

UNIVERSIDAD DE LAS FUERZAS ARMADAS – ESPE

DEPARTAMENTO DE CIENCIAS DE ENERGÍA Y MECÁNICA

TEMA: "Diseño y manufactura de probetas de ensayo mecánico a partir de la fundición de pistones reciclados, para la producción de un material idóneo que permita la fabricación de pistones".

AUTORES:

- ESPINOZA MORALES, STALIN WLADIMIR
- TOAQUIZA LÓPEZ, ALEX FABRICIO

DIRECTOR:

ING. CRUZ ARCOS, GUILLERMO MAURICIO

Frase celebre

Tabla de contenido

- 1. Planteamiento del problema
- 2. Objetivos
- 2.1 Objetivo General
- 2.2 Objetivo Específico
- 3. Hipótesis
- 4. Marco Teórico
- Diseño y manufactura de probetas para ensayos mecánicos
- 6. Ensayos y análisis de resultados
- 7. Conclusiones
- 8. Recomendaciones

Planteamiento del Problema

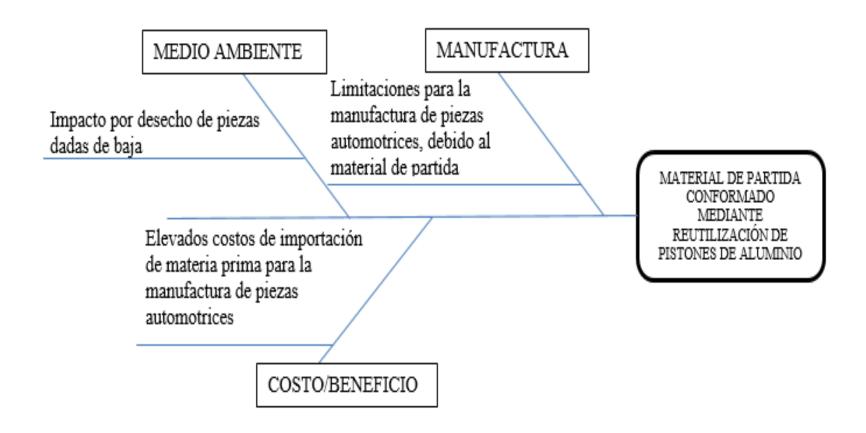


Fig. 1: Planteamiento del problema (diagrama espina de pescado)

Objetivos

Objetivo General

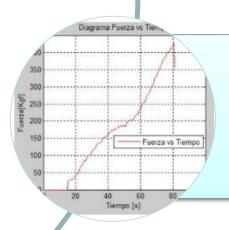
Obtener un material de partida, idóneo que permita la fabricación de pistones a partir de la fundición de piezas recicladas.

Objetivos Específicos

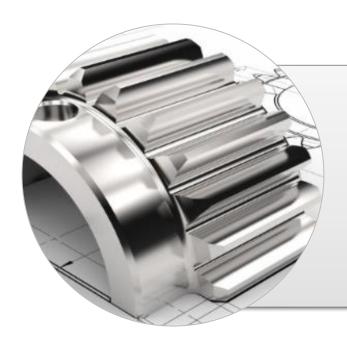
Recopilar información bibliográfica que sustente los procesos de fundición, la obtención de materiales a partir de fundición y pruebas de ensayos en materiales.

Utilizar pistones reciclados de aluminio para la formación de un nuevo material.

Diseñar y manufacturar probetas de ensayo mecánico.


Realizar pruebas de fundición para la obtención de un material óptimo para la producción de pistones automotrices.

Objetivos Específicos


Realizar los ensayos y pruebas mecánicas a las probetas fabricadas y determinar las correctas propiedades que se necesitan para la fabricación de piezas automotrices.

Comprobar los resultados de las pruebas y determinar un material idóneo para la fabricación de pistones automotrices.

Hipótesis

¿El diseño y fabricación de piezas automotrices con material reutilizable es una alternativa para ayudar al medio ambiente y además de presentar la misma resistencia mecánica al trabajo?

