

UNIVERSIDAD DE LAS FUERZAS ARMADAS - "ESPE"

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES CARRERA DE INGENIERÍA EN ELECTRÓNICA, AUTOMATIZACIÓN Y CONTROL

DESARROLLO Y EVALUACIÓN DE DESEMPEÑO DE SISTEMAS DE CONTROL INTELIGENTE BASADOS EN HERRAMIENTAS DE SIMULACIÓN "IN-THE-LOOP"

AUTOR: JEAN CARLO JÁTIVA CERVANTES

DIRECTOR: ING. RODOLFO XAVIER GORDILLO ORQUERA, Ph. D.

Agenda

Antecedentes

Motivación

Estado del arte

	TIA Portal	LabVIEW	Matlab/Simulink
Controlador Difuso	or Bloque de funciones creadas por el usuario	PID and Fuzzy Logic Toolkit	Fuzzy Logic Designer Neuro-Fuzzy Designer
	Der medie del	Neural Network Toolkit	Neural Net Time Series
Redes Neuronales	módulo S7-1500 TM NPU	Deep Learning Toolkit	Neural Net Fitting
			Neural Net Clustering
Tiempo de desarrollo del algoritmo	Lento	Lento	Rápido

MathWorks

Compañía	IDE	IEC 61131-3	C/C++
ABB	Automation Studio™	\checkmark	\checkmark
Omron	Sysmac® Studio	\checkmark	
Rockwell Automation	RSLogix™/Studio 5000	\checkmark	
Schneider Electric	Unity Pro	\checkmark	
Siemens TIA Portal/STEP® 7		\checkmark	\checkmark

Alcance

Casos de estudio representativos

Objetivos

Objetivo General

Diseñar y evaluar el desempeño de estrategias de control inteligente mediante el uso de herramientas de simulación in-the-loop para controlar sistemas no lineales complejos.

Objetivos Específicos

- Investigar la teoría acerca del proceso de simulación in-the-loop, de las herramientas para la generación de código para la implementación industrial de controladores.
- Diseñar las diferentes estrategias de control para los procesos de válvula no lineal, tanque agitado y modelo de entrada y salida de altas no linealidades.
- Evaluar las estrategias de control inteligente para la primera etapa de la simulación in-the-loop, Model-in-the-Loop, mediante el uso de Matlab/Simulink.
- Evaluar las estrategias de control inteligente para la segunda etapa de la simulación in-the-loop, Software-in-the-Loop, mediante el uso de Matlab/Simulink y de la plataforma de hardware seleccionada.
- Comparar el desempeño de ambas etapas del proceso de simulación in-the-loop a partir de los resultados individuales de cada etapa.

Caso de estudio actuador no lineal

Caso de estudio actuador no lineal

Controlador Difuso Takagi-Sugeno

 $f_2(u) = 18.57u - 21.14$

Caso de estudio actuador no lineal

Funciones de membresía de entrada

M(NG) = sigmf(co; -2.5, 2.5)

Reglas de control

SI co es NG ENTONCES u es $f_1^{-1}(co)$ SI co es PG ENTONCES u es $f_2^{-1}(co)$

Curva de control

Caso de estudio actuador no lineal

Esquema de simulación

Aproximación inversa $v = f(u) = f(\hat{f}^{-1}(co))$

Caso de estudio reactor de tanque agitado continuo (CSTR)

Reacción exotérmica irreversible $A \rightarrow B$

Entradas

- $u_1 \rightarrow C_{Af}$ es la concentración del reactante A en el suministro de flujo $[kmol/m^3]$
- $u_2 \rightarrow T_f$ es la temperatura del suministro de flujo [°K]
- $u_3 \rightarrow T_c$ es la temperatura del refrigerante [°K]

Salidas

- $y_1 \rightarrow C_A$ es la concentración del reactante A en el reactor $[kmol/m^3]$
- $y_2 \rightarrow T$ es la temperatura en el reactor [°K]

Valores Iniciales

$C_{Af} = 10[kmol/m^3]$	$C_A = 8.56 [kmol/m^3]$
$T_f = 300 [^{\circ}K]$	T = 311.26 [°K]
$T_c = 292 [^{\circ}K]$	

Caso de estudio reactor de tanque agitado continuo (CSTR)

13

Caso de estudio reactor de tanque agitado continuo (CSTR)

Esquema de simulación

60

70

40

50

SP

Caso de estudio modelo entrada/salida no lineal

Ecuación en diferencias

$$y_p(k+1) = \frac{y_p(k)}{1+y_p^2(k)} + u^3(k)$$

Adquisición de datos

Topología de la red neuronal

Caso de estudio modelo entrada/salida no lineal

Arquitectura de red

Esquema de simulación

Virtual commissioning

Comunicación: Protocolo OPC UA

Servidor OPC UA: S7-1500 (198.168.1.1)

