Model (D4) > Explicit Dynamics (D5) > Loads

Object Name	Fixed Support	Displacement			
State	F	Fully Defined			
	Scope				
Scoping Method	Geo	metry Selection			
Geometry		1 Face			
Definition					
Туре	Fixed Support Displacement				
Suppressed	No				
Define By		Components			
Coordinate System		Global Coordinate System			
X Component	Free				
Y Component	Free				
Z Component	-10,4 mm (ramped)				

- Ensayo de tensión Acero Dulce A36
 - Resultado del laboratorio virtual "VirtualLabs"

Result	Actual Value
Yield Stress(N/mm ²)	356.39
Tensile Strength(N/mm ²)	549.03
Modulus of Elasticity(GPa)	209.09
Percentage Elongation(%)	30.5
Percentage reduction in area(%)	54.11

• Resultado cálculos en Excel

Modulo elástico	13,9663		GPa	
Punto de fluencia	356,218		(N/mm^2)	
Resistencia a la tracción	548,7687		(N/mm^2)	
Punto de rotura	481,38		(N/mm^2)	
Resiliencia	4300,5283		(N/mm^2)	
Tenacidad	8295,7722		(N/mm^2)	
Ductilidad:				
% de elongació	n 30,50	%	Para aceros más usados el % de	
			elongación es un 21%	
% de reducción d	e 54,11	% Para acero estructural es común encontr		
áre	a		un 60 - 70% de reducción de área	

- Resultado Simulación de Software CAD
 - Esfuerzo Equivalente

Resultado Simulación de Software CAD

- Deformación

Resultado Simulación de Software CAD

B Equivalent Stress (Max)

- Curva esfuerzo - Deformación

Resultados Obtenidos

	VirtualLabs	Cálculo en	Simulación	Características
		Excel	Ansys	estandarizadas del
				material
Límite elástico (N/mm2)	356,39	356,218	356,39	250
Resistencia a la tracción (N/mm2)	549,03	548,76	587,65	400 - 550
Módulo de elasticidad (GPa)	209,09	13,96	209,09	200
Porcentaje de elongación	30,5	30,5	21,87	
Porcentaje de reducción de área	54,11	54,11	52,17	
	VirtualLabs	Cálculo en	Simulación Ansys	Características estandarizadas del
		Excel		material
Límite elástico %	356,39 MPa	0,05	5 (29,85
Resistencia a la tracción %	549,03 MPa	0,05	5 7,03	3 Dentro del rango
Módulo de elasticidad %	209,09 GPa	93,32	2 0,00	9 4,35

RESULTADOS

- Ensayo de tensión Hierro Fundido (Gray Cast Iron)
 - Resultado del laboratorio virtual "VirtualLabs"

Result	Actual Value
Proof Stress(N/mm ²)	156.71
Tensile Strength(N/mm ²)	199.21
Secant Modulus(GPa)	17.09
Tangent Modulus(GPa)	10.88
Modulus of Elasticity(GPa)	21.36

Resultado cálculos en Excel

Modulo elástico	20,1545	GPA
Punto do pruoba	165 0212	(N/mm^2)
Punto de prueba	105,9212	(IN/IIIII112)
Resistencia a la tracción	199,1055	(N/mm^2)
Punto de rotura	100 1055	(KN/mm^2)
T unto de rotura	199,1000	(100/11111 2)
Módulo secante	17,73	GPa
Módulo tangente	9,547	GPa

- Resultado Simulación de Software CAD
 - Esfuerzo Equivalente

Resultado Simulación de Software CAD

- Deformación

- Resultado Simulación de Software CAD
 - Curva esfuerzo Deformación

Resultados Obtenidos

	VirtualLabs	Cálculo en	Simulación	Características
		Excel	Ansys	estandarizadas del material
Límite elástico (N/mm	12) 156,7	1 165,9	92 156,7	71 No especificado
Resistencia a la tracción (N/mm	199,2	1 199,10	05 541,8	36 395
Módulo de elasticidad (GF	Pa) 21,30	6 20,1	5 21,3	36 124
		Cálculo en	Simulación	Características estandarizadas
	VirtualLabs	Excel	Ansys	del material
Límite elástico %	156,71 MPa	5,88	0	No especificado
Resistencia a la tracción %	199,21 MPa	0,05	63,23	98,28
Módulo de elasticidad %	21,36 GPa	5,66	0,00	95,54