Marco Teórico

Fundición

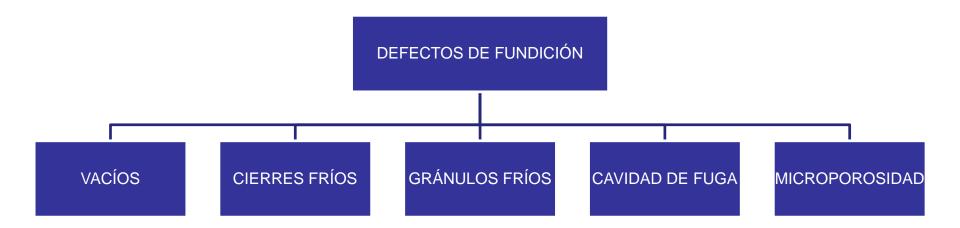


Fig. 2: Defectos de fundición

Moldes para fundición

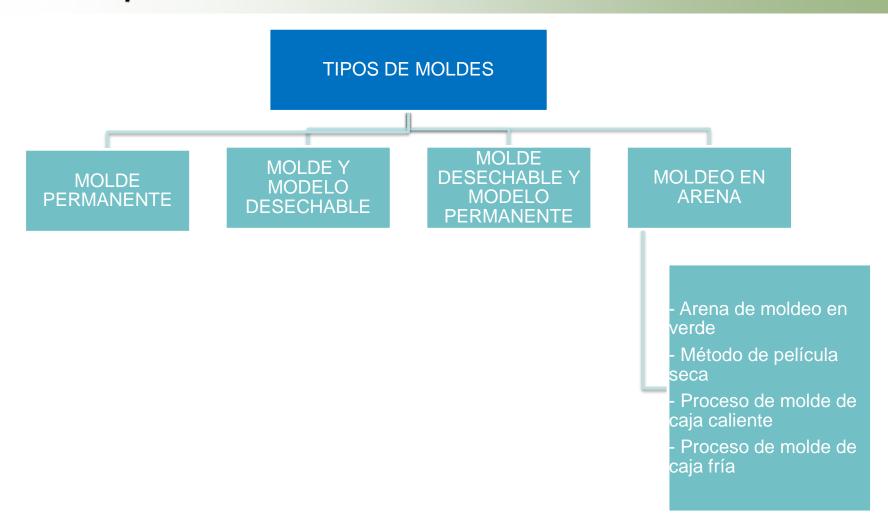


Fig. 3: Tipos de moldes

Aluminio como material fundente

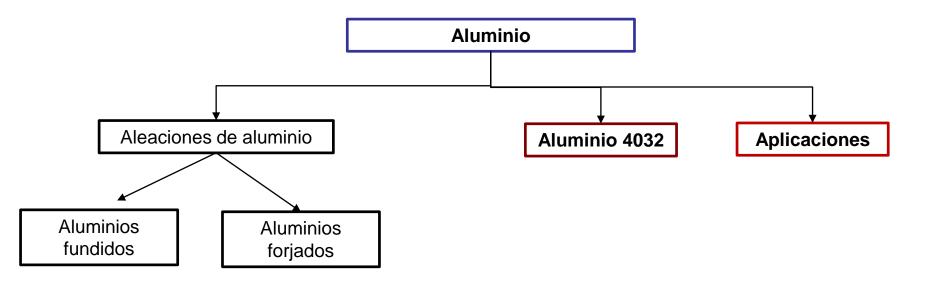


Fig. 4: Aluminio como material fundente

Fabricación de pistones

Fabricación

Materiales para la fabricación

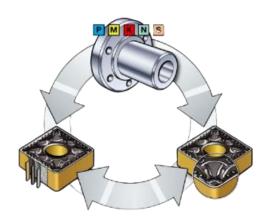


Fig. 5: Fabricación de pistones

Ensayos mecánicos

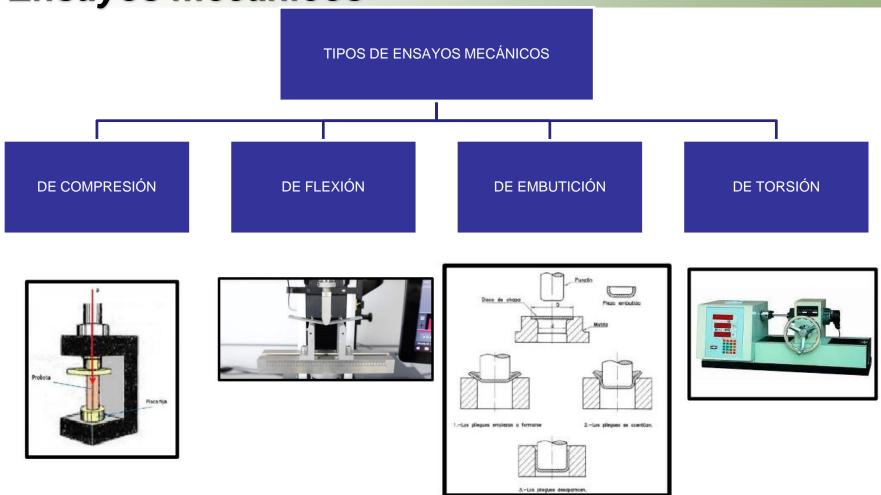


Fig. 6: Tipos de ensayos mecánicos

Ensayos mecánicos

