

Investigación e implementación de un sistema de carga regenerativo para elevar las prestaciones de autonomía en una motocicleta eléctrica.

Cuñas Picho, Wilmer Isaac

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Trabajo de titulación, previo a la obtención del título de Ingeniero Automotriz.

Ing. Erazo Laverde, Washington Germán.

17 de Enero del 2023

Latacunga

Reporte de verificación de contenido

Docu	ment Information					
	Analyzed document	TESIS DOCUMENTO-CUÑAS ISAAC ERAZO GERMAN	l.pdf (D1560	(79914)		
	Submitted	1/16/2023 9:25:00 PM				
	Submitted by	Cristian Laverde		Firmado	ton	
	Submitter email	claverde@uteq.edu.ec	1.0	WASHING	TON	,
	Similarity	ax (aju)	4	GERMAN E	RAZO	0
	Analysis address	claverde.uteq@analysis.urkund.com	V	LAVERDE		
W	URL: https://www.bbva.com Fetched: 1/16/2023 9:26:00	ort n/es/sostenibilidad/que-es-una-moto-electrica/) PM			88	1
w	URL: https://eurobalt.net/es Fetched: 1/16/2023 9:26:00	s/blog/2019/04/16/permanent-magnet/) PM			88	1
w	URL: https://www.lifeder.co Fetched: 1/16/2023 9:26:00	m/reluctancia-magnetica/) PM			88	1
147	URL: https://jaramotoblogs	wordpress.com/2020/04/24/jmotoblogs-sistema-de-recti	ificacion-y-	carga-de	00	1

Entire Document

1 Investigación e implementación de un sistema de carga regenerativo para elevar las prestaciones de autonomía en una motocicleta eléctrica. Cuñas Picho, Wilmer Isaac Departamento de Ciencias de la Energía y Mecánica Carrera de Ingeniería Automotriz Trabajo de titulación, previo a la obtención del título de Ingeniero Automotriz. Ing. Erazo Laverde, Washington Germán. 17 de Enero del 2023 Latacunga

2 Reporte de verificación de contenido

Fetched: 1/16/2023 9:26:00 PM

3 Certificación

4 Responsabilidad de autoría

5 Autorización de publicación

6 Dedicatoria Este trabajo es dedicado a mi propia persona del futuro en donde espero que cuando revierta el tiempo a este punto sienta un alivio de encontrar una investigación que fue parte fundamental para su formación y logro de todas sus metas, con humildad deseo que mi investigación aporte al desarrollo de proyectos. Finalmente dedico este trabajo a mis padres Maria y Mariano que a pesar de su limitada economia siempre me ayudaron incondicionalmente y a mis hermanas que aportaron con su colaboración durante mucho tiempo así como a mi sobrino Benjamin que me compartió su tiempo de niño.

7 Agradecimiento Agradezco a mis padres y hermanas así como a mi sobrino por su apoyo de familia en cada momento de mi vida. Agradezco a Dios y a la vida misma por cada momento dificil que ha existido en mi vida que me permiten valorar los momentos felices y entender la vida desde varios puntos. Quiero agradecer por este medio también a mis mascotas que fueron parte de momentos felices, además de ayudarme a entender el valor de toda expresión de vida fomentada en su respeto y cariño incondicional. Agradezco a cada institución que me brindo su apoyo intelectual, a la educación pública que más allá de ser un derecho es una oportunidad y más allá de tener falencias el éxito de cada persona radica en aprovechar esa oportunidad dada. Finalmente quiero agradecer a cada docente de la Universidad de Las Fuerza. Armadas Espe, que me ayudaron y formaron intelectualmente, con especial atención agradezco al Ingeniero derman Erazo por su colaboración.

Find a: ING. Erazo Laverde, Washington Germán C. C.: 0501432637

器 1

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Certificación

Certifico que el trabajo de titulación: "Investigación e implementación de un sistema de carga regenerativo para elevar las prestaciones de autonomía en una motocicleta eléctrica" fue realizado por el señor Cuñas Picho, Wilmer Isaac; el mismo que cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, además fue revisado y analizado en su totalidad por la herramienta de prevención y/o verificación de similitud de contenidos; razón por la cual me permito acreditar y autorizar para que se lo sustente públicamente.

Latacunga, 17 de Enero del 2023

Firma: ING. Erazo Laverde, Washington Germán C. C. 0501432637

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Responsabilidad de Autoría

Yo, **Cuñas Picho, Wilmer Isaac**, con cédula de ciudadanía nº 1726292822, declaro que el contenido, ideas y criterios del trabajo de titulación: **Investigación e implementación de un sistema de carga regenerativo para elevar las prestaciones de autonomía en una motocicleta eléctrica,** es de mi autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Latacunga, 17 de Enero del 2023

Firma

Cuñas Picho, Wilmer Isaac C.C.: 1726292822

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Autorización de Publicación

Yo **Cuñas Picho, Wilmer Isaac**, con cédula de ciudadanía nº 1726292822, autorizo a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de titulación: **Investigación e implementación de un sistema de carga regenerativo para elevar Ias prestaciones de autonomía en una motocicleta eléctrica** en el Repositorio Institucional, cuyo contenido, ideas y criterios son de mi responsabilidad.

Latacunga, 17 de Enero del 2023

Firma

Cuñas Picho, Wilmer Isaac C.C.: 1726292822

Dedicatoria

Este trabajo es dedicado a mi propia persona del futuro en donde espero que cuando revierta el tiempo a este punto sienta un alivio de encontrar una investigación que fue parte fundamental para su formación y logro de todas sus metas, con humildad deseo que mi investigación aporte al desarrollo de proyectos. Finalmente dedico este trabajo a mis padres María y Mariano que a pesar de su limitada economía siempre me ayudaron incondicionalmente y a mis hermanas que aportaron con su colaboración durante mucho tiempo así como a mi sobrino Benjamín que me compartió su tiempo de niño.

Agradecimiento

Agradezco a mis padres y hermanas así como a mi sobrino por su apoyo de familia en cada momento de mi vida.

Agradezco a Dios y a la vida misma por cada momento difícil que ha existido en mi vida que me permiten valorar los momentos felices y entender la vida desde varios puntos.

Quiero agradecer por este medio también a mis mascotas que fueron parte de momentos felices, además de ayudarme a entender el valor de toda expresión de vida fomentada en

su respeto y cariño incondicional.

Agradezco a cada institución que me brindó su apoyo intelectual, a la educación pública que más allá de ser un derecho es una oportunidad y más allá de tener falencias el éxito de cada persona radica en aprovechar esa oportunidad dada.

Finalmente quiero agradecer a cada docente de la Universidad de Las Fuerzas Armadas Espe, que me ayudaron y formaron intelectualmente, con especial atención agradezco al Ingeniero German Erazo por su colaboración.

ÍNDICE DE CONTENIDO

Carátula1
Reporte de verificación de contenido2
Certificación3
Responsabilidad de autoría4
Autorización de publicación5
Dedicatoria6
Agradecimiento7
Índice de contenido8
Índice de figuras16
Índice de tablas20
Índice de ecuaciones21
Resumen24
Abstract25
Capítulo I: Marco metodológico de la investigación26
Antecedentes investigativos26
Planteamiento del problema28
Descripción resumida del proyecto29
Justificación e importancia30
Objetivos del proyecto31
Objetivo general31
Objetivos específicos31
Meta

Hipótesis
Variables de investigación32
Variable independiente32
Variable dependiente33
Metodología de desarrollo del proyecto34
Método documental bibliográfico34
Método de Matematización34
Método de modelación34
Método experimental35
Método de medición35
Método inductivo35
Método deductivo35
Método científico35
Método comparativo36
Capítulo II: Fundamento teórico40
Movilidad eléctrica40
Vehículo eléctrico40
Requisitos de los motores eléctricos para vehículos40
Partes de un vehículo eléctrico41
Motor eléctrico41
Cargador eléctrico42
Baterías utilizadas en vehículos eléctricos42
Tipos de vehículos eléctricos43

Motocicleta eléctrica43
Autonomía de una motocicleta eléctrica44
Componentes principales de una motocicleta eléctrica44
Sistema KERS (Kinetic Energy Recovery System)45
Componentes principales de un sistema KERS46
Generador eléctrico48
Generador de imanes permanentes48
Electroimanes
Imanes permanentes49
Partes del generador de imanes permanentes50
Inducción electromagnética (Ley de Faraday)50
Magnetismo52
Factores determinantes para inducir un voltaje52
Ley de Lenz53
Definición de una bobina53
Funcionamiento de una bobina53
Inductancia de una bobina54
Tipos de bobinas54
Cable utilizado para bobinas55
Imanes permanentes55
Características de un imán permanente56
Remanencia magnética (Br)56
Fuerza coercitiva (Hc)56

Pérdidas de las propiedades magnéticas de un imán57
Composición de un imán permanente57
Consideraciones para la elección de un imán permanente58
Numeración alfanumérica de un imán de neodimio58
Propiedades de los sistemas magnéticos59
Campo magnético-Intensidad de campo magnético (H)59
Densidad de flujo magnético60
Flujo magnético60
Magnetismo remanente61
Permeabilidad magnética61
Reluctancia magnética62
Coercitividad63
Permeabilidad magnética en distintas sustancias63
Sustancias paramagnéticas63
Sustancias diamagnéticas63
Sustancias ferromagnéticas64
Generador síncrono de imanes de imanes permanentes64
Configuraciones de un generador de imanes permanentes65
Disposición de los imanes en el rotor65
Tipología de un generador de imanes permanentes66
Materiales empleados en la fabricación de un generador66
Material del núcleo del estator66
Material del bastidor67

Material del rotor	67
Imán de Neodimio	67
Bobinas del estator	67
Material de los aislantes utilizados en los bobinados	67
Selección de un aislante térmico	68
Propiedades eléctricas	68
Propiedades mecánicas	68
Propiedades químicas	68
Pérdidas en los generadores eléctricos	69
Pérdidas mecánicas	70
Pérdidas en el núcleo magnético	70
Pérdidas magnéticas por corrientes de Focault	70
Pérdidas magnéticas por histéresis	70
Corriente producida en un generador eléctrico	71
Corriente continua	71
Corriente alterna	71
Circuito regulador-rectificador de voltaje	72
Circuito rectificador	72
Circuito regulador	72
Acumuladores de energía	73
Batería de Plomo ácido	73
Batería de Litio	73
Capacidad de una batería	74

Estado de carga de una batería74
Etapas de carga de una batería74
Inversor de corriente (DC-AC)75
Configuración de un inversor76
Motor eléctrico BLDC77
Motor eléctrico QS de 2000 W77
Ecuaciones de diseño para un generador de flujo radial
Significado de letras y símbolos84
Capítulo III: Diseño, construcción e implementación del sistema de carga88
Requerimientos del sistema de carga regenerativo
Diseño matemático del generador eléctrico90
Potencia de partida91
Número de polos magnéticos93
Cálculo de la abertura de ranura102
Cálculo de la fracción magnética103
Número de imanes104
Cálculo del factor de apilamiento (kst)110
Cálculo de Γ(Bmax, f)122
Cálculo de Ps (Pérdidas por a la fricción, viento y otros)124
Geometría resultante125
Análisis magnético mediante el método de elementos finitos126
Análisis e interpretación de resultados128
Cálculo de la transferencia de calor por conducción en el generador130

Refrigeración del sistema y selección del aislante térmico133
Cálculo del calibre de alambre magneto137
Fabricación de piezas y componentes del generador138
Ensamblaje del generador eléctrico140
Selección del inversor del sistema de carga143
Selección del regulador de corriente del sistema de carga
Ensamblaje de los componentes que forman el sistema de carga145
Etapas de potencia del sistema de carga regenerativo146
Etapa 1146
<i>Etapa</i> 2146
Etapa 3147
<i>Etapa 4</i> 147
<i>Etapa</i> 5148
Consideraciones de descarga y elección de la batería de ácido plomo148
Instalación del voltímetro-amperímetro para el generador eléctrico150
Instalación del medidor de voltaje151
Instalación del medidor KG-140F151
Componentes del tablero de control153
Esquema eléctrico y electrónico de la moto eléctrica
Capítulo IV: Pruebas y análisis de resultados157
Protocolo de pruebas157
Desarrollo de la prueba de ruta160
Resultados obtenidos162

Análisis de la fase 1	163
Análisis de la fase 2	163
Análisis de la fase 3 o fase de corte	164
Autonomía inicial	164
Análisis de la fase 4	165
Análisis de la fase 5	166
Análisis de la fase 6 o fase de corte	168
Autonomía final	168
Pruebas del generador eléctrico	172
Capítulo V: Marco administrativo	173
Recursos	173
Recursos humanos	173
Recursos materiales	173
Recursos tecnológicos	174
Costo neto de la investigación	175
Capítulo VI: Conclusiones y recomendaciones	176
Conclusiones	176
Recomendaciones	179
Bibliografía	181
Anexos	186

ÍNDICE DE FIGURAS

Figura 1 Á	rbol de problemas	28
Figura 2 C	Conjunto de requisitos para un motor eléctrico	41
Figura 3 7	ipología de motores eléctricos utilizados en vehículos	41
Figura 4 7	ipo de baterías utilizadas en vehículos eléctricos	42
Figura 5 (Clasificación de los vehículos eléctricos	43
Figura 6 D	etalle y funcionamiento de cada parte de una motocicleta eléctrica	44
Figura 7 G	Generador Motor Integrado (IMG) Audi Q5 Hybrid Quattro	46
Figura 8 E	squema de un sistema KERS para almacenar energía	47
Figura 9 7	ipo de generadores eléctricos	48
Figura 10	Motor generador BOSCH	49
Figura 11	Partes principales de un generador de imanes permanentes	50
Figura 12	Generación de un voltaje inducido	51
Figura 13	Constitución de una bobina	51
Figura 14	Campo magnético generado en un conductor	52
Figura 15	Factores que intervienen en el voltaje inducido	52
Figura 16	Campo magnético generado en una bobina	53
Figura 17	Clasificación de las bobinas	55
Figura 18	Distribución del flujo magnético para un imán permanente	56
Figura 19	Curvas de magnetización para materiales tradicionales de imán permanente	58
Figura 20	Denominación, numeración o nomenclatura de un imán de neodimio	59
Figura 21	Flujo magnético en dos imanes permanentes enfrentados	60
Figura 22	Flujo magnético a través de dos áreas	61
Figura 23	Circuito magnético-reluctancia	62
Figura 24	Efecto del campo magnético sobre una sustancia paramagnética	63
Figura 25	Efecto del campo magnético sobre una sustancia diamagnética	64
Figura 26	Efecto del campo magnético sobre una sustancia ferromagnética	64
Figura 27	Descripción de la configuración de un generador	65