- Ensayo de compresión Acero Dulce A36
 - Resultado del laboratorio virtual "VirtualLabs"

Result	Actual Value
Proof Stress(N/mm ²)	213.43
Compressive Strength(N/mm ²)	866.09
Secant Modulus(GPa)	18.26
Tangent Modulus(GPa)	8.91
Modulus of Elasticity(GPa)	20.14
Secant Modulus(GPa) Tangent Modulus(GPa) Modulus of Elasticity(GPa)	18.26 8.91 20.14

Resultado cálculos en Excel

Modulo elástico	18,69	GPa
Esfuerzo de prueba	259,70	(N/mm^2)
Resistencia a la compresión	865,66	(N/mm^2)
Módulo secante	14,71	GPa
Módulo tangente	6,61	GPa
% de acortamiento	-33,79	%

Resultado Simulación de Software CAD

- Esfuerzo Equivalente

Resultado Simulación de Software CAD

- Deformación

- Resultado Simulación de Software CAD
 - Curva esfuerzo Deformación

RESULTADOS

70

Resultados Obtenidos

	VirtualLabs	Cálculo en	Simulación	Características
		Excel	Ansys	estandarizadas del material
Límite elástico (N/mm2)	213,43	259,7	213,43	250
Resistencia a la	866,09	865,66	778,27	No especificado
compresión (N/mm2)				
Módulo de elasticidad (GPa)	20,14	18,69	20,14	200
		· · · · · · · · · · · · · · · · · · ·		
	VirtualLabs	Cálculo en	Simulación	Características

		Excel	Ansys	estandarizadas del material
Límite elástico (N/mm2)	213,43	259,7	213,43	250
Resistencia a la	866,09	865,66	778,27	No especificado
compresión (N/mm2)				
Módulo de elasticidad	20,14	18,69	20,14	200
(GPa)				

RESULTADOS

- Ensayo de tensión Hierro Fundido (Gray Cast Iron)
 - Resultado del laboratorio virtual "VirtualLabs"

Result	Actual Value
Proof Stress(N/mm ²)	382.17
Compressive Strength(N/mm ²)	828.03
Secant Modulus(GPa)	16.52
Tangent Modulus(GPa)	6.85
Modulus of Elasticity(GPa)	19.29

Resultado cálculos en Excel

Modulo elástico	17,32	GPa
Punto de fluencia	381,97	(N/mm^2)
Resistencia a la compresión	827,61	(N/mm^2)
Punto de rotura	827,61	(N/mm^2)
Módulo secante	16,98	GPa
Módulo tangente	8,913	GPa

- Resultado Simulación de Software CAD
 - Esfuerzo Equivalente

- Resultado Simulación de Software CAD
 - Deformación

- Resultado Simulación de Software CAD
 - Curva esfuerzo Deformación

Resultados Obtenidos

	VirtualLabs	Cálculo en	Simulación	Características
		Excel	Ansys	estandarizadas del material
Límite elástico (N/mm2)	382,17	381,97	382,17	No especificado
Resistencia a la compresión (N/mm2)	828,03	827,61	577,64	572 – 1380
Módulo de elasticidad (GPa)	19,29	17,32	19,29	124

	VirtualLabs	Cálculo en	Simulación	Características estandarizadas del
		Excel	Ansys	material
Límite elástico %	213,43	0,05	0	No especificado
Resistencia a la compresión %	866,09	0,05	30,24	Dentro del rango
Módulo de elasticidad %	20,14	10,21	0,00	84,44

CONTENIDO

• Las propiedades mecánicas fueron obtenidas mediante el laboratorio virtual "VirtualLabs"

con los siguientes resultados:

- Ensayo de tensión acero dulce

Límite elástico 356,39 MPa; resistencia a la tracción 549,03

MPa; Módulo de elasticidad 209,09 GPa; Porcentaje de

elongación 30,5%, Porcentaje de reducción de área 54,11%.