Fig. 7: Tipos de ensayos mecánicos

Diseño mecánico

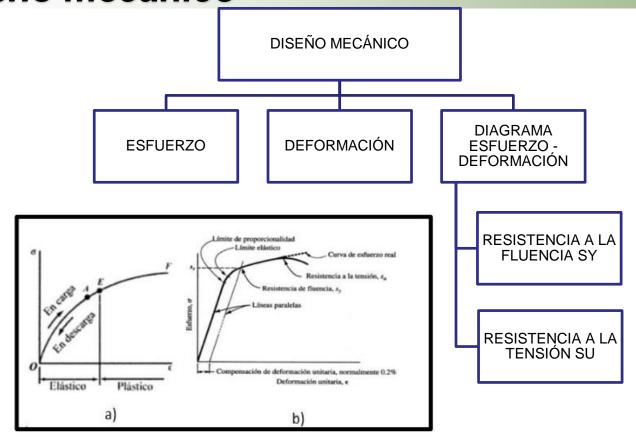


Fig. 8: Diseño mecánico

Normativa de ensayos mecánicos

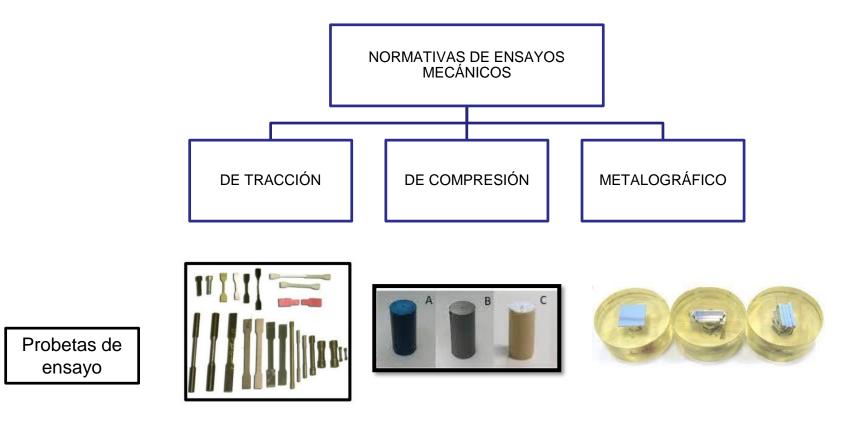


Fig. 9: Normativa de ensayos mecánicos

Análisis químico

ESPECTOMETRÍA DE EMISIÓN ÓPTICA POR CHISPA

Fig. 10: Análisis químico

DISEÑO Y MANUFACTURA DE PROBETAS PARA ENSAYOS MECÁNICOS

DISEÑO DE PROBETAS

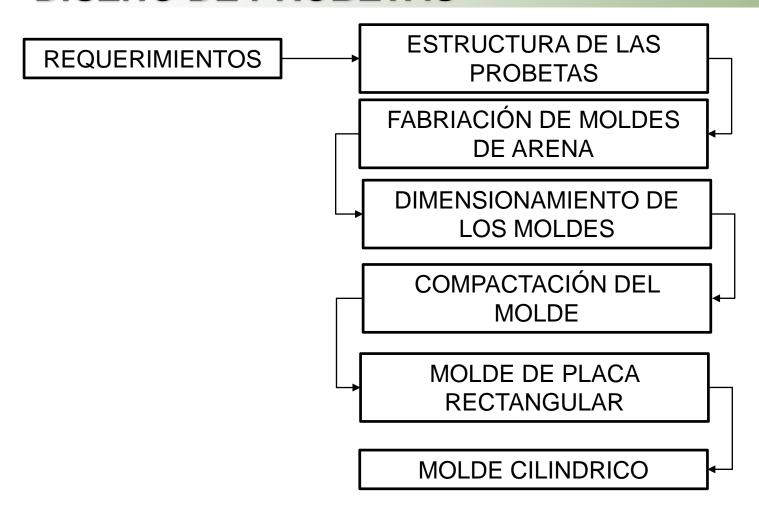
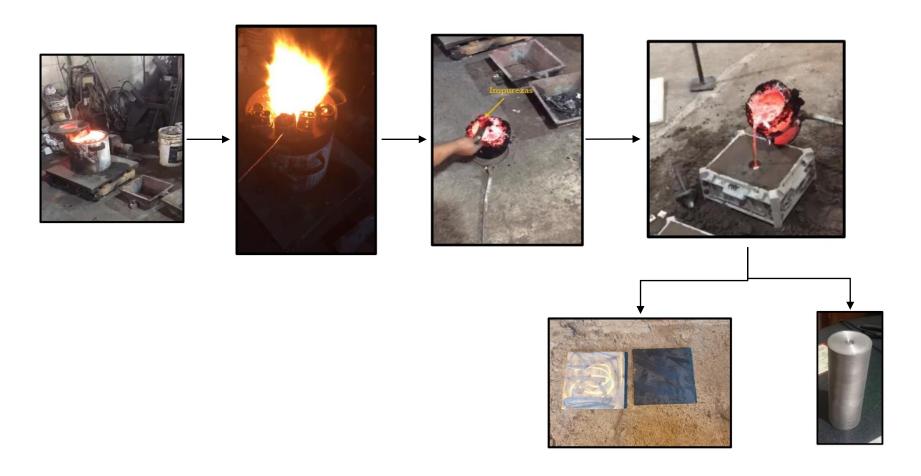
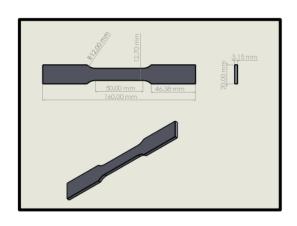
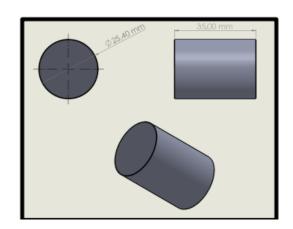