Figura 28 Tipología de un generador de acuerdo al movimiento del rotor	66
Figura 29 Núcleo con corrientes parásitas en el núcleo ferromagnético	70
Figura 30 Ciclo de histéresis de los materiales magnéticos	71
Figura 31 Tipos de corrientes por su forma de onda	71
Figura 32 Circuito regulador-rectificador de voltaje	72
Figura 33 Pilas de batería de de litio	74
Figura 34 Gráfica de las etapas de carga de una batería	75
Figura 35 Tipología de los convertidores de corriente	76
Figura 36 Diagrama de flujo de un inversor DC-AC	76
Figura 37 Diagrama de funcionamiento de un motor BLDC	77
Figura 38 Motor eléctrico QS BLDC	78
Figura 39 Flujograma de diseño	88
Figura 40 Flujograma de requerimientos del sistema regenerativo	89
Figura 41 Flujograma de requerimientos iniciales para el diseño	90
Figura 42 Relación de transmisión	93
Figura 43 Diagrama de flujo para elegir el número de polos magnéticos	93
Figura 44 Estimación geométrica del número de ranuras	95
Figura 45 Número de ranuras por polo por fase	98
Figura 46 Longitud de cada polo	104
Figura 47 Entrehierro real	105
Figura 48 Remanencia magnética de diferentes imanes	108
Figura 49 Diferente disposición de imanes	108
Figura 50 Curva de magnetización de diferentes materiales	110
Figura 51 Cálculo del factor de apilamiento kst	111
Figura 52 Geometría resultante del núcleo magnético	125
Figura 53 Geometría resultante del rotor	126
Figura 54 Descripción del análisis magnético	126
Figura 55 Comportamiento magnético	128
	Figura 28 Tipología de un generador de acuerdo al movimiento del rotor. Figura 29 Núcleo con corrientes parásitas en el núcleo ferromagnético. Figura 30 Ciclo de histéresis de los materiales magnéticos. Figura 31 Tipos de corrientes por su forma de onda . Figura 32 Circuito regulador-rectificador de voltaje. Figura 33 Pilas de batería de de litio . Figura 34 Gráfica de las etapas de carga de una batería. Figura 35 Tipología de los convertidores de corriente. Figura 36 Diagrama de flujo de un inversor DC-AC. Figura 37 Diagrama de fluio OS BLDC. Figura 38 Motor eléctrico QS BLDC. Figura 39 Flujograma de requerimientos del sistema regenerativo. Figura 41 Flujograma de requerimientos iniciales para el diseño Figura 43 Diagrama de flujo para elegir el número de polos magnéticos Figura 44 Estimación geométrica del número de ranuras. Figura 45 Número de anuras por polo por fase. Figura 46 Longitud de cada polo. Figura 47 Entrehierro real. Figura 48 Remanencia magnética de diferentes materiales. Figura 49 Diferente disposición de imanes

Figura 56	Punto con mayor saturación magnética	130
Figura 57	Partes del estator	131
Figura 58	Área del conductor	132
Figura 59	Aislante térmico del generador	135
Figura 60	Refrigeración de los componentes del sistema de carga	135
Figura 61	Partes del generador de imanes permanentes	136
Figura 62	Área del conductor	137
Figura 63	Selección del inversor	143
Figura 64	Regulador de corriente monofásico	144
Figura 65	Componentes principales del sistema de carga regenerativo	145
Figura 66	Etapas 1-2-3-4 del sistema de carga	146
Figura 67	Etapa 5 del sistema de carga	147
Figura 68	Estado de carga de la batería de ácido plomo	148
Figura 69	Curva de carga de una batería de ácido plomo	149
Figura 70	Conexión del voltímetro-amperímetro	150
Figura 71	Conexión del voltímetro para la batería de ácido plomo	151
Figura 72	Instalación del módulo electrónico de control del medidor KG-140F	152
Figura 73	Diagrama de conexión del medidor KG-140F	152
Figura 74	Indicadores de monitoreo	154
Figura 75	Diagrama eléctrico de la moto eléctrica	155
Figura 76	Diagrama de conexión del sistema de carga	156
Figura 77	Interfaz de la aplicación KG	160
Figura 78	Diagrama de prueba	162
Figura 79	Perfil de velocidad vs tiempo de la fase 1	163
Figura 80	Perfil de velocidad vs tiempo de la fase 3	164
Figura 81	Gráfica de autonomía inicial	165
Figura 82	Ciclo de conducción de la fase 4	165
Figura 83	Gráfica de voltaje vs tiempo de la batería de litio	166

Figura 84	Gráfica de voltaje vs tiempo de la batería de ácido plomo	167
Figura 85	Capacidad recuperada en la batería de litio	167
Figura 86	Ciclo de conducción de la fase 6	168
Figura 87	Gráfica de la autonomía final de la moto eléctrica	169
Figura 88	Gráfica característica de arranque	170
Figura 89	Comportamiento del consumo eléctrico en velocidad I	170
Figura 90	Comportamiento del consumo eléctrico en velocidad II	171
Figura 91	Comportamiento del consumo eléctrico en velocidad III	171

ÍNDICE DE TABLAS

Tabla 1 Operacionalización de la variable independiente	
Tabla 2 Operacionalización de la variable dependiente	
Tabla 3 Metodología de la investigación	
Tabla 4 Calibres de cable magneto para bobinas	55
Tabla 5 Clasificación de los aislantes utilizados en máquinas eléctricas	69
Tabla 6 Ecuaciones de diseño de un generador de flujo radial de imanes p	ermanentes78
Tabla 7 Nomenclatura de diseño de un generador de flujo radial de imanes	s permanentes.84
Tabla 8 Valores de diseño	90
Tabla 9 Número de polos y cantidad de imanes que lo forman	94
Tabla 10 Parámetros iniciales del generador eléctrico	97
Tabla 11 Proceso de manufactura de los componentes del generador eléction	<i>trico</i> 138
Tabla 12 Ensamblaje del generador de imanes permanentes	141
Tabla 13 Características técnicas del inversor	143
Tabla 14 Características del regulador del sistema de carga	145
Tabla 15 Protocolo de pruebas	157
Tabla 16 Especificaciones de la prueba de ruta	161
Tabla 17 Velocidades de la fase 1	163
Tabla 18 Velocidades de la fase 4	166
Tabla 19 Pruebas de funcionalidad del generador eléctrico	172

ÍNDICE DE ECUACIONES

Ecuación 1 Ley de Faraday	51
Ecuación 2 Inductancia	54
Ecuación 3 Densidad de flujo	60
Ecuación 4 Permeabilidad relativa	61
Ecuación 5 Permeabilidad de vacío	62
Ecuación 6 Reluctancia	62
Ecuación 7 Cálculo de la potencia requerida (Watts)	91
Ecuación 8 Relación entre velocidad, frecuencia y número de polos	92
Ecuación 9 Cálculo del mecanismo de transmisión por banda	92
Ecuación 10 Velocidad mecánica (rad/s)	96
Ecuación 11 Velocidad eléctrica (rad/s)	96
Ecuación 12 Frecuencia eléctrica (Hz)	96
Ecuación 13 Torque en caballos de fuerza (Nm-Newton metro)	97
Ecuación 14 Número de ranuras (Ns)	98
Ecuación 15 Número de ranuras por polo por fase (Nspp)	98
Ecuación 16 Número de ranuras por polo magnético (Nsm)	99
Ecuación 17 Fracción bobina-polo (αcp)	99
Ecuación 18 Paso angular del polo magnético (θp)	99
Ecuación 19 Paso angular de la ranura (θs)	100
Ecuación 20 Paso de ranura (radianes eléctricos, θse)	100
Ecuación 21 Radio interior del estator (m)	100
Ecuación 22 Paso del polo magnético en metros (τp)	101
Ecuación 23 Paso de la bobina (τc)	101
Ecuación 24 Paso de la ranura en el entrehierro (τs)	101
Ecuación 25 Ancho del diente en el espacio de aire (ω t)	102
Ecuación 26 Factor de distribución	102
Ecuación 27 Factor de paso (kp)	103

Ecuación 28 Factor de concentración de flujo (CØ)	103
Ecuación 29 Coeficiente de permeabilidad	104
Ecuación 30 Factor de fuga del imán (kml)	105
Ecuación 31 Entrehierro efectivo para el coeficiente de Carter	106
Ecuación 32 Coeficiente de Carter	106
Ecuación 33 Área del entrehierro	107
Ecuación 34 Densidad de flujo en el entrehierro (Bg)	107
Ecuación 35 Flujo magnético en el entrehierro	109
Ecuación 36 Ancho del hierro trasero	109
Ecuación 37 Ancho del diente	112
Ecuación 38 Radio del hierro trasero del estator (Rsb)	112
Ecuación 39 Radio interno del rotor (Rri)	112
Ecuación 40 Ancho inferior de la ranura (Wsb)	113
Ecuación 41 Ancho interior de la zapata de la ranura (Wsi)	113
Ecuación 42 Fracción de ranura dentro de la zapata (αs)	114
Ecuación 43 Profundidad total de la ranura (ds)	114
Ecuación 44 Profundidad de la ranura del conductor (d3)	114
Ecuación 45 Profundidad del zapato dividida entre d1 y d2	115
Ecuación 46 Área del conductor (As)	115
Ecuación 47 Número de vueltas por ranura (ns)	115
Ecuación 48 Pico de fuerza contra electromotriz (emax)	116
Ecuación 49 Corriente máxima que soporta por ranura (Is, en amperios)	117
Ecuación 50 Corriente de fase (Iph)	117
Ecuación 51 Densidad de corriente máxima en el conductor (Jc)	117
Ecuación 52 Densidad de flujo máximo en la ranura (Bs max)	118
Ecuación 53 Resistencia de la ranura (Rs)	118
Ecuación 54 Resistencia en la vuelta final (Re)	119
Ecuación 55 Resistencia de fase (Rph)	119

Ecuación 56	Inductancia en el entrehierro (Lg)1	119
Ecuación 57	Inductancia de fuga en la ranura (Ls)1	120
Ecuación 58	Inductancia del final de vuelta (Le)1	120
Ecuación 59	Inductancia de fase (Lph)1	120
Ecuación 60	Volumen de acero del estator (Vst)1	121
Ecuación 61	Pérdida de potencia óhmica (Pr)1	121
Ecuación 62	Pérdidas en el núcleo (Pcl)1	122
Ecuación 63	Ecuación de Steinmetz1	123
Ecuación 64	<i>Eficiencia</i> (η)1	123
Ecuación 65	Densidad de calor en la ranura (qs)1	124
Ecuación 66	Densidad de calor en el estator (qst)1	125
Ecuación 67	Tasa de flujo de calor1	131
Ecuación 68	Ecuación de Stefan Boltzmann1	133
Ecuación 69	Factor de llenado1	137

Resumen

La investigación abarca el estudio e implementación de un sistema de carga regenerativo, para solventar la problemática de autonomía presente en una moto eléctrica y fortalecer este medio de movilidad con el fin de reducir la contaminación ambiental generada por los vehículos con motor de combustión. Basado en el principio de funcionamiento de un KERS (Kinetic Energy Recovery System) se aprovecha el giro de la rueda delantera para generar electricidad. De este modo, se diseña un generador eléctrico de imanes permanentes de acuerdo al espacio disponible en la moto eléctrica. Otro punto importante es la selección de un regulador de voltaje, un inversor de corriente y una batería de ácido plomo que en conjunto componen el sistema de carga regenerativo. Mediante el uso del software FEMM (Finite Element Method Magnetics) se analiza el comportamiento magnético del generador eléctrico que determina el valor de la densidad de campo magnético en el entrehierro. Además se utiliza Livewire en la simulación y esquematización de los circuitos eléctricos, lo que permite comprender el funcionamiento y realizar conexiones correctas sin causar fallos o cortocircuitos. Se acondiciona un mecanismo de transmisión por banda para multiplicar las rpm de entrada al rotor y alcanzar valores de carga apropiados. Se instala dispositivos de medición que monitorean los valores de corriente y voltaje del sistema. A fin de conocer la factibilidad de implementar este tipo de dispositivos y precisar la autonomía incrementada se crea un protocolo de pruebas con 6 fases que evalúan el ciclo de conducción de la moto eléctrica en el interior del campus Belisario Quevedo de la Universidad de las Fuerzas Armadas con la ayudad de aplicaciones GPS. Finalmente se interpreta y tabulan los datos obtenidos en la prueba de ruta mediante gráficas.

Palabras clave: imán permanente, generador eléctrico, regulador eléctrico, inversor de corriente.

Abstract

The research covers the study and implementation of a regenerative charging system, to solve the problem of autonomy present in an electric motorcycle and strengthen this means of mobility in order to reduce environmental pollution generated by vehicles with combustion engines. Based on the operating principle of a KERS (Kinetic Energy Recovery System), the rotation of the front wheel is used to generate electricity. In this way, a permanent magnet electric generator is designed according to the space available on the electric motorcycle. Another important point is the selection of a voltage regulator, a current inverter and a lead acid battery that together make up the regenerative charging system. By using the FEMM (Finite Element Method Magnetics) software, the magnetic behavior of the electric generator is analyzed, which determines the value of the magnetic field density in the air gap. In addition, Livewire is used in the simulation and schematization of electrical circuits, which allows understanding the operation and making correct connections without causing failures or short circuits. A band transmission mechanism is conditioned to multiply the input rpm to the rotor and reach appropriate load values. Measuring devices are installed that monitor the current and voltage values of the system. In order to determine the feasibility of implementing this type of device and specify the increased autonomy, a test protocol is created with 6 phases that evaluate the driving cycle of the electric motorcycle inside the Belisario Quevedo campus of the University of the Armed Forces with the help of GPS applications. Finally, the data obtained in the road test is interpreted and tabulated using graphs.

Keywords: permanent magnet, electric generator, electric regulator, current inverter.