- Ensayo de tensión hierro fundido

Límite elástico 156,71 MPa; Resistencia a la tracción 199,21

MPa, módulo de elasticidad 21,36 GPa.

• Las propiedades mecánicas fueron obtenidas mediante el laboratorio virtual "VirtualLabs"

con los siguientes resultados: Ensayo de compresión acero dulce -Límite elástico 213,43 MPa; Resistencia a la compresión 866,09 MPa, módulo de elasticidad 20,14 GPa. Ensayo de compresión acero dulce Límite elástico 213,43 MPa; Resistencia a la compresión 866,09 MPa, módulo de elasticidad 20,14 GPa.

Se obtuvieron las propiedades mecánicas de los materiales mediante el software

Ansys, dando cor	no resultados:	
- Ensayo de tensión ac	ero dulce	
Límite elásti	ico 356,39 (N/mm2); resistencia a la tracción	
587,65 (N/m	1m2), módulo de elasticidad 209,09 (GPa);	
porcentaje d	e elongación 21,87 %; porcentaje de reducción de	
área 52,17 %	ó.	
	- Ensayo de tensión hierro fundido	

Límite elástico 156,71 (N/mm2); resistencia a la tracción

541,86 (N/mm2) módulo de elasticidad 21,36 (GPa).

• Se obtuvieron las propiedades mecánicas de los materiales mediante el software Ansys,

dando como resultados:			
- Ensayo de compresió	n acero dulce		
Límite elástico 2	213,43 (N/mm2); resis	tencia a la	
compresión 5	541,86 (N/mm2); mód	ulo de	
elasticidad 20	0,14 (GPa)		
	- Ensayo de comp Límite elás 577,64	presión hierro fundido stico 382,17 (N/mm2); (N/mm2); módulo de e	resistencia a la compresión lasticidad 19,29 (GPa)
		I I	

• Debido a que se tiene un porcentaje de error mayor al 10% en los ensayos: tracción del hierro fundido, compresión de acero dulce y compresión de hierro fundido se establece que el laboratorio virtual "VirtualLabs" no se debe usar como herramienta de reemplazo para el ensayo de compresión o tracción.

• La librería de materiales del software Ansys están basadas en las propiedades estandarizadas de los materiales, lo que da una diferencia con los valores del laboratorio virtual dando como resultado: la herramienta VirtualLabs es una opción educativa y didáctica para conocer el procedimiento y realizar cálculos teóricos que ayudarán a tener una idea de cómo se maneja una máquina de ensayos universal.

• La simulación dinámica explícita que ofrece el software Ansys ayuda a visualizar las deformaciones que tendrá un material al ser sometido a un tipo de carga de manera precisa, pero, requiere de un computador con hardware compatible con el software para que sus resultados se puedan obtener de manera precisa y no muy demorada, la simulación se encontrará en el anexo 1.

CONTENIDO

RECOMENDACIONES

• Se recomienda a los diseñadores del laboratorio virtual "VirtualLabs" especificar el tipo del

material a usarse en los ensayos, debido a que bajo el título "Acero dulce" y "Hierro fundido" se

encuentra una gran variedad de tipos de material que tienen distintas propiedades y darán

resultados diferentes al momento de obtener sus características mediante la aplicación de cálculos y

simulación en software CAD.

• Utilizar un laboratorio virtual que posea licencia para ejercer como software de

reemplazo a un laboratorio físico.

RECOMENDACIONES

• A nuevos investigadores se les recomienda crear videos guía o tutoriales que indiquen el uso

correcto del software Ansys y el manejo de sus librerías.

• Utilizar el software Ansys como herramienta de diseño o educativa gracias a que su librería

que se basa en las propiedades estandarizadas de los materiales.

• Realizar las simulaciones en un computador con hardware de video compatible para reducir

el tiempo de cálculo de los ensayos y aumentar la precisión de los resultados.

GRACIAS POR SU ATENCIÓN