Fig. 11: Diseño de probetas

FUNDICIÓN DEL MATERIAL


Fig. 11: Fundición del material

DIMENSIONAMIENTO DE LAS PROBETAS

PROBETAS PARA ENSAYO DE TRACCIÓN PROBETAS PARA ENSAYO DE COMPRESIÓN PROBETAS PARA ENSAYO METALOGRÁFICO

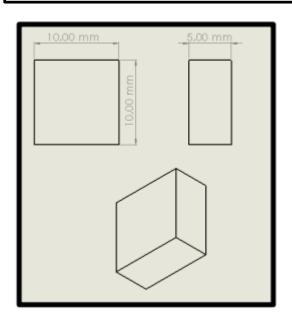
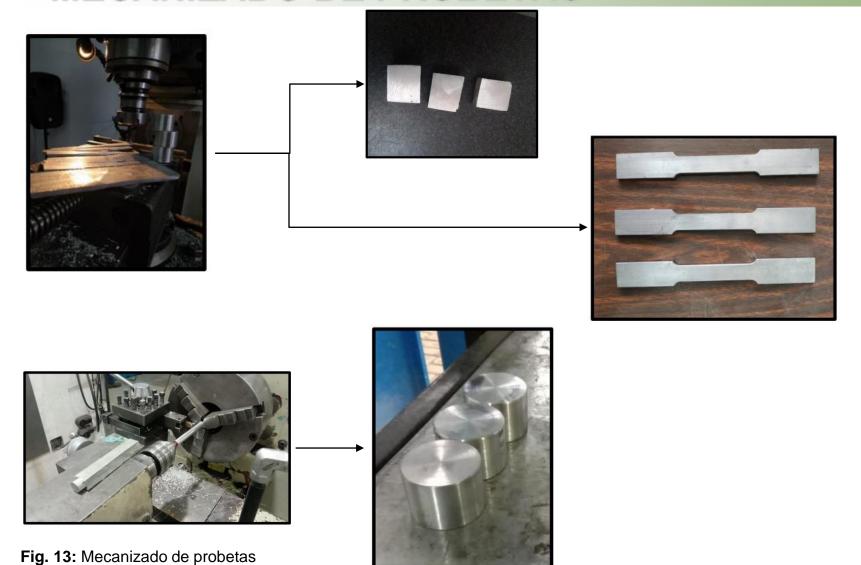



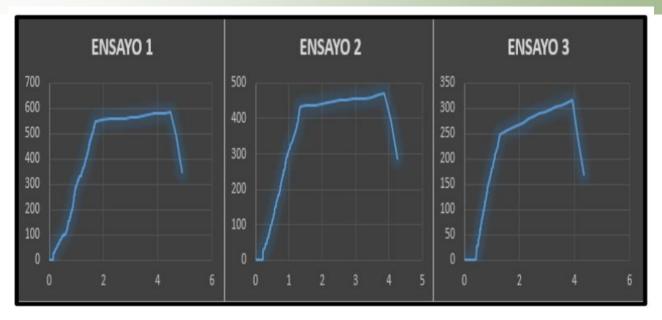
Fig. 12: Dimensionamiento de probetas

MECANIZADO DE PROBETAS

ENSAYO Y ANÁLISIS DE RESULTADOS

ENSAYO DE TRACCIÓN

Gráficas Fuerza – Tiempo Fuerza – Desplazamiento Desplazamiento - tiempo Diagrama Fuerza va Tiempo


Figura 14: Ensayo 1 de tracción

ENSAYO DE TRACCIÓN

ENSAYO DE TRACCIÓN CON MATERIAL DE PISTONES RECICLADOS ENSAYO NÚMERO 1			
(Kg)	(Kg)	máximo (mm)	Tiempo (s)
583,64	547,06	4.887	86
	ENSAYO	NÚMERO 2	
Fuerza máxima	Fuerza de fluencia	Desplazamiento	Tiempo (s)
(Kg)	(Kg)	máximo (mm)	
469,73	428,46	4,24	92
	ENSAYO	NÚMERO 3	
Fuerza máxima	Fuerza de fluencia	Desplazamiento	Tiempo (s)
(Kg)	(Kg)	máximo (mm)	
316,12	245,77	4,335	43

PROMEDIO DE DATOS OBTENIDOS EN ENSAYO DE TRACCION CON

MATERIAL A BASE DE PISTONES RECICLADOS

Fuerza máxima (Kg)	Fuerza de	Desplazamiento	Tiempo (s)
	fluencia (Kg)	(mm)	
456,496	407,096	4,48	73,66

