

"Artificial Vision and IoT for Automation of Remote Reading for Limnimeters in Hydraulic Weirs"

Authors:Ronald GarcésAlex ChiliquingaTutor:Ing. David Rivas PhD.Co-Tutor:Ing. Víctor Bautista Mg.

Universidad de las Fuerzas Armadas ESPE 2022

PROBLEM: Water Availability

Water Distribution

"Water abstractions for irrigation are the leading cause of groundwater depletion around the world"
Primary energy proposed in Primary energy proposed in Power generation
Industry
Municipality
Agriculture

Source: ONU (2018)

PROBLEM: Food Insecurity

FAO's Sustainable Development Goals - 2030

En septiembre de 2015, 193 Estados Miembros de las Naciones Unidas aprobaron los 17 ODS, incluyendo el

PARA 2030

ODS 2 3

HAMBRE CERO

8 300 millones

HOY EN DÍA MÁS DE 820 MILLONES DE PERSONAS PASAN HAMBRE Promover políticas de nutrición, incluida la educación sobre la alimentación, y pasar a enfoques del consumo y la producción que promuevan beneficios para la salud a largo plazo.

 \square

Establecer sistemas de protección social, tales como alimentación escolar y transferencias de efectivo. Sin alimentos, los seres humanos no pueden aprender ni llevar una vida sana y productiva.

ODS 1 2 3 4 8 10

Gestionar de modo sostenible los bosques, océanos, agua, tierras y suelo, y promover un enfoque ecosistémico para obtener un mayor rendimiento agrícola con menos insumos.

LA DEMANDA DE ALIMENTOS CRECERÁ

I√ı

 \square

ODS 2 6 13 14 15

EL AUMENTO DE LA DEMANDA DE ALIMENTOS

POR LOS RECURSOS NATURALES

Source: http://www.fao.org/sustainable-development-goals/es/

ESTÁ INTENSIFICANDO LA COMPETENCIA

PRINCIPIOS PARA A INVERSION RESPONSABLE EN LA AGRICULTURA Y LOS SISTEMAS ALIMENTARIOS

"FAO points out that, by 2030, developing countries will only be able to increase production by 33%, using only 12% more water, but with new and more efficient irrigation technologies that mean less waste and optimization of the resource"

Hydrographic Division of Ecuador

31 Hydrographic Systems

79 Hydrographic Basins

INNOVACIÓN PARA LA EXCELENCIA

Use of Limnimeters

Rectangular weir with two contractions

Weir and Orifice Methods

Trapezoidal weir

 $Q = 1.84 (L - 0.2H) \times H^{3/2}$

 $Q = 1.4 \times H^{5/2}$

 $Q = 1.859 \times L \times H^{3/2}$

Circular weir

 $Q = 1.518 \times D^{0.693} \times H^{1.807}$

Availability of Hydrometric Data

Embarcadero EN H.CLEM (Pot-Sta. Rosa) Station

Source: Muñoz, Á.G., Macías, S., García, M.B. (2014)

Experimental Weir

INNOVACIÓN PARA LA EXCELENC

Proposed

Raspberry PI 3B+

Microcomputer

Arduino

- CPU + GPU: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit 1.4GHz
- RAM: 1GB LPDDR2 SDRAM
- Wi-Fi + Bluetooth: 2.4GHz y 5GHz IEEE 802.11.b/g/n/ac, Bluetooth
- 4.2, BLE
- Ethernet: Gigabit Ethernet about USB 2.0 (300 Mbps)
- 4 ports USB 2.0

- 5 MP 1080P
- Resolution: 2592 x 1944 pixels
- 1080P 30 fps 720P 60 fps 640x480 90 fps
- Automatic switching between day and night mode

IoT Cloud Different options: Visualization and analysis of data from Internet of Things solutions. XMPRO Honeywell Sentience Amplia IoT Amazon AWS AT & T M2X MS Azure Tempolo Losant IoT Uptake IBM Watson IoT AirVantage **Bitstew Systems** Thethings.io Bosch IoT GE Predix Carriots SAP Hana Cloud Intel IOT Cumulocity Meshify Siemens MindSphere Cisco Jasper C3IoT Aspects to take into account: ✓ Scalability (1 -100 -1.000- 1.000.000 nodes) **Big Data** ✓ Availability ✓ Security \checkmark Ease of programming ✓ Interoperability ✓ Cost

Communication for IoT

Aspects to take into account:

- ✓ Service coverage (urban vs. rural area).
- ✓ Number and size of messages required.
- ✓ Availability.