Cliente OPC UA: Matlab + Toolbox OPC (198.168.1.100)

Configuración de dirección IP del controlador

Habilitación del servidor OPC UA

Caso de estudio actuador no lineal

Digitalización Controlador PI

Controlador como subsistema

Configuración PLC Code

Solver	General options	
Data Import/Export Math and Data Types Diagnostics Hardware Implementation Model Referencing Simulation Target Code Generation Coverage	Target IDE: Show full target list Target IDE Path: Code Output Directory: Generate testbench Include testbench di	Siemens TIA Portal C:\Program Files\Siemens\Automation C:\Users\jean-\OneDrive\Escritorio\Codigo for subsystem agnostic code
FDL Code Generation		
 PLC Code Generation 		
Comments		
Optimization		
Identifiers		
Report		
Interface		

Importación de código

🔻 🌆 External sour	ce f	iles	6
📑 Add new e	xte	rnal file	= 7
Controlad		Open	
PLC tags	V	Cut	Ctrl+X
PLC data type	1	Copy	Ctrl+C
Watch and fo	h	Paste	Ctrl+V
Online backu	×	Delete	Del
OPC UA come		Rename	F2
Device proxy	ø	Go online	Ctrl+K
Program info	2	Go offline	Ctrl+M
PLC supervisi	٩.	Search in project	Ctrl+F
PLC alarm te:		Generate blocks fro	m source
Local module	×	Cross-references	F11
Ungrouped devia	Ē	Call structure	
🕨 📷 Security settings		Assignment list	
Details view	Q	Properties	Alt+Enter

Función Read OPC Func

% Variables

Esquema de simulación

Configuración del controlador

Conjunto de datos entrada/salida del controlador PI digital – Difuso Sugeno

Тіро	Tag TIA Portal	Lazo de control
Entrada	Controlador_DB.e	Señal de error, e
Salida	Controlador_DB.u	Salida del controlador difuso Sugeno, <i>u</i>


```
persistent testVal;
% Inicialización de variables
if (isempty(init Server))
     testVal = 0;
     init Server = 0;
     init Nodes = 0;
end
% Dirección del servidor OPC UA (PLC)
% y conexión del cliente (Simulink) con el servidor
if init Server == 0
     init Server = 1;
    uaClient = opcua('192.168.1.1',4840);
     connect(uaClient);
end
% Definición de los nodos de variable del servidor
if uaClient.isConnected == 1 && init Nodes == 0
     init Nodes = 1;
     % Lectura de variables del servidor OPC UA
    Var Node Out =opcuanode(3,'"Controlador DB"."e"',uaClient);
     Var Node In = opcuanode(3,'"Controlador DB"."u"',uaClient);
end
% Lectura y escritura de las variables del servidor
if uaClient.isConnected == 1 && init Nodes == 1
     % Lectura del valor de la salida del controlador Difuso
    % y almacenamiento en "val"
     [val, ~, ~] = readValue(uaClient, Var Node In);
    % Asignar a la entrada de la función y el valor del error
    % del lazo de control
     writeValue(uaClient, Var Node Out, y);
    % Asignar el valor de "val" a la variable "testVal"
     testVal = val;
end
% Asignar el valor de la salida del controlador difuso
```

% a la salida x de la función

Caso de estudio reactor de tanque agitado continuo (CSTR)

Controlador como subsistema

Conjunto de datos entrada/salida del controlador por ajuste de ganancias

Тіро	Tag TIA Portal	Lazo de control
Entrada Controlador_DB.In		Señal de error, e
Entrada	Controlador_DB.In1	Señal de salida, y
Salida	Controlador_DB.out	Salida del controlador PID, u

Esquema de simulación

Caso de estudio modelo entrada/salida no lineal

Controlador como subsistema

Conjunto de datos entrada/salida del controlador por red neuronal inversa

Tipo	Tag TIA Portal	Lazo de control
	Controlador_DB.In[0]	Señal de entrada retrasada, <i>u(k-1)</i>
Entrada	Controlador_DB.In[1]	Señal de salida retrasada, <i>y(k-1)</i>
	Controlador_DB.In[2]	Señal de error, e(k)
Salida	Controlador_DB.out	Variación de la señal de entrada, $\Delta u(k-1)$

Esquema de simulación

Caso de estudio modelo entrada/salida no lineal – Controlador Neuro-Fuzzy

Funciones de membresía de entrada

Reglas de control

u(k-1)	y(k-1)\e(k)	Ν	Z	Р
N	N	-1.223	0.274	0.028
N	Z	0.069	-0.050	0.020
Ν	Р	0.877	-0.362	12.774
Ζ	N	-0.614	0.023	0.0234
Ζ	Z	-0.274	0.020	0.034
Ζ	Р	0.241	-0.035	0.151
P	N	0.838	-0.040	0.119
Ρ	Z	-0.318	0.032	3.491×10^{-5}
P	Р	-0.020	-5.054×10^{-4}	0.059