Figura 15: Gráficas fuerzas de desplazamiento en Excel ensayos de tracción

Resistencia a la tracción del material en base a pistones reciclados

Resistencia a la tracción máxima del material

Esfuerzo

$$\sigma_u = \frac{F_u}{A_o}$$

Donde:

Figura 16: Modelado gráfico probeta ensayo de tracción

$$F_u = Fuerza \ m\'axima \ aplicada = 456,496 \ KgF$$

$$L = Longitud\ de\ desplazamiento = 4,48\ mm$$

$$A_o = Area de esfuerzo de la probeta = 4,48 mm x 3,15 mm = 14,11 mm^2$$

$$\sigma_u = \frac{F_u}{A_o} \qquad \qquad \sigma_u = 3235,26 \frac{Kg}{cm^2}$$

$$\sigma_u = \frac{456,496 \, Kg}{0.1411 \, cm^2}$$
 $\sigma_u = 46016,21 \, Psi$

Resistencia a la tracción del material en base a pistones reciclados

Resistencia a la tracción máxima del material

Resistencia a la tracción al límite de elasticidad del material

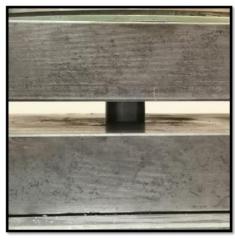
$$\sigma_y = \frac{F_y}{A_o}$$

Donde:

 $F_v = Fuerza$ aplicada al limite de elasticidad = 407,096 KgF

 $A_o = Area de \ esfuerzo de la probeta = 4,48 \ mm \ x \ 3,15 \ mm = 14,11 \ mm^2$

$$\sigma_y = \frac{F_y}{A_o}$$


$$\sigma_y = \frac{407,096 \, Kg}{0,1411 \, cm^2}$$

$$\sigma_{v} = 41036, 47Psi$$

$$\sigma_u = 2885,15 \frac{Kg}{cm^2}$$

Gráficas

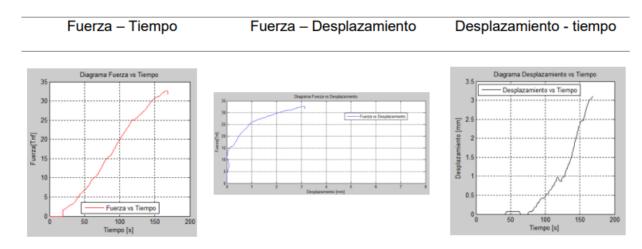
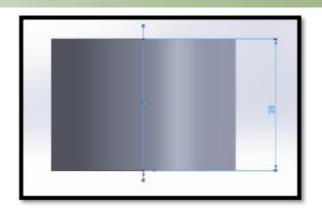


Figura 17: Ensayo 1 de compresión

ENSAYO DE COMPRESIÓN CON MATERIAL DE PISTONES RECICLADOS ENSAYO NÚMERO 1			
(tnt)	(tnt)	(mm)	
32,637	31,7052	3,1127	165
	ENSAYO	NÚMERO 2	
Fuerza máxima	Fuerza instantánea	Desplazamiento	Tiempo (s)
(tnt)	(tnt)	(mm)	
31,039	30,3144	3,3328	118
nempo (s)	ENSAYO	NÚMERO 3	
Fuerza máxima	Fuerza instantánea	Desplazamiento	Tiempo (s)
(tnt)	(tnt)	(mm)	
26,360	24,5961	4,1866	120

PROMEDIO DATOS OBTENIDOS EN ENSAYO DE COMPRESIÓN CON MATERIAL A BASE DE PISTONES RECICLADOS

(tnt)	(tnt)	(mm)	
30,012	28,8718	3,5440	134


Razón de esbeltez

Razón de esbeltez

$$\rho = \frac{l}{rg}$$

$$\rho < 40 = Compresión$$

$$\rho > 60 = Columna$$

Figura 18: Modelado gráfico probeta ensayo de compresión

Donde:

 $\rho = Raz$ ón de esbeltez

rg = Radio de giro

 $l = Longitud\ de\ la\ probeta = 25\ mm$

Razón de esbeltez

Ecuación 3

Radio de giro

$$rg = \sqrt{\frac{I}{A}}$$

Donde:

I = Momento de inercia de la probeta

A = Área

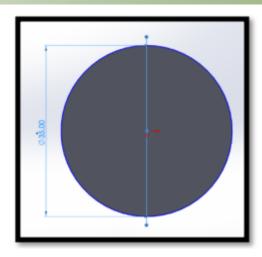


Figura 19: Modelado gráfico probeta ensayo de compresión, lado superior

Ecuación 4

Momento de inercia de la probeta

$$=\frac{\pi*d^4}{64} \quad \text{Are}$$

Área de la probeta

d = Diámetro de la probeta = 35 mm

$$A = \frac{\pi * d^2}{4}$$

Razón de esbeltez

Remplazo el diámetro de la probeta en la ecuación:

$$rg = \sqrt{\frac{I}{A}}$$

$$rg = \sqrt{\frac{\frac{\pi * d^4}{64}}{\frac{\pi * d^2}{4}}}$$

$$rg = \frac{35 \, mn}{4}$$

$$rg = \sqrt{\frac{d^2}{16}}$$

$$rg = 8,75 mm$$

$$rg = \frac{d}{4}$$

Reemplazo el valor calculado en la ecuación:

$$\rho = \frac{l}{rg}$$

$$\rho = \frac{25 \, mm}{8,75 \, mm}$$

$$\rho = 2,8571$$

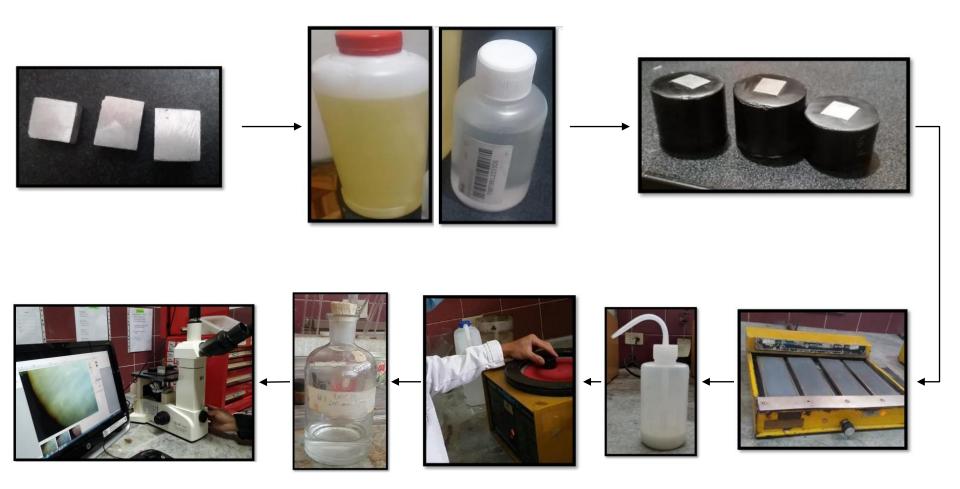


Figura 20: Ensayo metalográfico

ENSAYO METALOGRÁFICO

Número de ensayo	Lente aumentado	Fotografías
1	100X	
2	200X	
3	500X	

Figura 21: Resultados obtenidos

ANÁLISIS QUÍMICO

COMPOSICIÓN QUÍMICA DEL MATERIAL A BASE DE PISTONES RECICLADOS

Elemento	Si%	Fe%	Cu%	Mn%	Mg%
Resultado	1.788	0.488	1.235	0.132	0.237
Elemento	V %	Pb%	Sn%	Sr%	Ca%
Resultado	0.013	0.017	0.042	0.000	0.001
Elemento	Ag%	Bi%	Ga%	Sb%	Zr%
Resultado	0.000	0.000	0.048	0.018	0.004
Elemento	Cr%	Zn%	Ni%	Ti%	Cd%
Resultado	0.045	0.030	1.248	0.160	0.000
Elemento	Co%	AI%	В%	Be%	
Resultado	0.000	94.474	0.021	0.000	

PASTILLAS DESGASIFICADORAS ALEACIONES UTILIZADAS
EN PISTONES
AUTOMOTRICES

ADICIÓN DE ALEACIONES

	-	AND DESCRIPTION OF THE PERSON NAMED IN		The second second
	Comparat	iva de los r Pistón 55-Ki	nateriale: 2700 (Teikin Ni	
-	Elemento	Especificación*	Teikin [%]	Otros Fabicantes (%)
Cu	Cobre	0.8 - 1.3	1.0612	1.7331
Si	Silicón	11.0 - 13.0	12.137	9.7297
Mg	Magnesio	0.8 - 1.3	1.0833	0.83999
Zn	Zinc	0.15 max	0.05027	0.28011
Fe	Hierro	0.7 max	0.45063	0.65748
Mn -	Manganeso	0.15 max	0.05827	0.22084
Ni	Niquel	0.8 - 1.5	1.3726	0.66118
Ti	Titanio	0.20 max	0.09490	0.07853
Cr	Cromo	0.10 max	0.02110	0.03685
Sn	Lata	0.05 max	0.02013	0.02378
Pb	Plomo	0.05 max	0.021268	0.05692

Figura 22: Composición química pistones automotrices

ENSAYO DE TRACCIÓN CON MATERIAL MEJORADO

ENSAYO DE TRACCIÓN CON MATERIAL MEJORADO A BASE DE PISTONES

RECICLADOS

	ENSAYO	NÚMERO 1	
Fuerza máxima	Fuerza de fluencia	Desplazamiento	Tiempo (s)
(Kg)	(Kg)	(mm)	
404,425	381,95	3,47	63
	ENSAYO	NÚMERO 2	
Fuerza máxima	Fuerza de fluencia	Desplazamiento	Tiempo (s)
(Kg)	(Kg)	(mm)	
427,937	427,937 397,63		81
	ENSAYO	NÚMERO 3	
Fuerza máxima	Fuerza de fluencia	Desplazamiento	Tiempo (s)
(Kg)	(Kg)	(mm)	
460,307	428,95	3,603	67

PROMEDIO DATOS OBTERNIDOS EN ENSAYO DE TRACCIÓN CON MATERIAL MEJORADO A BASE DE PISTONES RECICLADOS.