Capítulo I

Marco metodológico de la investigación

Antecedentes investigativos

En la actualidad el calentamiento global se refleja en condiciones climáticas variables con precipitaciones y altas temperaturas casi impredecibles. Esta problemática surge en una escala de tiempo relativa hasta la actualidad, por el uso masivo de combustibles fósiles en la movilidad y generación de energía con motores de combustión, esto produce un gran porcentaje de contaminantes en el aire.

Aunque en el último año los valores de contaminación se redujeron: "Las emisiones de CO2 se elevan al extremo y frenar el calentamiento global a 1,5 grados Celsius hasta fines de este siglo se vuelve cada vez más difícil de alcanzar" (Niranjan, 2021, párr. 2).

La electrónica y la electricidad se unen a la nueva era del motor como respuesta a la exigencia y concientización del mundo a reducir la contaminación, debido a que: "Los vehículos no están fuera de la evolución tecnológica, sino que también evolucionan, cambiando partes móviles por módulos electrónicos y computadoras que realizan todo el trabajo de control y ajuste mediante sensores y actuadores" (Aranda, 2013, p. 4).

La innovación tecnológica comienza con un cambio permanente hacia fuentes de energía más limpias y renovables, el avance de la electrónica y la electricidad es aplicada en los automóviles como una alternativa que fortaleció la transición de los motores de combustión a eléctricos.

La actualidad vehicular ha llevado a desarrollar nuevas formas de movilidad, es así que: "Los altos costos económicos y ambientales asociados con la proliferación de vehículos con motores de combustión interna, han hecho que muchas personas voltearan la mirada hacia los autos eléctricos" (Cárdenas, 2019, párr. 1).

(Varus, 2021), plantea que el Ecuador es un país ideal para la movilidad eléctrica, porque su capacidad de generación de energía a través de su red de hidroeléctricas es de un 90% y su expansión territorial requiere de pocas electrolineras para abastecer los vehículos eléctricos en sus recorridos. (párr. 18)

La elección de un vehículo eléctrico va de la mano con la necesidad del consumidor es por esto que:

De los vehículos eléctricos, uno de los más vendidos y rentables son las motocicletas, ya que son muy cómodas a la hora de realizar trayectos en ciudades y no necesitan tanta energía debido a un peso mucho menor. (Torrecilla, 2014, p. 9)

La principal problemática de un vehiculo eléctrico es la duración de su bateria para recorrer distintos trayectos con una sola carga, debido a la variación de la energía utilizada para cada tipo de carretera y el tiempo empleado en recorrerla.

Según (Varela, 2020) menciona que la principal limitación de los vehículos eléctricos es su dependencia de conectarse a la red eléctrica domiciliaria o electrolinera, de oferta limitada; condicionando la autonomía. Es necesario estudiar alternativas de recarga o regeneración de energía; la energía cinética es una opción. (p. 117)

Según (Martinez, 2014) menciona que: "Las diferentes formas de almacenaje pueden ser mediante energía potencial, gravitacional, química, elástica o energía cinética" (p. 1).

Con el fin de fortalecer la movilidad eléctrica en el país, se plantea investigar un sistema de recuperación de energía similar a un KERS (Kinetic Energy Recovery System), para (Ros & Barrera, 2017), este sistema: "Transforma la energía de movimiento del vehículo en otro tipo de energía que después se pueda volver a utilizar. Para eso utilizan motores-generadores eléctricos, que producen una corriente eléctrica alterna que se almacena en una batería" (p. 44).

Según (Manzano, 2008) un generador de corriente alterna consta de un imán central o un electroimán, que gira por la acción de un agente externo. Un núcleo magnético se presenta frente a los polos de este imán. En este núcleo se enrollan varias espiras de alambre magneto que al girar el imán central quedan expuestas a un flujo variable y se crea en ellas una fuerza electromotriz inducida. (p. 57) Para aprovechar este tipo de energía se hace necesario el uso de generadores eléctricos: "El principal objetivo como se menciona, es proporcionar una opción portátil de generación de electricidad a través de la conversión de energía mecánica en energía eléctrica" (México Patente nº WO2016076699A1, 2016).

Planteamiento del problema

Figura 1

Árbol de problemas

Nota. Se presenta el arbol de problemas de la investigación.

El uso exponencial de motores de combustión en la movilidad ha generado altos niveles de contaminación ambiental, esto reduce la calidad del aire. Los nuevos reglamentos, subsidios y precios del combustible fósil en el país y la poca tecnología invertida en sitios de carga inteligentes para medios de transporte eléctrico, han incrementado la necesidad de investigar nuevos sistemas de carga que permitan fortalecer la movilidad eléctrica, desarrollando dispositivos mecánicos-eléctricos-electrónicos capaces de aprovechar la energía cinética generada por el vehículo en movimiento para almacenarla y posteriormente utilizarla; basado en el principio de funcionamiento de un KERS, se pretende elevar las prestaciones de autonomía por kilómetro recorrido y optimizar los tiempos de carga en una motocicleta eléctrica.

Por tal motivo se plantea investigar el diseño e implementación de un sistema de carga regenerativo, mediante un generador monofásico que aprovecha la energía mecánica del giro en la rueda delantera y produce energía eléctrica, lo que permite recorrer más kilómetros.

Descripción resumida del proyecto

A continuación se detallan los principales aspectos en el desarrollo de la investigación e implementación de un sistema de carga regenerativo para elevar las prestaciones de autonomía de una moto eléctrica, para lo cual se realizaron los siguientes pasos:

- Se realizó una búsqueda pertinente de información en fuentes confiables como:
 libros, tesis, patentes, artículos y sitios web académicos para clasificar la información útil que se empleó.
- Se levantó requerimientos para el diseño e implementación del sistema de carga regenerativo que permitió establecer limitaciones en sus dimensiones.
- Se realizó el diseño y simulación de la geometría resultante del generador eléctrico mediante el uso de software especializado para comprender y analizar el comportamiento magnético.
- Se simuló cada circuito eléctrico y electrónico mediante el uso de software especializado lo que permitió comprender el funcionamiento y realizar conexiones seguras.
- Se seleccionaron los elementos eléctricos, electrónicos y mecánicos, del sistema de carga regenerativo.

- Se fabricó cada uno de los elementos que conforman el generador eléctrico con el material y las dimensiones calculadas.
- Se calculó un mecanismo de trasmisión por banda para incrementar las rpm del rotor que permita generar valores de carga apropiados.
- Se instaló, conectó y calibró dispositivos de medición para monitorear valores de corriente y voltaje en el sistema.
- Se realizó pruebas de autonomía iniciales y finales bajo un protocolo de prueba específico para obtener un ciclo de conducción que permita evaluar la autonomía de la moto eléctrica.
- Se interpretó y analizó los datos obtenidos en la prueba de ruta para determinar la factibilidad de usar este tipo de sistemas.
- Se implementó un circuito de aviso que indica el correcto funcionamiento del generador eléctrico para evitar pérdidas de energía por circuitos abiertos o cortocircuitos.

Justificación e importancia

El incremento de la movilidad eléctrica reduce agentes nocivos del ambiente, lo que se refleja en una contaminación mucho menor y una mejor calidad del aire, primordial para la salud de las personas.

El principal detractor para comprar un transporte eléctrico es la autonomía y los puntos de recarga escasos o pocos confortables para el usuario, por lo que es importante investigar sistemas eléctricos-electrónicos y mecánicos que en conjunto mejoren las prestaciones en kilómetros recorridos de una moto eléctrica, evitando así frustración y desinterés por este tipo de movilidad en los usuarios.

Las motos eléctricas actuales no disponen de un sistema de carga regenerativo que utilice el movimiento relativo de la rueda delantera como fuente de energía mecánica para recuperarla en forma de electricidad, acumular la misma y posteriormente utilizarla cuando el sistema así lo demande.

El sistema de carga regenerativo permite reducir el tiempo empleado en recargar la batería para un nuevo viaje y ampliar el margen de autonomía en kilómetros necesarios para una movilidad sostenible, evitando en varias ocasiones las inoportunas e incómodas situaciones de carga que se presentan en la actualidad al utilizar este medio de transporte.

Objetivos del proyecto

Objetivo general

Investigar e implementar un sistema de carga regenerativo para elevar las prestaciones de autonomía en una motocicleta eléctrica.

Objetivos específicos

- Realizar una búsqueda pertinente de información en fuentes confiables como: libros, tesis, patentes, artículos y sitios web académicos.
- Determinar los requerimientos para el diseño e implementación del sistema de carga regenerativo.
- Realizar el diseño, dimensionamiento y modelación del sistema de carga regenerativo mediante el uso de software especializado.
- Simular la funcionalidad de cada circuito eléctrico y electrónico del sistema de carga regenerativo mediante el uso de software especializado.
- Seleccionar los elementos eléctricos, electrónicos y mecánicos, del sistema de carga regenerativo y ensamblar cada uno en la moto eléctrica.
- Implementar un mecanismo de trasmisión por banda para elevar la frecuencia del generador.
- Instalar dispositivos de medición de voltaje y corriente para monitorear el sistema de carga.

- Desarrollar un protocolo de pruebas bajo un ciclo de conducción en el interior del campus universitario con aspectos técnicos y operativos específicos.
- Evaluar y analizar los datos obtenidos en la prueba para determinar los nuevos valores de autonomía.
- Desarrollar un circuito electrónico que indique cuando el generador eléctrico comienza a producir electricidad.

Meta

• Investigar e implementar un sistema de carga regenerativo en una motocicleta eléctrica, que permita incrementar su autonomía en un 10 a 15 %.

Hipótesis

La implementación de un sistema de carga regenerativo que aprovecha la energía

mecánica de la rueda delantera incrementará la autonomía de una motocicleta eléctrica.

Variables de investigación

Variable independiente

Sistema de carga regenerativo

Tabla 1

Operacionalización de la variable independiente

Concepto	Categoría	Indicadores	Ítem	Técnicas	Instrumentos
		Voltaje	V	Medición	Protocolo de
				Experimenta	pruebas
	Generador			ción	
	síncrono	Intensidad	А	Medición	Protocolo de
	de imanes			Experimenta	pruebas
	permanent			ción	
	es	Potencia	KWh	Cálculo y	Protocolo de
Es un sistema que		eléctrica		medición	pruebas
utiliza la energía		Velocidad de	Rpm	Medición	Protocolo de
mecánica de la		giro		Experimenta	pruebas
rueda para hacer				ción	
girar un generador	lmán de	Producto	kJ /	Experimenta	Ficha técnica
síncrono de imanes	neodimio	energético	m^3	ción	
permanentes y		(BH)			

Concepto	Categoría	Indicadores	Ítem	Técnicas	Instrumentos
producir electricidad, que será almacenada en una		Remanencia magnética (Br)	Т	Experimenta ción	Ficha técnica
batería auxiliar.	Bobinados	Resistencia	Ω	Medición Experimenta ción	Protocolo de pruebas
	Regulador eléctrico	Voltaje	A	Medición Experimenta ción	Protocolo de pruebas
		Amperaje	A	Medición Experimenta ción	Protocolo de pruebas
	Inversor eléctrico	Potencia	W	Medición Experimenta ción	Protocolo de pruebas
	Batería de medio voltaje	Voltaje	A	Medición Experimenta ción	Protocolo de pruebas
		Capacidad	Ah	Medición Experimenta ción	Protocolo de pruebas

Nota. En la tabla 1 se presenta la operacionalización de la variable independiente, misma

que permite conocer la categoría, indicadores, ítem, técnicas e instrumentos.

Variable dependiente

Prestaciones de autonomía de la moto eléctrica.

Tabla 2

Operacionalización de la variable dependiente

Concepto	Categoría	Indicadores	Ítem	Técnicas	Instrumentos
		Velocidad	Km/h	Medición	Protocolo de
				Experimenta	pruebas
	Desplazamiento			ción	
		Tiempo	min	Medición	Protocolo de
Distancia				Experimenta	pruebas
recorrida de				ción	
una moto		Voltaje	v	Medición	Protocolo de
eléctrica con		generado		Experimenta	pruebas
una sola				ción	
carga medida		Intensidad	А	Medición	Protocolo de
en		generada		Experimenta	pruebas
kilómetros.				ción	

Concepto	Categoría	Indicadores	Ítem	Técnicas	Instrumentos
		Distancia	km	Medición	Protocolo de
		recorrida		Experimenta	pruebas
				ción	
-		Tiempo	h	Medición	Protocolo de
	Tiempo de			Experimenta	pruebas
	carga y			ción	
	descarga	SOC	%	Cálculo y	Protocolo de
				medición	pruebas

Nota. La tabla 2 evidencia la operacionalización de la variable dependiente, la misma que permite conocer su concepto, categoría, indicadores, ítem, técnicas e instrumentos de evaluación.

Metodología de desarrollo del proyecto

Para el desarrollo del proyecto investigativo se utilizaron los siguientes métodos de investigación:

Método documental bibliográfico

Con este método se pudo obtener y procesar fórmulas, conceptos, aplicaciones, teoría, cálculos matemáticos, materiales y consideraciones de diseño para el desarrollo del sistema de carga regenerativo a partir de fuentes académicas confiables.

Método de matematización

Este método permitió aplicar y resolver cálculos matemáticos para el diseño del generador eléctrico en función de los valores de entrada obtenidos, mediante fórmulas eléctricas que establecieron las mejores características constructivas y operativas del sistema de carga regenerativo.

Método de modelación

Al emplear este método se pudo analizar el comportamiento magnético del generador eléctrico en función de los valores geométricos resultantes del cálculo matemático, se evaluó la elección del alambre de cobre magneto y el grado de los imanes de neodimio utilizados. Además permitió comprobar el correcto funcionamiento de los circuitos eléctricos y electrónicos de cada etapa del sistema. También con la modelación se pudo conocer el resultado final de las piezas antes de su fabricación e implementación para

detectar interferencias mecánicas y realizar optimizaciones de acuerdo al espacio disponible.

Método experimental

Este método permitió conocer los valores de voltaje y corriente en el funcionamiento de la moto eléctrica, mediante pruebas en movimiento bajo el ciclo de conducción establecido donde se obtuvieron los valores iniciales de autonomía, además se evaluaron fallos y plantearon correcciones. Una vez implementado el prototipo de carga se determinó la nueva distancia recorrida y el estado de la batería de litio.