Caso de estudio actuador no lineal

Etapa	Overshoot (%)	Tiempo de establecimiento (s)	Error en estado estacionario
MIL	N/A	54	7.31×10^{-7}
SIL	N/A	70	3.4×10^{-3}

-	Etapa	Overshoot (%)	Tiempo de establecimiento (s)	Error en estado estacionario
	MIL	7.57	35	5.25×10^{-5}
	SIL	5.33	33	4.36×10^{-6}

Caso de estudio actuador no lineal

Etapa	Overshoot (%)	Tiempo de establecimiento (s)	Error en estado estacionario
MIL	11.95	32	1.59×10^{-5}
SIL	5.90	27	4.72×10^{-5}

Etapa	Overshoot (%)	Tiempo de establecimiento (s)	Error en estado estacionario	
MIL	N/A	50	2.60×10^{-4}	
SIL	N/A	70	566×10^{-3}	

Caso de estudio reactor de tanque agitado continuo (CSTR)

C _A [kmol/m ³]	Etapa	Overshoot (%)	Tiempo de establecimiento (s)
0	MIL	3	6
δ	SIL	3.62	4
7	MIL	2.71	2.5
/	SIL	1.71	3
	MIL	2	3
6	SIL	9.5	3.5
	MIL	2.8	2.5
5	SIL	4.2	2.5
	MIL	3.5	2
4	SIL	11.5	3
2	MIL	4	2
3	SIL	3	3.5
2	MIL	4	2
Z	SIL	5	2
1	MIL	2	1
1	SIL	3	2

Caso de estudio modelo/entrada salida no lineal

Setpoint	Etapa	Overshoot (%)	Tiempo de establecimiento (s)	Error en estado estacionario	¿Presenta Rizo?
0.5	MIL	0.8	0.03	1.3×10^{-3}	No
	SIL	8	0.05	1.2×10^{-3}	No
0.4	MIL	2.49	0.035	2.4×10^{-3}	No
	SIL	12.49	0.062	1.87×10^{-4}	No
0.3	MIL	8.66	0.05	8.95×10^{-4}	No
	SIL	9.66	0.13	2.80×10^{-4}	Sí
0.2	MIL	17	0.125	2.4×10^{-3}	No
	SIL	20	_	_	Sí

Conclusiones y Trabajos Futuros

Conclusiones

La metodología propuesta para el desarrollo de estrategias de control inteligente por medio de las herramientas de simulación in-the-loop, ratifica que estos algoritmos de control pueden ser implementados en entornos industriales actuales.

La generación de código de los tres controladores consiguió resultados positivos, puesto que el desempeño de la puesta en marcha virtual, SIL, reproduce las características obtenidas durante la simulación de modelos, MIL. Sin embargo, existieron algunas diferencias en el transitorio de las respuestas que no ocasionaron ninguna inestabilidad en los sistemas de control.

El controlador difuso que actúa sobre el sistema del actuador no lineal muestra el mejor desempeño de los controladores, debido a que los resultados de la etapa SIL superan en rendimiento a los de la etapa MIL.

El controlador por ajuste de ganancias que controla el modelo CSTR presenta el rendimiento más similar en ambas etapas de simulación, ya que las métricas de desempeño son la que menor variación tienen de los tres controladores.

La estrategia de redes neuronales que controla el modelo entrada salida no lineal presenta un resultado adverso como el efecto ringing que se nota en ambas etapas de simulación, el cual es producido debido a la cancelación no exacta de los polos.

Conclusiones y Trabajos Futuros

Trabajos Futuros

Otras estrategias de control como, por ejemplo, control por modelo de referencia o control adaptativo son propuestas que pueden ser implementadas en el modelo CSTR. Para el sistema del actuador no lineal es posible reproducir de mejor manera la función inversa de la válvula a partir de un mayor número de funciones lineales.

En este proyecto se ha establecido una metodología para la implementación de estrategias de control inteligente mediante las dos primeras etapas del proceso de simulación in-the-loop, sin embargo, si se busca completar el proceso de simulación se debe integrar la etapa HIL donde el controlador es ejecutado en una plataforma de hardware física. Cumpliendo con esta etapa se tendrá una noción clara de cómo está operando el software embebido en la plataforma de hardware, tomando en consideración que los tiempos de respuesta se den en intervalos determinados consiguiendo así comportamiento en tiempo real. Las simulaciones realizadas en las etapas MIL y SIL dan una noción de cuánto tiempo debería tomar la obtención de respuestas en la etapa HIL. El desafío en la siguiente etapa de simulación será solventar los problemas que puedan ocurrir sobre el hardware real como módulos de entradas/salidas, o interfaces que se usen para la comunicación entre el controlador físico y la planta que aún reside en Simulink.