Fuerza máxima	Fuerza de fluencia	Desplazamiento	Tiempo (s)
(Kg)	(Kg)	(mm)	
430,89	417,84	3,656	70

Figura 23: Gráficas en fuerza de desplazamiento Excel ensayos de tracción con material mejorado

Resistencia a la tracción con el material mejorado

Resistencia a la tracción máxima del material

Esfuerzo

$$\sigma_u = \frac{F_u}{A_o}$$

Donde:

$$F_u = Fuerza \ m\'axima \ aplicada = 430,89 \ KgF$$

 $L = Longitud\ de\ desplazamiento\ = 3,656\ mm$

 $A_0 = Area de esfuerzo de la probeta = 3,656 mm x 3,15 mm = 11,51 mm^2$

 $\sigma_u = \frac{F_u}{A_o}$

$$\sigma_u = \frac{430,89 \ Kg}{0,1151 \ cm^2}$$

$$\sigma_u = 3743,6 \frac{Kg}{cm^2}$$

 $\sigma_u = 53246,65 \, Psi$

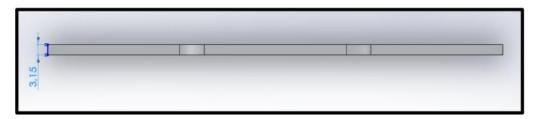


Figura 24: Modelado gráfico probeta ensayo de tracción

Resistencia a la tracción con material mejorado

Resistencia a la tracción al límite de elasticidad del material

$$\sigma_y = \frac{F_y}{A_o}$$

Donde:

 $F_y = Fuerza$ aplicada al límite de elasticidad = 417,84 KgF

 $A_o = \text{Å} rea \ de \ esfuerzo \ de \ la \ probeta = 4,48 \ mm \ x \ 3,15 \ mm = 11,51 \ mm^2$

$$\sigma_y = \frac{F_y}{A_o}$$

$$\sigma_u = \frac{417,84 \ Kg}{0,1151 \ cm^2}$$

$$\sigma_u = 3630,23 \frac{Kg}{cm^2}$$

$$\sigma_u = 51634 \, Psi$$

ENSAYO DE COMPRESIÓN CON MATERIAL MEJORADO

ENSAYO NÚMERO 1					
Fuerza máxima	Fuerza instantánea	Desplazamiento	Tiempo (s)		
(tnt)	(tnt)	(mm)			
52,895	51,045	3,452	119		
	ENSAYO	NÚMERO 2			
Fuerza máxima	Fuerza instantánea	Desplazamiento	Tiempo (s)		
(tnt)	(tnt)	(mm)			
52,031 49,873		2,985	116		
	ENSAYO	NÚMERO 3			
Fuerza máxima	Fuerza instantánea	Desplazamiento	Tiempo (s)		
(tnt)	(tnt)	(mm)			
57,475	56,041	3,184	118		

PROMEDIO DATOS OBTENIDOS EN ENSAYO DE COMPRESIÓN A BASE DE PISTONES DE AUTOMOTRIZ

Fuerza máxima	Fuerza instantánea	Desplazamiento	Tiempo (s)
(tnt)	(tnt)	(mm)	
54,133	52,319	3,207	117,666

Resultado comparativo

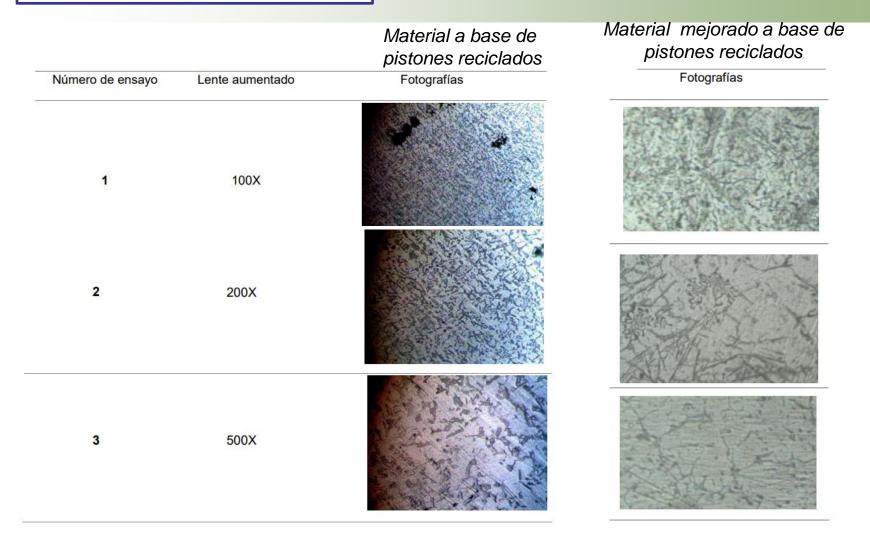


Figura 25: Resultados comparativos

	Resultados comparativos				
Material	Matweb		Ensayos mecánicos		
	σ_u PSI	σ_y PSI	σ_u PSI	σ_y PSI	
Aluminio	>=52100	>=48000	/	1	
4032					
Primera	1	1	46016,21	41036,47	
fundición					
Fundición	1	1	53246,65	51634,00	
mejorada					