Método de medición

Al aplicar este método se consiguió monitorear los valores de voltaje y corriente de del generador y las baterías. Finalmente permitió determinar los valores de autonomía inicial y final de acuerdo al ciclo de conducción establecido.

Método inductivo

Este método permitió analizar la problemática de elevar la autonomía de una moto eléctrica utilizando el giro de la rueda delantera para generar electricidad. Con el diseño e implementación de dispositivos y componentes que en conjunto formen un sistema de carga regenerativo basado en un sistema KERS.

Método deductivo

Al aplicar este método se pudo interpretar la relación de proporcionalidad entre la velocidad angular de la rueda y el valor de voltaje generado, adaptando así un sistema de transmisión por banda a fin de suplir las bajas rpm de la rueda y de este modo alcanzar las velocidades de giro apropiadas en el rotor para generar valores de voltaje y corriente que puedan cargar una batería.

Método científico

Este método permitió diseñar un generador eléctrico acorde al espacio disponible y acoplarlo a otros elementos eléctricos y electrónicos que en conjunto formen un sistema de

carga regenerativo para una moto eléctrica y evaluar su autonomía bajo un protocolo de pruebas que contemple un ciclo de conducción específico.

Método comparativo

Este método fue útil para comparar la autonomía en cada ciclo de conducción del protocolo establecido y establecer la diferencia de kilómetros recorridos.

Tabla 3

/					• •
1 //otodologia	20	10	in	notian	nnn
NEUCOUR		10	11 1 1	esnua	
motodologia	40	10		oougu	0.011
0					

Metodología	Descripción	Equipo	Laboratorio	
Método documental bibliográfico	Con este método se pudo obtener y procesar fórmulas, conceptos, aplicaciones y cálculos matemáticos en el diseño del sistema de carga regenerativo a partir de fuentes académicas confiables.	 Computadora Recursos bibliográficos Libros Patentes Sitios web Artículos 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	
Método de Matematización	Este método permitió aplicar y resolver cálculos matemáticos para el diseño del generador eléctrico en función de los valores de entrada obtenidos, mediante fórmulas eléctricas.	 Computadora Multímetro Recursos bibliográficos Calculadora Libros 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	
Método de modelación	Al emplear este método se pudo analizar el comportamiento magnético del generador eléctrico en función de los valores geométricos resultantes del cálculo matemático, se	 Computadora Recursos bibliográficos Software especializado Libros 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	
Metodología	Descripción	Equipo Laboratori		
--------------	-----------------------------	----------------------------------	--	--
	evaluó la elección del			
	alambre de cobre magneto			
	y el grado de los imanes de			
	neodimio utilizados.			
	Además permitió			
	comprobar el correcto			
	funcionamiento de los			
	circuitos eléctricos y			
	electrónicos de cada etapa			
	del sistema. También con			
	la modelación se pudo			
	conocer el resultado final			
	dimensional antes de su			
	fabricación e			
	implementación para			
	detectar interferencias			
	mecánicas y realizar			
	optimizaciones de acuerdo			
	al espacio disponible			
	Este método permitió	Computadora		
	conocer los valores de	 Osciloscopio 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	
	voltaje y corriente en el	 Multímetro 		
Método	funcionamiento de la moto	 Software 		
experimental	electrica, mediante pruebas	especializado		
	en movimiento bajo el ciclo	• KG-140F		
	de conducción establecido			
	donde se obtuvieron los			
	valores iniciales de			
	autonomía, además se			
	evaluaron fallos y			
	plantearon correcciones.			
	Una vez implementado el			
	prototipo de carga se			
	determinó la nueva			

Metodología	Descripción	Equipo	Laboratorio	
	distancia recorrida y el			
	estado de la batería de litio.			
Método c medición	Al aplicar este método se consiguió monitorear los valores de voltaje y corriente de del generador y las baterías. Finalmente permitió determinar los valores de autonomía inicial y final de acuerdo al ciclo de conducción establecido.	 Computadora Osciloscopio Multímetro KG-140F Voltímetro- Amperímetro digital Velocímetro 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	
Método inductivo	Este método permitió analizar la problemática de elevar la autonomía de una moto eléctrica utilizando el giro de la rueda delantera para generar electricidad. Con el diseño e implementación de dispositivos y componentes que en conjunto formen un sistema de carga regenerativo basado en un sistema KERS.	 Computadora Recursos bibliográficos Software especializado 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	
Método científico	Este método permitió diseñar un generador eléctrico acorde al espacio disponible y acoplarlo a otros elementos eléctricos y electrónicos que en conjunto formen un sistema de carga regenerativo para una moto eléctrica y	 Computadora Osciloscopio Multímetro KG-140F Voltímetro- Amperímetro digital 	Laboratorio de Autotrónica ESPE-L/Trabajo de campo.	

Metodología	Descripción		Equipo	Laboratorio
	evaluar su autonomía bajo	•	Velocímetro	
	un protocolo de pruebas			
	que contemple un ciclo de			
	conducción específico.			
	Esta mátodo fuo útil poro		Computedore	Laboratoria da
		•		
Método		•	Software	Autotronica
comparativo			especializado	
		•	Voltimetro-	de campo.
			Amperimetro	
			digital	
		•	Velocímetro	
	Al aplicar este método se	•	Computadora	
	pudo interpretar la relación	•	Multímetro	
	de proporcionalidad entre la	Recursos	Laboratorio de	
Método	velocidad angular de la	bibliográficos	Autotrónica	
deductivo	rueda y el valor de voltaje	ESPE-L/Trabajo		
	generado, adaptando así		especializado	de campo.
	un sistema de transmisión		·	
	por banda a fin de suplir las			
	bajas rpm de la rueda y de			
	este modo alcanzar las			
	velocidades de giro			
	apropiadas en el rotor para			
	generar valores de voltaje y			
	corriente que puedan			
	cargar una batería.			

Nota. En la tabla 3 se exponen cada uno de los métodos utilizados en el desarrollo de la investigación.

Capítulo II

Fundamento teórico

Movilidad eléctrica

En la búsqueda actual por crear conciencia en el cuidado del planeta a fin de recuperar la calidad del aire en las grandes ciudades, los medios de movilidad evolucionan con fuentes de energía más limpias para su tracción: "La movilidad eléctrica puede contribuir de forma efectiva a avanzar hacia una movilidad sostenible y de cero emisiones" (Ballesteros, et al., 2018).

En Ecuador la movilidad eléctrica aumentó respecto del último año tras la pandemia, de entre varias razones la concientización y ahorro económico han sido factores para optar por este medio de transporte, pero al mismo tiempo la problemática de autonomía y escasos puntos de carga son aspectos a tomar muy en cuenta al momento de adquirir un vehículo eléctrico.

Vehículo eléctrico

Según (Automoción, 2011) este tipo de vehículos utiliza como fuente de tracción un motor eléctrico que transforma la energía eléctrica en potencia mecánica, su utilización es el puntal para promover el cambio climático debido a que no emite ningún tipo de residuo al proporcionar potencia a un sistema motriz. (p. 38)

Aunque para hablar de cero emisiones también se debe estudiar la fuente energética y su forma de obtener energía eléctrica, los recursos naturales renovables deben ser los puntales que garanticen un cuidado al medio ambiente, ya que no sirve de mucho utilizar energía eléctrica generada por centrales térmicas.

Requisitos de los motores eléctricos para vehículos

El motor eléctrico que propulse un turismo debe entregar un nivel considerable de potencia sin que sus dimensiones hagan inviable acoplarlo dentro del mismo vehículo.

Figura 2

Conjunto de requisitos para un motor eléctrico

Nota. Se presentan las características de un motor eléctrico para vehículos. Tomado de (Automoción, 2011)

Partes de un vehículo eléctrico

Las partes principales son: el motor eléctrico, cargador, baterías y uno o varios

módulos de control electrónico para monitorear el suministro de energía.

Motor eléctrico

El motor eléctrico es el encargado de transformar la energía eléctrica en energía

mecánica para el movimiento del automóvil.

Figura 3

Tipología de motores eléctricos utilizados en vehículos

Nota. El diagrama muestra la clasificación de los motores empleados en vehículos eléctricos. Tomado de (Trashorras, 2019)

Cargador eléctrico

Encargado de adecuar la corriente proveniente de la fuente de energía para cargar las baterías del vehículo. En función del diseño del vehículo este cargador puede ubicarse dentro del propio vehículo o en puntos de carga.

Baterías utilizadas en vehículos eléctricos

La batería es un acumulador de energía que reciben la energía eléctrica y la almacenan en forma de energía química. De entre la variedad de baterías utilizadas en los vehículos eléctricos la que mayor densidad energética provee y por consecuencia mayor autonomía es la batería de iones de litio. A continuación se presenta un diagrama con las baterías más utilizadas.

Figura 4

Tipo de baterías utilizadas en vehículos eléctricos

Nota. Se presenta un esquema con las baterías más utilizadas en vehículos eléctricos.

Tomado de (Trashorras, 2019)

Tipos de vehículos eléctricos

Su clasificación depende del grado de electrificación que dispongan para su tracción,

así se expresa en la siguiente figura.

Figura 5

Clasificación de los vehículos eléctricos

Nota. El diagrama presenta el tipo de vehículos eléctricos de acuerdo a su grado de electrificación. Tomado de (Trashorras, 2019, p. 3)

Motocicleta eléctrica

Este medio de transporte equilibra la movilidad sostenible con el cuidado del medio ambiente es de este modo (Banco Bilbao Vizcaya Argentaria, 2021) dice que:

Las motos eléctricas han evolucionado mucho en sus dos siglos de vida, los

modelos modernos que se comercializan aportan una serie de ventajas a sus

usuarios, que van desde la movilidad hasta su vida útil, no producen contaminación

acústica ni atmosférica, además de ser vehículos de emisiones cero solo necesitan

de un motor eléctrico para movilizarse. (párr. 1)

"Un vehículo eléctrico es aquel que está impulsado por uno o más motores eléctricos que utilizan la energía eléctrica almacenada en baterías recagables y la transforman en energía mecánica" (Trashorras, 2019, p. 2).

Autonomía de una motocicleta eléctrica

El principal inconveniente de un vehículo eléctrico es su autonomía y tiempos de carga extensos.

Según (Minguela, 2016), el gran obstáculo que tiene el motor eléctrico, para sustituir al térmico, es la capacidad de acumulación de energía eléctrica, debido a que es muy baja en comparación con la capacidad de acumulación de energía en forma de combustible alrededor de 1 kg de baterías puede almacenar tanta energía como unos 20 gramos de combustible, lo que supone una barrera tecnológica importante. (p. 16)

Componentes principales de una motocicleta eléctrica

A continuación se describen las partes principales de una moto eléctrica.

Figura 6

Detalle y funcionamiento de cada parte de una motocicleta eléctrica

Nota. El esquema resume las partes principales y el funcionamiento de una moto eléctrica.

Sistema KERS (Kinetic Energy Recovery System)

Sistemas que provechan la energía mecánica de algún componente en movimiento y

la recuperan en forma de energía eléctrica, para (Martínez, 2014):

Son dispositivos diseñados para el almacenaje de cierta cantidad de energía en cualquier forma, para liberarla cuando se requiera en la misma forma en que se recolectó o en otra diferente.

Entre las diversas formas de aplicación del KERS (Kinetic Energy Recovery Systems) destacan:

1 Mecánico

2 Eléctrico

3 Hidráulico. (pp. 1, 26)

Figura 7

Generador Motor Integrado (IMG) Audi Q5 Hybrid Quattro

Nota. Partes de un generador motor integrado. Tomado de (Redacción, 2010)

Estos sistemas utilizan el moviemiento, fuerza o giro que no es aprovechado para recibir esa energía extra y hacerla útil, es decir, ser lo más eficiente posible, aunque esto no se aplica cuando el costo de producción no satisface el objetivo de mercado.

En la actualidad el más conocido es el freno regenerativo, que utiliza el mismo motor eléctrico para acumular energía extra al momento de frenar. Los constantes avances tecnológicos permiten mejorar estos sistemas, hacerlos más novedosos y más eficientes.

Componentes principales de un sistema KERS

Para (Sáenz & Vidaller, 2210) un KERS eléctrico está formado de un motor eléctrico que funciona también como dinamo alternador, el rotor recibe el giro transmitido por el

movimiento de algún componente. El movimiento produce una variación de flujo magnético que atraviesa las espiras, lo que produce una Fuerza Electromotriz en forma de corriente alterna. (p. 7)

En su constitución siempre es imprescindibe el uso de acumuladores eléctricos para gestionar el uso de la nergía extra en el momento más propicio.

Para (Domínguez & Ferrer, 2018), "los sistemas de freno regenerativo recuperan pare de la energía cinética del vehículo al emplear un motor eléctrico o un alternador para crear electricidad cuando el vehículo frena o desacelera" (p. 373).

Con estos tres puntos se entiende que los componentes principales en este tipo de sistemas son:

Motor generador.- Recepta la energía mecánica y la trasnforma en energía eleéctrica, también puede utilizarse un alternador.

Acumulador eléctrico.- Este componente almacena la energía eléctrica en forma de energía química.

Unidad de control electrónico.- Monitorea el uso y suministro de la energía acumulada en las baterías. Determina la activación o desactivación del sisitema, además de controlar los valores de entrada y salida en un tiempo establecido de acuerdo a su programación.

Figura 8

Esquema de un sistema KERS para almacenar energía

Nota. Diagrama del flujo de energía en un sistema KERS. Tomado de (Discoveries, 2020)

Generador eléctrico

Según (Gussow, 1991) "el generador es una máquina que hace uso de la inducción electromagnética para producir un voltaje por medio de bobinas de alambre que giran en un campo magnético estacionario o de un campo magnético giratorio que pasa por un devanado estacionario" (p. 7).

Figura 9

Tipo de generadores eléctricos

Nota. El esquema presenta la clasificación de un generador eléctrico por el tipo de corriente que produce.