✓ Cost.

✓ Radio spectrum availability.

Source: Frost & Sullivan. (2019)

The electronic device for monitoring the variables of interest

Aspects to take into account:

- Energy autonomy: batteries, solar panels.
- Sensors: physical principle, ranges, accuracy, calibration, certification, sensor communication protocols.
- ✓ Communication technology, antennas.
- ✓ Robust firmware design
- ✓ Remote update.
- ✓ Node status monitoring.
- ✓ Physical support structure (station).
- ✓ Installation.
- ✓ Logical and physical security.
- ✓ Manufacturing options.
- ✓ Cost.

Devices with LoRa Communication

LoRa	
Scope	2-5km (city) 15km (rural)
Frequency band	433/868/915MHz ISM
Data sending rate	300 bps a 50kbps
Data reception rate	300 bps a 50kbps
Standard	LoRaWAN

liance

A

20

Source: Lora Alliance. (2015)

- Microprocessor: ESP32 (dual-core 32-bit MCU + ULP core), with LoRa node chip SX1276/SX1278.
- Onboard 0.96-inch 128*64 dot matrix OLED display.
- Integrated CP2102 USB to serial port chip.
- ESP32 + LoRaWAN protocol Arduino[®] library.
- Support the Arduino development environment.
- Sleep current ≤800uA.

IoT Platform

INNOVACIÓN PARA LA EXCELENCIA

Photovoltaic System

Monthly energy output from fix-angle PV system (C) PVGIS, 2022

Schematic Design of the System for the Automation of Remote Reading of Limnimeters in Hydraulic Weirs

Video Image Digitization

Radio Link Study

Source: https://www.ve2dbe.com/rmonlineinfospa.html

IoT Platform

(m) mosouitto

Sources: https://nodejs.org/es/

Eclipse Mosquitto: https://mosquitto.org/

Watson Visual Recognition (IBM Watson): https://www.ibm.com/watson/services/visual-recognition/

Level (cm)

Monitoring

...............

Telegram

i 🖉 🕸 🌣 🔻

⊤all nodes 👻 🏦 all 👻

14/6/2022, 20:02:46 node: 5138fab085d6f08b analogico : msg.payload : string[7]

14/6/2022, 20:02:48 node: 5138fab085d6f08b alogico : msg.payload : string[7]

疳 debug

"3137738"

Flow

Rate (I/s)

Greater impact than that produced by the individual use of a wireless sensor network in a single weir.

Improved production and quality.

Optimal resource management.

Technological inclusion of small farmers.

Implementation of an appropriate action plan based on the actual needs of hydraulic weirs.

Results

Conclusions

The accumulated error of the measurement with the designed instrument is ± 1.1080%, its standard deviation is 0.6497 cm and its sensitivity is ± 0.1 cm.

The automation of remote reading of limnimeters in hydraulic weirs through artificial vision and IoT, allows a constant monitoring of the water resource and there is no loss of data at any time.

The implemented electronic system allows to obtain as a result the effective flow rate of the hydraulic weir in I/s without the need to visualize directly the linear scale of the limnimeter.

LoRaWAN technology represents a practical alternative for implementing the IoT concept, as it is a very wide area network with low power consumption.

"Artificial Vision and IoT for Automation of Remote Reading for Limnimeters in Hydraulic Weirs"

Authors:Ronald GarcésAlex ChiliquingaTutor:Ing. David Rivas PhD.Co-Tutor:Ing. Víctor Bautista Mg.

Universidad de las Fuerzas Armadas ESPE 2022