ANÁLISIS QUÍMICO

COMPOSICIÓN QUÍMICA DEL MATERIAL A BASE DE PISTONES RECICLADOS

Elemento	Si%	Fe%	Cu%	Mn%	Mg%
Resultado	1.788	0.488	1.235	0.132	0.237
Elemento	V %	Pb%	Sn%	Sr%	Ca%
Resultado	0.013	0.017	0.042	0.000	0.001
Elemento	Ag%	Bi%	Ga%	Sb%	Zr%
Resultado	0.000	0.000	0.048	0.018	0.004
Elemento	Cr%	Zn%	Ni%	Ti%	Cd%
Resultado	0.045	0.030	1.248	0.160	0.000
Elemento	Co%	AI%	В%	Be%	
Resultado	0.000	94.474	0.021	0.000	

COMPOSICIÓN QUÍMICA DEL MATERIL MEJORADO A BASE DE PISTONES RECICLADOS

Elemento	Si%	Fe%	Cu%	Mn%	Mg%
Resultado	11.457	0.585	1.204	0.125	0.948
Elemento	V %	Pb%	Sn%	Sr%	Ca%
Resultado	0.007	0.015	0.037	0.000	0.000
Elemento	Ag%	Bi%	Ga%	Sb%	Zr%
Resultado	0.000	0.000	0.023	0.004	0.004
Elemento	Cr%	Zn%	Ni%	Ti%	Cd%
Resultado	0.028	0.035	0.852	0.162	0.000
Elemento	AI%	Co%	В%	Be%	
Resultado	84.506	0.000	0.012	0.000	

- Al revisar la información bibliográfica se seleccionó el proceso de fundición en verde que ayudará a la obtención de un elemento a base de material fundido de pistones reciclados por su economía y accesibilidad.
- Gracias al análisis químico se pudo evidenciar que al momento de la fundición de los pistones reciclados existe una pérdida de componentes en su estructura el más notorio es el silicio que conforme a catálogos se debe encontrar en un rango de 11 a 13 %, y en este caso se encontró un 1.788 % de composición de acuerdo al total del peso conformado del material, determinando una calidad baja de la fundición resultante sin implementación de mejora.

- ➤ El análisis microestructural expuso que al momento de la fundición existen ciertas cavidades que provocan una estructura frágil en el material, y gracias al proceso de desgasificación estas cavidades se reducen y por ende la estructura del material es más compacta y resistente
- El promedio obtenido en el ensayo de tracción al material obtenido a base de pistones reciclados demostró una fuerza máxima de 30,012 (tnt) y el efectuado al material mejorado a base de pistones reciclados se obtuvo una fuerza máxima de 54,133 (tnt) dando un aumento en la fuerza máxima resistente a la compresión del material de más del 40 %

En comparación al aluminio 4032 con un esfuerzo a la tracción igual o mayor a 52100 psi, mediante cálculos matemáticos obtenidos de los resultados de ensayos mecánicos se determinó que el material mejorado a partir de pistones reciclados cumple con las especificaciones de dicho material ya que cuenta con un esfuerzo a la tracción de 53246,65 psi dando como resultado un material idóneo para la fabricación de pistones automotrices.

Añadiendo los siguientes componentes cromo, magnesio, níquel, zinc, cobre, hierro y silicio, se evidencio una mejora en las propiedades mecánicas del material a base de pistones reutilizados, con lo cual se determina un material idóneo para la reutilización en el campo automotriz.

Recomendaciones

- Para el análisis metalográfico se debe tomar en cuenta el tiempo de contacto que pasa la probeta frente al revelador químico, ya que si sobrepasa el límite permitido este puede quemarse(opacarse) y no se podrá obtener una imagen óptima en el microscopio
- Para los diferentes ensayos mecánicos y metalográficos se deben seguir obligatoriamente los instructivos de uso de las máquinas de cada laboratorio para evitar cualquier tipo de inconvenientes.
- Los ensayos mecánicos se los debe realizar por lo menos 3 veces con el mismo material para poder obtener diferentes resultados y englobarlos en uno solo.

Recomendaciones

Al momento de manufacturar un pistón con el material de partida mejorado a base de pistones reciclados, se recomienda realizar tratamientos térmicos al pistón de acuerdo a las necesidades del motor en el cual va a trabajar.

! Gracias!