De acuerdo a (Harper, 2004) los generadores utilizan la energía mecánica para producir energía eléctrica. El voltaje se induce en un conductor que se encuentra dentro del campo magnético. En algunos casos se mueve el alambre; en otros, se mueve el campo y aun en otros, ambos se mueven pero a distintas velocidades. (p. 1)

Generador de imanes permanentes

El campo magnético de un generador eléctrico puede crearse por electroimanes o imanes permanentes, estos últimos se caracterizan por su aplicabilidad en sistemas de baja potencia, para (Chiroque, 2010) :

Un generador de imanes permanentes como un generador de corriente alterna (AC) de bajo voltaje. La corriente es transformada a corriente continua (DC) mediante diodos rectificadores con la finalidad de que la energía pueda ser almacenada en baterías. Este generador consta de dos componentes principales: rotor y estator. (p. 11)

Según (Yupanqui, 2017), este tipo de generadores "sólo puede ser utilizado para generar energía eléctrica a bajas potencias debido a que el campo magnético que se obtiene de una bobina o un electroimán es siempre mayor a la de los imanes permanentes" (p. 20).

Figura 10

Motor generador BOSCH

Nota. Motor generador de Bosch. Tomado de (Redacción, 2010)

Electroimanes

Un electroimán se constituye principalmente de una bobina por la cual circula una corriente y como resultado produce un campo magnético con polaridad Norte y Sur respectivamente de acuerdo a la dirección de la corriente, la ventaja es su flexibilidad para trabajar con variaciones de frecuencia, es decir su campo magnético aumenta y disminuye en función de la corriente que circula por la bobina.

Imanes permanentes

Para (EUROBALT, 2022) un imán permanente es un objeto capaz de mantener el estado de magnetización durante un largo periodo de tiempo. El producto está hecho de ferromagnetos, que pueden consistir en hierro, acero, hierro fundido, níquel, cobalto, aleaciones individuales de metales de tierras raras. Existen minerales naturales (magnéticas), que también se utilizan como materia prima para la producción de imanes permanentes, todo esto difiere de acuerdo a la aplicación para la que se necesite.

Partes del generador de imanes permanentes

Entre las partes principales que componen un generador de imanes permanentes se encuentran:

a) Rotor.- Es la parte móvil que gira gracias al movimiento trasmitido por una fuente de energía mecánica. Esta parte aloja al conjunto de imanes.

b) Estator.- Describe a la parte fija, se encuentra sujeto a la carcasa y aloja al conjunto de bobinas.

c) Armazón o carcasa.- Fija a todos los componentes en su lugar, protege al

generador de agentes externos y permite la evacuación del calor generado en el mismo.

Figura 11

Partes principales de un generador de imanes permanentes

Nota. Partes de un generador de imanes permanentes. Tomado de (Agotegara & Pinzón, 2020)

c) Bobinas.- Una bobina se describe como un arrollamiento de alambre de cobre, de acuerdo a su tipología esta puede contener un núcleo de material férrico para aumentar su inductancia.

Inducción electromagnética (Ley de Faraday)

Para (Boylestad, 2004) si un conductor se mueve a través de un campo magnético de manera que corte líneas magnéticas de flujo, se inducirá un voltaje en el conductor. Entre mayor es el número de líneas de flujo cortadas por unidad de tiempo o más intenso es el campo magnético mayor será el voltaje inducido en el conductor. Si el conductor se mantiene fijo y el campo magnético se mueve de manera que sus líneas de flujo corten el conductor, se producirá el mismo efecto. (pp. 473-474)

Figura 12

Generación de un voltaje inducido

Nota. Movimiento de un conductor a través de un campo magnético. Tomado de (Boylestad, 2004)

Si una bobina de **N** vueltas se coloca en la región de un flujo cambiante, se inducirá un voltaje de acuerdo con La Ley de Faraday descrita en la ecuación 1:

Ecuación 1

Ley de Faraday

$$e = N \frac{d\emptyset}{dt}, \quad (Volts, V)$$

Donde:

- *e* = Diferencia de potencial o voltaje
- N = Representa el número de espiras de la bobina
- $\frac{d\phi}{dt}$ =Cambio instantáneo en flujo (en Webers) que atraviesa la bobina

Figura 13

Constitución de una bobina

Nota. Características constructivas de una bobina. Tomado de (Boylestad, 2004).

Magnetismo

Según (Gac, 2016), el magnetismo es un fenómeno por el que los objetos ejercen fuerzas de atracción o repulsión sobre otros materiales. La electricidad y el magnetismo están relacionados pues cada electrón es, por su naturaleza, un pequeño imán. La fuerza de atracción o repulsión se produce cuando se aproxima un imán a un material con un alto contenido de hierro, ya sea de forma natural o artificial.

Figura 14

Campo magnético generado en un conductor

Nota. Se presenta el campo magnético B generado por el paso de corriente I a través de un conductor. Tomado de (Gac, 2016)

Factores determinantes para inducir un voltaje

A partir de la ecuación descrita anteriormente se deduce que el voltaje inducido está determinado por tres factores expuestos en la siguiente figura.

Figura 15

Factores que intervienen en el voltaje inducido

Nota. Mapa de los factores que influyen directamente en la cantidad de voltaje generado.

Ley de Lenz

La polaridad del voltaje inducido está determinada por la ley de Lenz. El voltaje inducido tiene una polaridad que se opone al cambio que causa la inducción. Cuando fluye una corriente producida por un voltaje inducido, esta da origen a un campo magnético alrededor del conductor tal que el campo magnético alrededor de él reacciona con el campo magnético externo, esto hace que el voltaje inducido se oponga al cambio en el campo magnético externo. (Gussow, 1991, p. 173)

Definición de una bobina

Para (Fowler, 1994) el campo magnético de un conductor único, generalmente, es demasiado débil para la mayoría de aplicaciones prácticas. Sin embargo, puede crearse un campo más fuerte al combinar los campos en torno de dos o más conductores. Esto se logra enrollando un conductor, esto ocasiona que todo el flujo de las espiras individuales se combina para producir un campo magnético más intenso. (p. 127)

Figura 16

Campo magnético generado en una bobina

Nota. Se presentan los polos N y S en una bobina. Tomado de (Fowler, 1994)

Funcionamiento de una bobina

De acuerdo con (Hewitt, 2004) mientras mayor sea el número de vueltas del alambre en la espira que se mueven en un campo magnético, el voltaje inducido es mayor. Además menciona que el voltaje inducido en una bobina es igual al producto del número de vueltas de la bobina por la rapidez con la que el campo magnético cambia dentro de esas vueltas. (p. 477)

Inductancia de una bobina

Para (Mujal, 2004) la inductancia es la propiedad de un elemento del circuito que aprovecha la capacidad de la energía de almacenarse en una bobina en forma de campo magnético, se manifiesta solo cuando existe corriente alterna es decir un cambio de la corriente a través del tiempo. La inductancia es la propiedad de un circuito que relaciona la f.e.m inducida (por la variación de flujo) con la velocidad de variación de la corriente (frecuencia). (p. 55)

Mientras que (Boylestad, 2004, p. 475), manifiesta que en términos de dimensiones físicas, la inductancia de una bobina relaciona el valor de la inductancia, número de vueltas, permeabilidad del núcleo ferromagnético, área del núcleo, longitud medida del núcleo se relacionan directamente con la siguiente:

Ecuación 2

Inductancia

$$L = \frac{N^2 * u * A}{l}; (henrys, H)$$

Donde:

- L =Inductancia
- N = Número de vueltas
- *u* =Permeabilidad del núcleo (B/H)
- A =Área del núcleo (m^2)
- *l* =Longitud medida del núcleo (m)

Tipos de bobinas

Las bobinas se clasifican por el tipo de núcleo que poseen y por la frecuencia de funcionamiento.

Figura 17

Clasificación de las bobinas

Nota. Tipos de bobinas. Elaboración propia con información tomada de (Boylestad, 2004) *Cable utilizado para bobinas*

Para elaborar una bobina se utiliza alambre de cobre esmaltado conocido como alambre magneto, de acuerdo a la aplicación y cálculos obtenidos se emplea el calibre apropiado.

Tabla 4

Calibres de cable magneto para bobinas

Calibre	Diámetro de cobre		Diámetro	Rigidez	Termoplasticidad	
AWG	mínimo	nominal	máximo	con esmalte	dieléctrica	mínimo
				máximo		
22	0.635	0.643	0.650	0.714	5130	300 °
23	0.569	0.574	0.579	0.643	5000	300 °
24	0.505	0.511	0.516	0.577	4870	300 °
25	0.450	0.455	0.460	0.516	4740	300 °
26	0.399	0.404	0.409	0.462	4620	300 °

Nota. Diferentes calibres de cable magneto. Tomado de (Electrocables, 2018).

Imanes permanentes

Según (Gac, 2016) un imán es un material capaz de crear un campo magnético exterior y atraer el hierro, cobalto o el níquel. Su capacidad de atracción es mayor en sus

extremos o polos, denominados norte y sur, debido a que tienden a orientarse según los polos geográficos de la Tierra; en un imán no puede existir un solo polo, tanto es así que, si un imán se quiebra, cada parte forma otro imán por separado. (pp. 2-3)

Figura 18

Distribución del flujo magnético para un imán permanente

Nota. Se presenta el flujo magnético inmerso en un imán permanente. Tomado de (Boylestad, 2004)

Características de un imán permanente

De acuerdo al criterio del autor (Donate, 1999) cita que los imanes permanentes interesa que tengan una gran remanencia magnética Br, y que esta no se pierda por la acción de otros campos externos; por ello, interesa también que tengan una gran fuerza coercitiva Hc (esto quiere decir que se necesite una gran intensidad magnética inversa para anular el magnetismo remanente). (p. 67)

Remanencia magnética (Br)

Indica la capacidad de un material para mantener el magnetismo que le ha sido inducido y se mide a través de la densidad de flujo magnético expresado en Gauss o Teslas. En un imán permanente se describe como su fuerza de magnetización.

Fuerza coercitiva (Hc)

Para (Fink, Beaty, & Carroll, 1981) "una fuerza coercitiva (Hc), es la fuerza magnetomotriz a la que la inducción magnética es cero cuando el material se encuentra en una condición magnetizada simétrica cíclicamente y se mide en Amperio/metro" (p. 97).

Pérdidas de las propiedades magnéticas de un imán

Un imán puede perder sus propiedades magnéticas debido fundamentalmente a dos razones: La primera es cuando se golpea repentinamente lo que provoca un reordenamiento molecular y la segunda sucede al exponer un imán a temperaturas elevadas hasta alcanzar un valor característico conocido con el nombre de temperatura de Curie. (Pérez W., 2000, p. 549)

Composición de un imán permanente

Los imanes pertenecen al grupo de los materiales con comportamiento ferromagnético, son aleaciones metálicas que contienen hierro en mayor o menor proporción, esto define su campo de aplicación, además de la relación que exista entre los valores del producto de la inducción magnética y el campo magnético.

De entre las diferentes clases de imanes existentes, los imanes permanentes pertenecen al grupo de imanes duros o de materiales magnéticos duros, de los que sobresalen según (Espinosa & Belenguer, 2004) son:

Alnico 5 (*Al NiCo*₅**).-** Aleación que presenta una densidad de flujo residual relativamente alta pero posee baja coercitividad y fragilidad mecánica.

Alnico 8 (*Al NiCo*₈**).-**Posee una densidad de flujo residual baja, posee una coercitividad más alta que el alnico 5 y presenta fragilidad mecánica.

Cerámico 7.- Los materiales cerámicos o denominados imán de ferrita, se elaboran a partir de óxido de hierro y material pulverizado de carbonato de estroncio o bario, presentan menor densidad de flujo residual en comparación con las aleaciones ya mencionadas, pero poseen mayor coercitividad. Poseen buenas propiedades mecánicas y su fabricación es económica

Neodimio ($Nd_2Fe_{14}B$).- Pertenecen al grupo de materiales de imán permanente de tierras raras. Presentan valores más altos de coercitividad, densidad de flujo residual y un producto energético máximo. (pp. 36-37)

Consideraciones para la elección de un imán permanente

Según (Fitzgerald, Kingsgley, & Umans, 2004) Una medida útil de la capacidad de los materiales de imán permanente se denomina producto energético, lo que corresponde una medida útil de la capacidad de un imán permanente; elegir el material con el mayor valor disponible del producto energético podría resultar en el menor volumen de imán requerido para una aplicación específica. (p. 33)

Figura 19

Curvas de magnetización para materiales tradicionales de imán permanente

Nota. Curvas de magnetización para diferentes imanes. Tomado de (E. Fitzgerald et al.,

2004)

Numeración alfanumérica de un imán de neodimio

Los imanes de neodimio se clasifican con letras que señalan su tolerancia térmica y números que indican su producto energético. Por lo general el tipo de imanes que utilizan este tipo de numeración son los imanes de neodimio.

Figura 20

Denominación, numeración o nomenclatura de un imán de neodimio.

Nota. Se describe la denominación alfanumérica de un imán permanente.

Propiedades de los sistemas magnéticos

De acuerdo a la aplicación y requerimientos en un sistema magnético se deben considerar las siguientes propiedades magnéticas.

Campo magnético-Intensidad de campo magnético (H)

Según (Bastian et al., 2001): "el espacio alrededor de un imán, en el que actúan las fuerzas magnéticas y que se concibe atravesado por las líneas del campo magnético, se lama campo magnético", se representa con la letra H y su unidad es el amperio por metro.

(Pérez W., 2000) define este término como "una magnitud vectorial que sirve para describir el campo magnético. Su valor se define como la fuerza resultante magnética que actúa por cada unidad de masa magnética en un punto del campo magnético" (p. 551).

Densidad de flujo magnético

(Boylestad, 2004, p. 438) resume que la cantidad de líneas de flujo por unidad de área se llama densidad de flujo, se denota con la letra B y se mide en teslas. Su magnitud se determina con la siguiente ecuación:

Ecuación 3

Densidad de flujo

$$B = \frac{\Phi}{A}$$

Donde:

- B = Densidad de flujo (teslas, T)
- A =Área en metros cuadrados (m2)
- Φ =Cantidad de líneas de flujo (Webers, Wb)

Figura 21

Flujo magnético en dos imanes permanentes enfrentados

Nota. Se presenta la distribución del flujo para dos polos adyacentes, semejantes. Tomado de (Boylestad, 2004)

Flujo magnético

Según (Gac, 2016), el flujo magnético es una medida de la cantidad de magnetismo y se calcula a partir del campo magnético, la superficie sobre la cual actúa y el ángulo de incidencia formado por las líneas de campo y los diferentes elementos que están incluidos en dicha superficie, además menciona que es proporcional al número de líneas de campo que atraviesa un área y su unidad de medida en el sistema internacional es el Weber (Wb). (p. 5)

Figura 22

Flujo magnético a través de dos áreas

Nota. Flujo magnético a través de dos áreas azules orientadas en un ángulo (izquierda) y normal (derecha) al campo magnético. Tomado de (Khan Academy, 2022)

Magnetismo remanente

(M.I.T. (Massachusetts Institute of Technology), 1965) Menciona que: "El magnetismo remanente es la inducción magnética que queda en un material magnético después de suprimir un campo magnético aplicado" (p. 22).

Por otra parte (Fink et al., 1981) aclara que: "la inducción remanente es la inducción magnética que persiste en un circuito magnético tras haber eliminado la fmm aplicada" (p. 98).

Permeabilidad magnética

La permeabilidad para (Gussow, 1991) se refiere a la capacidad que tiene un material magnético de concentrar el flujo magnético. Cualquier material que se magnetiza fácilmente tiene una permeabilidad elevada. La medida de la permeabilidad de los materiales con referencia a la del aire o la del vacío se llama permeabilidad relativa. El símbolo de la permeabilidad relativa es u_r , en el que el subíndice r indica relativa; y no tienen unidades porque es el cociente de dos densidades de flujo. (p. 163)

Ecuación 4

Permeabilidad relativa

$$u_r = \frac{u}{u_o}$$

La permeabilidad del espacio libre u_o (vacío) según (Boylestad, 2004), es:

Ecuación 5

Permeabilidad de vacío

$$u_o = 4\pi x 10^{-7} \frac{Wb}{A.m}$$

Los materiales con altas permeabilidades se llaman ferromagnéticos.

Reluctancia magnética

Bajo el criterio de (Zapata, 2020), menciona que "la reluctancia magnética o resistencia magnética es la oposición que un medio presenta al paso del flujo magnético: a mayor reluctancia, más difícil es establecer el flujo magnético"

Figura 23

Circuito magnético-reluctancia

Nota. Se presentan los factores que influyen en el valor de reluctancia en un circuito magnético. Tomado de (Wikipedia, 2011)

La reluctancia de un material al establecimiento de líneas de flujo magnético en él, está determinada por la siguiente ecuación:

Ecuación 6

Reluctancia

$$\mathcal{R} = \frac{l}{u A} , (At/Wb)$$

Donde:

- $\mathcal{R} = \text{Reluctancia}$
- *l* = Longitud de la trayectoria magnética
- *A* =Área de la sección transversal

La t en las unidades descritas en la fórmula, refiere al número de vueltas del embobinado aplicado.

Coercitividad

Para (Espinosa & Belenguer, 2004) "Se ilustra como una medida de la magnitud de la fmm (fuerza magnetomotriz) requerida para desmagnetizar el material. Los materiales que constituyen buenos imanes permanentes se caracterizan por amplios valores de coercitividad Hc, un valor mayor a 1 KA/m" (p. 33).

Permeabilidad magnética en distintas sustancias

"Es una magnitud adimensional, su valor indica el comportamiento que experimenta una sustancia al encontrarse situada dentro de un campo magnético externo. La permeabilidad magnética indica si la sustancia se concentra, dispersa o simplemente no altera el campo magnético" (Pérez W., 2000, p. 554).

Sustancias paramagnéticas

Para (Pérez, 2000) estas sustancias al encontrarse dentro de un campo magnético concentran las líneas de fuerza débilmente o simplemente no las alteran con permeabilidad magnética constante y ligeramente mayor o igual a la unidad como por ejemplo el aluminio, el platino, el oxígeno, el aire, el vacío entre otros. (p. 554)

Figura 24

Efecto del campo magnético sobre una sustancia paramagnética

Nota. Reacción de una sustancia paramagnética frente a un campo magnético. Tomado de (Pérez, 2000)

Sustancias diamagnéticas

Sustancias que al encontrarse en un campo magnético externo dispersan a las líneas de fuerza magnetizante en sentido opuesto al campo magnético inductor. Estas sustancias tienen permeabilidad magnética constante menor que la unidad. Un buen ejemplo para este tipo de sustancias es el antimonio, el bismuto, el agua entre otras. (Pérez,

2017, p. 554)

Figura 25

Efecto del campo magnético sobre una sustancia diamagnética

Nota. Reacción de una sustancia diamagnética frente a líneas de un campo magnético.

Tomado de (Pérez, 2000)

Sustancias ferromagnéticas

Todas las sustancias que al encontrarse en un campo magnético externo concentran a las líneas de fuerza, magnetizándose en favor al campo magnético inductor. Estas sustancias tienen permeabilidad magnética variable y mucho mayor que la unidad. Un buen ejemplo de estas sustancias es el hierro, el níquel, el cobalto por mencionar algunas. (Pérez W. , 2000, p. 554)

Figura 26

Efecto del campo magnético sobre una sustancia ferromagnética

Nota. Reacción de una sustancia ferromagnética frente a un campo magnético. Tomado de (Pérez, 2000)

Generador síncrono de imanes de imanes permanentes

Según el criterio de (García, 2017), el término máquina síncrona de imanes permanentes (PMSM) describe todos los dispositivos de conversión de energía electromagnética en los cuales la excitación magnética, generalmente ubicada en el rotor, es sustituida por uno o varios imanes permanentes. (p. 15)

Configuraciones de un generador de imanes permanentes

"El motor/generador eléctrico (figura inferior) es síncrono, sin escobillas. Está compuesto de un rotor de imanes permanentes y un estator bobinado" (Pérez M. , 2017, p. 45).

Figura 27

Descripción de la configuración de un generador

Nota. a) Campo principal producido por un imán permanente parte del estator. b) Campo principal producido por un imán permanente parte del rotor. Tomado de (Enríquez, 2004)

Disposición de los imanes en el rotor

En el diseño de generadores síncronos se usan dos tipos de rotores, el cilíndrico y el de polos salientes.

El rotor de polos salientes se utiliza en generadores de baja y media velocidad porque la pérdida en el devanado es pequeña a esas velocidades, los imanes permanentes se fijan con un adhesivo especial, mientras que el rotor cilíndrico se emplea en aplicaciones de alta velocidad. Esta última configuración brinda los beneficios siguientes:

- 1. Resulta en una operación silenciosa a alta velocidad.
- 2. Ofrece mejor equilibrio que el rotor de polos salientes.
- 3. Reduce la pérdida por el viento.
- 4. Reduce el entrehierro y por tanto mejora la densidad de flujo magnético.

Tipología de un generador de imanes permanentes

Esta clasificación se realiza en base a la dirección de movimiento del rotor en función del estator o viceversa, es decir la disposición y configuración que adopta el generador en función del movimiento al que está sujeto.

De acuerdo a la dirección en que se corta el campo magnético entre el imán y el conductor se menciona dos tipos de generadores: de flujo axial y de flujo radial.

Figura 28

Tipología de un generador de acuerdo al movimiento del rotor

Nota. Se presenta un generador de flujo radial en el lado izquierdo y uno de flujo axial en el lado derecho. Tomado de (Garcia, 2018)

Materiales empleados en la fabricación de un generador

De acuerdo a (Vargas & Saldarriaga, 1990) el material ferromagnético que más se utiliza en la construcción de máquinas eléctricas es el acero al silicio de diferentes calidades, el acero fundido, el hierro colado, el acero en chapas y forjado, aleaciones de acero especiales (para imanes permanentes). (p. 179)

Material del núcleo del estator

"Es la masa metálica fija, unida a la carcasa y constituida por un paquete de chapas metálicas de silicio de 0.35-0.50 mm de espesor, aisladas con barniz, este núcleo va provisto de ranuras para alojar el bobinado inducido o inductor" (Manzano, 1999, p. 116). Las laminaciones se mantienen juntas por medio del bastidor del estator o por remaches especiales.

Material del bastidor

El bastidor, que puede ser de hierro de fundición o fabricarse con placas soldadas de acero suave, no se diseña para conducir flujo, sino para dar apoyo mecánico al generador síncrono, el material debe ser pensado en función de las condiciones del entorno, ventilación del generador y espacio disponible.

Material del rotor

El material para el rotor puede ser de laminaciones metálicas con agujeros específicos para los imanes, de materiales paramagnéticos como el aluminio en una sola pieza mecanizada o fundida con cavidades para los imanes con medidas apropiadas para fijar los imanes con pegamento especial.

Imán de Neodimio

Su fórmula química es una aleación de los siguientes componentes Nd2Fe14B, conocidos como imanes de tierras raras poseen un alto valor de campo coercitivo e inducción remanente.

Bobinas del estator

En la mayoría de aplicaciones se emplean arrollamientos de alambre de cobre electrolítico esmaltado denominado alambre magneto, de diámetros comprendidos entre 0.2 y 2 mm aunque se puede utilizar alambre de aluminio en la actualidad su uso no es muy común.

Material de los aislantes utilizados en los bobinados

Para realizar el bobinado de un generador se deben considerar los siguientes materiales según (Manzano, 1999) menciona tres:

Láminas de papel flexible.- Se emplean para el aislamiento entre circuitos, sometidos a diferente potencial. Las características varían en función de la temperatura que deban soportar y de la flexibilidad del papel que se necesite.

Tubos aislantes.- Empleados para aislar las conexiones. Sus diámetros oscilan entre 0.5 y 12 mm. La constitución de los mismos varía en función de la temperatura que deben soportar.

Barnices.- Empleados para dar rigidez y estanqueidad a los devanados. Pueden ser secados al aire ó al horno.Todos los aislantes se eligen en función de la temperatura y de la diferencia de potencial que hayan de aislar. (p. 23)

Selección de un aislante térmico

Para seleccionar el aislante se estima la temperatura máxima a la que puede llegar el generador y establecer la clase térmica del aislante con un margen de seguridad que garantice la protección del bobinado aún en condiciones críticas de operación.

De acuerdo al grado térmico cada aislante se clasifica en función de la temperatura que puede soportar. La elección del aislante puede considerarse bajo tres aspectos: propiedades eléctricas, mecánicas y químicas.

Propiedades eléctricas

El papel aislante debe tener una adecuada rigidez dieléctrica debido a la corriente de fuga que puede existir entre las caras del aislante al aplicarse una tensión moderada.

Propiedades mecánicas

El componente principal de un papel aislante es el Mylar que se define como una película de poliéster caracterizada por su alta resistencia a la tracción, estabilidad química, mecánica, térmica y su bajo índice de absorción de agua, es decir al utilizarla no se romperá o agrietará con facilidad además de reducir la acumulación de humedad.

Propiedades químicas

En las propiedades químicas se describen la constitución de este material, en el caso del papel aislante Isonom NMN (Nomex Mylar Nomex), contiene fibras sintéticas fabricado a base de telas de fibra de meta-arámida (fibras sintéticas), resistente al calor y

que conforma una hoja de papel. El Nomex es un polímero o macromolécula que se constituye de diversas unidades químicas conocidas como monómeros.

Tabla 5

Clase de	Productos empleados	Medio aglomerante o	Temperatura
aislamiento		impregnante	máxima de
			empleo °C
Α	Esmaltes de acetato de	Melamina con	120
	polivinilo, poliuretano.	fomaldehido, fenol con	
	Aglomerado con celulosa.	formaldehido	
В	Fibras de vidrio, productos de	Goma, laca,	130
	mica, films de policarbonato.	compuestos asfalticos o	
		bituminosos, resinas de	
		poliéster.	
F	Fibras de vidrio, amianto,	Resina epoxi	155
	productos de mica, fibras de	Resinas de poliuretano	
	poliamidas aromáticas, films	Resinas de silicona	
	de poliamida-imida.		
Н	Fibras de vidrio, amianto,	Resinas de silicona	180
	productos de mica, fibras de		
	poliamidas aromáticas y de		
	poliamida,		
	politetrafluoroetileno, cauchos		
	silicona		
С	Porcelana, mica, cuarzo,	Resinas de silicona	>180
	vidrio u otro material		
	cerámico,		
	politetrafluoroetileno.		

Clasificación de los aislantes utilizados en máquinas eléctricas

Nota. Clase térmica de los aislantes. Tomado de (BUN-CA, 2011)

Pérdidas en los generadores eléctricos

El funcionamiento intermitente o continuo al que sea sometido un generador

producirá pérdidas en el mismo, para lo cual el diseñador debe considerar estos efectos y

reducirlos al mínimo y asegurar un correcto funcionamiento.

Pérdidas mecánicas

En este apartado se describen a las pérdidas por rozamiento en el funcionamiento del generador, este rozamiento mecánico o con el aire se producen en menor proporción en generadores de imanes permanentes , al no existir fricción solo dependerá del diseño mecánico y estructural para no tener pérdidas mecánicas o con el aire.

Pérdidas en el núcleo magnético

En un sistema de generación de energía un núcleo ferromagnético presenta pérdidas de energía en forma de calor al estar expuesto a variaciones de flujo magnético, estas pérdidas son: las corrientes parásitas y las pérdidas por histéresis.

Pérdidas magnéticas por corrientes de Focault

Según el autor (Guru, 2003) los efectos de las corrientes parásitas pueden disminuir si el núcleo magnético se construye con alta resistencia esto se logra apilando piezas delgadas de materiales magnéticos. Esta laminación, está recubierta con barniz o goma laca. El resultado es la reducción de las corrientes parásitas en el material magnético y el incremento de eficiencia. (p. 110-111)

Figura 29

Núcleo con corrientes parásitas en el núcleo ferromagnético

Nota. Corrientes parásitas en el núcleo ferromagnético: (a) sólido y (b) laminado, cuando la corriente en la bobina aumenta con el tiempo. Tomado de (Guru, 2003)

Pérdidas magnéticas por histéresis

La definición en base a (Gussow, 1991) menciona que la corriente en una bobina se invierte miles de veces por segundo, la histéresis puede ocasionar una importante pérdida de energía. Histéresis significa "retraerse" o "quedarse atrás"; es decir, el flujo magnético en un núcleo de hierro se atrasa con respecto a los incrementos o decrementos de la fuerza magnetizadora. (p. 169)

Figura 30

Ciclo de histéresis de los materiales magnéticos

Nota. Ciclo de histéresis de los materiales magnéticos. Tomado de (Gussow, 1991)

Corriente producida en un generador eléctrico

En función del requerimiento de energía un generador puede producir corriente continua o corriente alterna descritas a continuación.

Corriente continua

Para (Vallcorba et al., 2006) "La corriente continua constante es aquella en la que el

flujo de cargas o electrones es constante en todo momento y no cambia de sentido" (p. 24).

Corriente alterna

"Si el sentido de circulación de la corriente eléctrica es alternativo, será una corriente alterna y su nombre dependerá de la forma de la señal. La más utilizada es la sinusoidal (forma de la función seno) y la pulsante" (Vallcorba et al., 2006, 24).

Figura 31

Tipos de corrientes por su forma de onda

Nota. Tipos de corriente según su onda. Tomado de (Vallcorba et al., 2006)

Circuito regulador-rectificador de voltaje

Un circuito rectificador-regulador de corriente es el encargado de estabilizar la energía que ingresa a un dispositivo electrónico, es parte fundamental en cada circuito de potencia ya que protege a los equipos eléctricos y electrónicos.

Circuito rectificador

Circuito que convierte la corriente alterna en continua gracias a un arreglo de diodos, conocido como puente rectificador que puede ser de media onda o de onda completa de acuerdo al requerimiento. El rectificador de onda completa es el más utilizado por obtener la mayor eficiencia en un circuito.

Circuito regulador

Un circuito regulador estabiliza la salida de voltaje y corriente hacia los consumidores, con valores constantes en el tiempo: "Los diodos Zener se utilizan como reguladores de voltaje y como patrones de referencia de voltaje. Su función es mantener un voltaje constante en la carga, dentro los límites requeridos" (Zbar et al., 2001, p. 12).

Figura 32

Nota. Circuito rectificador-regulador de voltaje con un puente rectificador y un arreglo de capacitores como filtro.
Acumuladores de energía

Un acumulador de energía almacena electricidad en celdas electroquímicas capaces de convertir la energía eléctrica en energía química y luego revertir el proceso cuando así se lo requiera, a continuación se describe las dos baterías más utilizadas en la actualidad en las motocicletas eléctricas.

Batería de Plomo ácido

Es un acumulador químico de energía eléctrica, formado por celdas con placas positivas y negativas sumergidas en ácido sulfúrico o electrolito. Las magnitudes que caracterizan una batería son: la capacidad medida en Ah (amperio hora) y el valor de tensión (V) medida en voltios. Al no ser un conductor ideal posee una resistencia interna en el orden de centésimas de ohmio en función de la edad de la batería. La capacidad y la tensión de descarga se relacionan con la temperatura de su entorno debido a que estos valores crecen a medida que sube la temperatura y disminuyen cuando esta lo hace debido a que los procesos químicos se producen de forma menos efectiva a bajas temperaturas.

Batería de Litio

Para (Dietsche & Klingebiel, 2005) los sistemas de litio permiten unas densidades de energía de más de 100 Wh/kg y unas densidades de potencia que superan los 300 W/kg en baterías de tracción. En las baterías de ion de litio, los iones de litio del electrodo negativo se depositan en una rejilla de grafito que sigue un proceso eléctrico reversible. En las baterías convencionales de dispositivos eléctricos, el electrodo positivo contiene óxido de cobalto, lo que hace que el sistema sea muy costoso. Ésta es la razón para emplear un sustituto más económico conocido como el óxido de manganeso de níquel. Como electrolito se emplea materia orgánica; no se pueden utilizar electrolitos acuosos debido a la intensa reacción química del litio con el agua. (p. 724)

Las pilas de litio se conectan en diferentes arreglos paralelo o serie, la combinación debe satisfacer el valor de capacidad y voltaje final requerido en el sistema.

Pilas de batería de de litio

Nota. Batería de pilas de litio. Tomado de (Soloelectronicos, 2016)

Capacidad de una batería

La capacidad es el número de amperios que una batería puede suministrar por un tiempo determinado en horas, por lo general este valor se detalla en la etiqueta. Por ejemplo una batería de 47 Ah puede entregar 47 A en una hora o 10 A por 4.7 horas.

Estado de carga de una batería

El estado de carga de una batería se expresa en porcentaje (%) y representa la relación entre la capacidad almacenada y la nominal en un tiempo dado que indica la cantidad de energía restante en la batería.

Etapas de carga de una batería

Las etapas de carga describen el comportamiento de la corriente y voltaje a través del tiempo durante la carga de una batería, dividida en 3 etapas que son: carga inicial, absorción y etapa de flotación como se muestra en la siguiente figura.

Gráfica de las etapas de carga de una batería

Nota. Curva de corriente y voltaje en las etapas de carga de una batería. Tomado (dcbBALLESTER, 2022)

En la primera etapa el valor de corriente inicial es constante y corresponde en la mayoría de casos al 10 o 20% de la capacidad de la batería y el voltaje debe ascender hasta el 10 a 20% de su valor nominal. Para la segunda etapa la corriente desciende progresivamente mientras el voltaje se mantiene constante. Finalmente en la etapa de flotación el suministro corresponde a una corriente de mantenimiento para que la batería mantenga su carga.

Inversor de corriente (DC-AC)

Según (Basekga, 2019) cuando la aplicación requiere valores donde la tensión del sistema de generación y el de consumo no coinciden, hay que incluir un sistema que haga coincidir las características eléctricas de las potencias generada y consumida. Los dispositivos que cumplen esta función se denominan convertidores y se clasifican en:

- Convertidores CA/CC, o rectificadores.- transforman una corriente alterna en corriente continua. Están constituidos por diodos.
- Convertidores CC/CC.- cambian los valores de una tensión continua en otra continua de distinta tensión. Pueden ser elevadores o reductores de tensión.
- Convertidores CC/CA, o inversores.- transforman corriente continua en corriente alterna. Se usan en la mayoría de las instalaciones solares aisladas y en todas las conectadas a red. (p. 123)

Tipología de los convertidores de corriente

Nota. Tipos de convertidores electrónicos. Tomado de (Basekga, 2019)

Configuración de un inversor

Un inversor de CD a CA utiliza una fuente de corriente continua para convertirla en alterna mediante la activación y desactivación de drivers o transistores al activarlos y desactivarlos con el fin de generar una señal de valores positivos y negativos, de igual manera se controla el tiempo de conmutación lo que resulta en su variación de frecuencia. Entre las partes principales de un inversor se detalla el oscilador que controlan los transistores, un transformador para elevar el voltaje y un microcontrolador que ajuste todos los valores.

Figura 36

Diagrama de flujo de un inversor DC-AC

Nota. Se presenta un breve diagrama de las etapas de un inversor de corriente DC-AC.

Motor eléctrico BLDC

De las siglas Brushless Direct Current Motor que significa Motor sin escobillas de Corriente Continua. Este tipo de motores se diseñan con rotores de imanes permanentes y bobinas inductoras, la conmutación se realiza por medio de un controlador electrónico que ubica la posición del rotor a través de sensores de efecto Hall o por detección de corriente inducida en la bobina que no está energizada (una bobina al estar frente a la variación de un campo magnético genera una fuerza electromotriz (fem) que lee el controlador y detecta la posición del rotor). Luego el inversor trifásico compuesto por un arreglo de transistores permite crear las señales de activación para cada bobina o conjunto de bobinas. La dirección de la corriente o el sentido de polarización permitirán la variación del campo magnético de las bobinas, es decir un polo Norte o Sur de acuerdo a su posición respecto del rotor.

Figura 37

Nota. Funcionamiento de un motor BLDC. Tomado de (MathWorks, 2022)

Motor eléctrico QS de 2000 W

Es un tipo de motor BLDC con de imanes permanentes. Funciona con una tensión nominal de 48 V-72 V, alcanza velocidades de hasta 55 Km/h. El motor gira a 650 rpm sin

carga con un par máximo de 98 Nm. La corriente de trabajo es de 10 A en condiciones sin carga y de 24 a 30 como amperaje máximo a diferentes cargas. La temperatura que alcanza en su funcionamiento va de 70 a 120 grados; su diseño permite acoplar el eje del motor directamente al chasis de la moto eléctrica y su constitución tipo cubo evita la contaminación interna con agentes que pueden reducir su vida útil.

Figura 38

Motor eléctrico QS BLDC

Nota. Se presenta el motor eléctrico Qs de 2000 Watts.

Ecuaciones de diseño para un generador de flujo radial

Bajo la premisa de que todo motor puede convertirse en un generador, el diseño de un generador se desarrolla utilizando las ecuaciones de diseño de un motor sin escobillas de imanes permanentes.

Tabla 6

Ecuaciones de diseño de un generador de flujo radial de imanes permanentes

N° de		
ecuación	Fórmula matemática	Descripción
9	$w_m = (\frac{\pi}{22} * Sr)$	Velocidad
		mecánica
		(rad/s)
10	$w_{1} = \left(\frac{Nm}{m} * w_{1}\right)$	Velocidad
	$\frac{1}{2}$	eléctrica
		(rad/s)

ecuación	Fórmula matemática	Descripción
11	$fe = \frac{W_e}{2}$	Frecuencia
	2π	eléctrica (Hz)
12	$T = 746 * \frac{P_{HP}}{P_{HP}}$	Torque de
	W _m	caballos de
		fuerza (Nm-
		Newton metro)
13	Ns = Nsp * Nph	Número de
		ranuras
14	$Nspp = \frac{Nsp}{rr}$	Número de
	Nm	ranuras por
		polo por fase
15	Nsm = Nspp * Nph	Número de
		ranuras por
		polo
		magnético
16	$\alpha_{cn} = \frac{int (Nspp)}{N}$	Fracción
	V Nspp	bobina-polo
17	$\theta p = \frac{2\pi}{2\pi}$	Paso angular
	' Nm	del polo
		magnético
18	$\theta s = \frac{2\pi}{2\pi}$	Paso angular
	Ns	de la ranura
19	$\theta se = \frac{\pi}{N} = \frac{\pi * Nm}{N}$	Paso de
	NSM NS	ranura
		(radianes
		eléctricos, θse
)
20	Rsi = Rro + g	Radio interior
		del estator
21	$ au_p = Rsi * heta p$	Paso del polo
		magnético en
		metros (τ_p)

N° de		
ecuación	Fórmula matemática	Descripción
22	$\tau_c = \alpha_{cp} * \tau_p$	Paso de la
		bobina (τ_c)
23	$\tau_s = Rsi * \theta s$	Paso de la
		ranura en el
		entrehierro
		(τ_s)
24	$\omega t = \tau_s - \omega_s$	Ancho del
		diente en el
		espacio de
		aire (ωt)
25	$sen\left(\frac{Nspp * \theta se}{2}\right)$	Factor de
	$kd = \frac{2}{Nsm * sen(\frac{\theta se}{2})} = 1$	distribución
	(2)	
26	$kp = \alpha_{cp}$	Factor de
	0	paso (kp)
27	$ks = 1 - \frac{\theta s e}{2\pi}$	Factor de
	2	sesgo (ks)
28	$C_{\phi} = \frac{2 \alpha_m}{1 + \alpha_m}$	Factor de
	1 · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	concentracion
		de flujo (C_{ϕ})
29	$Pc = \frac{lm}{d + C}$	Coeficiente de
	$g \neq c_0$	permeabilidad
30	$kml = 1 + \frac{4 * lm}{\pi * 2}$	Factor de fuga
	$n + u_R + u_m + \iota_p$	del imán (<i>kml</i>)
	$* \ln \left[1 + \pi * \frac{g}{(1 - \alpha_{-}) * \tau} \right]$	
31	lm	Entrehierro
	$ge = g + \frac{1}{u_R}$	efectivo para
		el coeficiente
		de Carter
32	[.] ⁻¹	Coeficiente de
	$kc = \left[1 - \frac{1}{\frac{\tau_s}{\omega_s} * \left(5 * \frac{g_e}{\omega_s} + 1\right)}\right]$	Carter

ecuaciónFórmula matemáticaDescripción33 $Ag = \frac{\tau_p * l * (1 + \alpha_m)}{2}$ Área del entrehierro34 $Bg = \frac{C_{\varphi}}{1 + \frac{u_R + kc * kml}{Pc}} * Br$ Densidad de flujo en el entrehierro (Bg)35 $Wbi = \frac{\phi g}{2 * Bmáx * Kst * L}$ Ancho del diente36 $\phi g = Bg + Ag$ Flujo magnético en el entrehierro del stator (m)37 $Rsb = Rso - Wbi$ Radio del hierro trasero del estator (m)38 $Wtb = \frac{2}{Nsm} * Wbi$ Ancho del diente (m)39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb)41 $Wsi = (Rsi + a_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)	N° de		
33 $Ag = \frac{\tau_p * L * (1 + \alpha_m)}{2}$ Åreadel entrehierro34 $Bg = \frac{C_{\varphi}}{1 + \frac{W_R * kc * kml}{Pc}} * Br$ Densidadde flujo35 $Wbi = \frac{\vartheta g}{2 * Bmáx.* Kst * L}$ Anchodel diente36 $\vartheta g = Bg * Ag$ Flujo magnéticoen el entrehierro diente37 $Rsb = Rso - Wbi$ Radiodel hierro38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel diente (m)39 $Rri = Rro - Im - Wbi$ Radiointerno del a ranura (Wsb)40 $Wsb = Rsb * \theta_s - Wtb$ Anchointerno del a ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Anchointerior del a ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracciónde ranura dentro 34de la zapata (α_s)	ecuación	Fórmula matemática	Descripción
33 $Ag = \frac{r_p * L * (1 + \alpha_m)}{2}$ Area del entrehierro34 $Bg = \frac{C_{\varphi}}{1 + \frac{u_R * kc * kml}{P_C}} * Br$ Densidad de flujo en el entrehierro (Bg)35 $Wbi = \frac{\emptyset g}{2 * Bmáx.* Kst * L}$ Ancho del diente36 $\emptyset g = Bg * Ag$ Flujo magnético en el entrehierro del estator (m)37 $Rsb = Rso - Wbi$ Radio del hierro trasero del estator (m)38 $Wtb = \frac{2}{Nsm} * Wbi$ Ancho del diente (m)39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Ancho interior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			
34 $Bg = \frac{C_{\varphi}}{1 + \frac{U_R * kc * kml}{Pc}} * Br$ Densidad de flujo en el entrehierro (Bg)35 $Wbi = \frac{\phi g}{2 * Bmáx.* Kst * L}$ Ancho del diente36 $\phi g = Bg * Ag$ Flujo magnético en el entrehierro del estator (m)37 $Rsb = Rso - Wbi$ Radio del hierro trasero del estator (m)38 $Wtb = \frac{2}{Nsm} * Wbi$ Ancho del diente (m)39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)	33	$Ag = \frac{\tau_p * L * (1 + \alpha_m)}{2}$	Área del
34 $Bg = \frac{C_{\varphi}}{1 + \frac{u_R * kc * kml}{Pc}} * Br$ Densidad de flujo en el entrehierro (Bg)35 $Wbi = \frac{\emptyset g}{2 * Bmáx.* Kst * L}$ Ancho del diente36 $\emptyset g = Bg * Ag$ Flujo magnético en el entrehierro del estator (m)37 $Rsb = Rso - Wbi$ Radio del hierro trasero del estator (m)38 $Wtb = \frac{2}{Nsm} * Wbi$ Ancho del diente (m)39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \thetas - Wtb$ Ancho interior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)		- Z	entrehierro
$1 + \frac{u_R * Rt * Rth}{P_C}$ flujo en el entrehierro (Bg) 35 $Wbi = \frac{\phi g}{2 * Bmáx.* Kst * L}$ Ancho del diente 36 $\phi g = Bg * Ag$ Flujo magnético en el entrehierro 37 Rsb = Rso - WbiRadio del hierro trasero del estator (m) 38 $Wtb = \frac{2}{Nsm} * Wbi$ Ancho del diente (m) 39 Rri = Rro - Im - WbiRadio interno del rotor (Rri) 40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb) 41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la ranura (Wsb) 42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (a_s)	34	$Bg = \frac{C_{\varphi}}{m_{e} + k_{e} + k_{m}} * Br$	Densidad de
entrehierro (Bg)35 $Wbi = \frac{\emptyset g}{2 * Bm\dot{a}x.*Kst * L}$ Anchodel diente36 $\emptyset g = Bg * Ag$ Flujo magnético en el entrehierro37 $Rsb = Rso - Wbi$ Radiodel hierro trasero del estator (m)38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel diente (m)39 $Rri = Rro - lm - Wbi$ Radiointerno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Anchointerno del ranura (Wsb)41 $Wsi = (Rsi + a_{sd} * Wtb) * \theta s - Wtb$ Anchointerior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracciónde ranura dentro 34de la zapata (a_s)		$1 + \frac{u_R * \kappa c * \kappa m}{Pc}$	flujo en el
35 $Wbi = \frac{\emptyset g}{2 * Bm\acute{a}x.*Kst * L}$ Anchodel36 $\emptyset g = Bg * Ag$ Flujo magnético en el entrehierro37 $Rsb = Rso - Wbi$ Radiodel hierro trasero del estator (m)38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel deinte (m)39 $Rri = Rro - lm - Wbi$ Radiointerno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Anchointerno del ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Anchointerior de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracciónde ranura dentro 34de la zapata (α_s)			entrehierro
35 $Wbi = \frac{\vartheta g}{2 * Bmáx.*Kst * L}$ Anchodel36 $\vartheta g = Bg * Ag$ Flujo magnético en el entrehierro37 $Rsb = Rso - Wbi$ Radiodel37 $Rsb = Rso - Wbi$ Radiodel38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel39 $Rri = Rro - lm - Wbi$ Radiointerno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Anchoinferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Anchointerior de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracciónde ranura dentro 34de la zapata 			(Bg)
36	35	$Wbi = \frac{\phi g}{2 + Bm(a + Kat + L)}$	Ancho del
36		Z * DIIIdX.* KSt * L	diente
$\label{eq:starsest} \begin{array}{c} \mbox{magnético en} \\ \mbox{el entrehierro} \\ \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} $	36		Flujo
37 $Rsb = Rso - Wbi$ Radiodel hierro37 $Rsb = Rso - Wbi$ Radiodel hierro38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel diente (m)39 $Rri = Rro - lm - Wbi$ Radiointerno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracciónde ranura dentro 34de la zapata (α_s)			magnético en
37 $Rsb = Rso - Wbi$ Radiodel hierro38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel diente (m)39 $Rri = Rro - lm - Wbi$ Radiointerno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Anchoinferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Anchointerior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracciónde ranura dentro 34de la zapata (α_s)			el entrehierro
$\begin{array}{c} \mbox{hierro trasero} & \mbox{del estator (m)} \\ \mbox{38} & Wtb = \frac{2}{Nsm} * Wbi & \mbox{Ancho del} \\ \mbox{diente (m)} \\ \mbox{39} & Rri = Rro - lm - Wbi & \mbox{Radio interno} \\ \mbox{del rotor (Rri)} \\ \mbox{40} & Wsb = Rsb * \theta_s - Wtb & \mbox{Ancho inferior} \\ \mbox{de la ranura} \\ \mbox{(Wsb)} \\ \mbox{41} & Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb & \mbox{Ancho interior} \\ \mbox{de la zapata} \\ \mbox{de la ranura} \\ \mbox{(Wsi)} \\ \mbox{42} & \alpha_s = \frac{Wsi}{Wsi + Wtb} & \mbox{Fracción de} \\ \mbox{ranura dentro} \\ \mbox{34de la zapata} \\ \mbox{(}\alpha_s) \end{array}$	37	Rsb = Rso - Wbi	Radio del
$del estator (m)$ 38 $Wtb = \frac{2}{Nsm} * Wbi$ Ancho del diente (m) 39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri) 40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb) 41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi) 42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			hierro trasero
38 $Wtb = \frac{2}{Nsm} * Wbi$ Anchodel39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri)40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción			del estator (m)
Nsmdiente (m) 39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri) 40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb) 41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi) 42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)	38	$Wtb = \frac{2}{W} * Wbi$	Ancho del
39 $Rri = Rro - lm - Wbi$ Radio interno del rotor (Rri) 40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb) 41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi) 41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Fracción de ranura de la zapata de la ranura (Wsi) 42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)		Nsm	diente (m)
$\begin{array}{c} \mbox{del rotor (Rri)} \\ \mbox{40} & Wsb = Rsb*\theta_s - Wtb & Ancho inferior \\ & de a ranura \\ & (Wsb) \\ \mbox{41} & Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb & Ancho interior \\ & de a zapata \\ & de a ranura \\ & (Wsi) \\ \mbox{42} & \alpha_s = \frac{Wsi}{Wsi + Wtb} & Fracción de \\ & ranura dentro \\ & 34de a zapata \\ & (\alpha_s) \\ \end{array}$	39	Rri = Rro - lm - Wbi	Radio interno
40 $Wsb = Rsb * \theta_s - Wtb$ Ancho inferior de la ranura (Wsb)41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			del rotor (Rri)
$\begin{array}{c} \mbox{de la ranura} \\ (Wsb) \end{array} \\ \mbox{41} \qquad Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb \qquad \mbox{Ancho interior} \\ \mbox{de la zapata} \\ \mbox{de la ranura} \\ (Wsi) \end{array} \\ \mbox{42} \qquad \alpha_s = \frac{Wsi}{Wsi + Wtb} \qquad \mbox{Fracción de ranura dentro} \\ \mbox{34de la zapata} \\ \mbox{(}\alpha_s) \end{array}$	40	$Wsb = Rsb * \theta_s - Wtb$	Ancho inferior
(Wsb) 41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi) 42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (\alpha_s)			de la ranura
41 $Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$ Ancho interior de la zapata de la ranura (Wsi)42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			(Wsb)
$de la zapata \\ de la ranura \\ (Wsi)$ $42 \qquad \qquad \alpha_s = \frac{Wsi}{Wsi + Wtb} \qquad Fracción de \\ ranura dentro \\ 34de la zapata \\ (\alpha_s)$	41	$Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$	Ancho interior
42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			de la zapata
42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			de la ranura
42 $\alpha_s = \frac{Wsi}{Wsi + Wtb}$ Fracción de ranura dentro 34de la zapata (α_s)			(Wsi)
wsi + wtb ranura dentro 34de la zapata (α_s)	42	$\alpha_s = \frac{Wsi}{Wsi}$	Fracción de
$34 de la zapata (\alpha_s)$		WSI + Wtb	ranura dentro
(α_s)			34de la zapata
			(α_s)

N° de		
ecuación	Fórmula matemática	Descripción
43	ds = Rsb - Rro - g	Profundidad
		total de la
		ranura (ds)
44	$d3 = ds - \alpha_{sd} * Wtb$	Profundidad
		de la ranura
		del conductor
		(d3)
45	$d1 + d2 = \alpha_{sd} * Wtb$	Profundidad
		de la zapata
		dividida entre
		d1 y d2
46	$As = d3 \left[\theta_{s} \left(Rsh - \frac{d3}{ds} \right) - Wth \right]$	Área del
		conductor (As)
47	$E_f = 4.44 * kd * ka * \Phi_{máx.} * N_f * f$	Número de
		vueltas por
		ranura (ns)
48	$e_{max} = Nm * kd * kp * ks * Bg * L * Rro * Nspp * n_s$	Pico de fuerza
	* <i>W</i> _m	contra
		electromotriz
		(e_{max})
49	$I_S = \frac{T}{T}$	Corriente
	Nm * kd * kp * ks * Bg * L * Rro * Nspp	máxima por
		ranura (Is, en
		amperios)
50	$I_{ijk} = \frac{Is}{ijk}$	Corriente de
	2ph Nph $* n_s$	fase (lph)
51	$Ic = \frac{Is}{Is}$	Densidad de
	kcp * As	corriente
		máxima en el
		conductor (Jc)
52	$ B_1 max = \frac{u_0 * Is}{1}$	Densidad de
	ω_s	flujo máximo
		en la ranura
		(Bs max)

N° de		
ecuación	Fórmula matemática	Descripción
53	$R_{\rm S} = \frac{\rho * n_{\rm S}^2 * L}{1 + 1}$	Resistencia de
	kcp * As	la ranura (Rs)
54	$R\rho = \frac{\rho * n_s^2 * \pi * \tau_c}{\rho * n_s^2 * \pi * \tau_c}$	Resistencia en
	2 * kcp * As	la vuelta final
		(Re)
55	Rph = Nsp(Rs + Re)	Resistencia de
		fase (Rph)
56	$I_{a} = \frac{n_s^2 * u_R * u_o * L * \tau_c * kd}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	Inductancia en
	$Ly = 4(lm + u_R * kc * g)$	el entrehierro
		(Lg)
57	$\begin{bmatrix} u_0 * d3^2 * L & u_0 * d2 * L & u_0 * d1 * L \end{bmatrix}$	Inductancia de
	$Ls = n_s^2 * \left \frac{3 * As}{3 * As} + \frac{ws + Wsi}{2} + \frac{ws}{ws} \right $	fuga en la
	L Z J	ranura (Ls)
58	$I_{c} = \frac{n_{s}^{2} * u_{o} * \tau_{c}}{1 + \ln(\tau_{c}^{2} * \pi_{c})}$	Inductancia
	$Le = \frac{1}{8} + \frac{1}{4 + As}$	del final de
		vuelta (Le)
59	Lph = Nsp(Lg + Ls + Le)	Inductancia de
		fase (Lph)
60	$Vst = [\pi (R_{so}^{2} - R_{si}^{2}) - Ns * As] * L * kst$	Volumen de
		acero del
		estator (Vst)
61	$Pr = Nph * Iph^2 * Rph$	Pérdida de
		potencia
		óhmica (Pr)
62	$Pcl = \rho_{bi} * Vst * \Gamma(Bmax, f)$	Pérdidas en el
		núcleo (Pcl)
63	$\eta = \frac{T * \omega_m}{T * \omega_m + Pr + Pcl + Ps}$	Eficiencia (η)
64	Pr Pr	Densidad de
	$qs - \frac{1}{L(2d3 + w_{sb})Ns}$	calor en la
		ranura (qs)

N° de		
ecuación	Fórmula matemática	Descripción
65	$ast = \frac{Pr + Pcl}{r}$	Densidad de
	$q_{3L} = 2\pi * Rso * L$	calor en el
		estator (qst)

Nota. Tabla de fórmulas para el diseño de una máquina de flujo radial. Tomado de

(Hanselman, 1994)

Significado de letras y símbolos

Para una mejor comprensión en el uso de las ecuaciones se recopila el significado de símbolos y letras en la siguiente tabla.

Tabla 7

Nomenclatura de diseño de un generador de flujo radial de imanes permanentes

Símbolo	Denominación	Unidades	Símbolo	Denominación	Unidades
w _m	Velocidad	rad	Rsi	Radio interno	т
	mecánica	S		del estator	
Sr	Velocidad	rpm	Rro	Radio exterior	т
	nominal			del estator	
We	Velocidad	rad	$ au_p$	Paso del polo	т
	eléctrica	S		magnético	
Nm	Número de	-	$ au_c$	Paso de la	т
	imanes (polos			bobina	
	magnéticos)				
fe	Frecuencia	Hz	α_{cp}	Fracción	-
				bobina-polo	
P _{HP}	Horsepower	Нр	$ au_s$	Paso de la	т
	(Caballos de			ranura en el	
	fuerza)			polo	
Nsp	Número de	-	ωt	Ancho del	т
	ranuras por			diente del polo	
	polo			magnético del	
				estator	
Nph	Número de	-	ω_s	Abertura de	m
	fases			ranura	

Símbolo	Denominación	Unidades	Símbolo	Denominación	Unidades
Nspp	Número de	-	Р	Perímetro	m
	ranuras por				
	polo por fase				
α_{cp}	Fracción	-	Dsi	Diámetro	т
	bobina-polo			interno del	
				estator	
өр	Paso angular	-	kd	Factor de	-
	del polo			distribución	
	magnético				
θs	Paso angular	-	kp	Factor de paso	-
	de la ranura				
Ns	Número de	-	ks	Factor de	-
	ranuras			sesgo	
θse	Paso de ranura	-	Cø	Factor de	-
	(radianes			concentración	
	eléctricos)			de flujo	
α_m	Fracción	-	$ au_m$	Ancho del imán	т
	magnética				
Рс	Coeficiente de	-	kml	Factor de fuga	-
	permeabilidad			del imán	
u _r	Permeabilidad	-	lm	Longitud del	m
	relativa			imán	
u _R	Permeabilidad	-	ge	Entrehierro	-
	de retroceso			efectivo para el	
	del imán			coeficiente de	
				Carter	
g	Entrehierro	m	kc	Coeficiente de	-
				Carter	
Ag	Área del	m	L	Longitud del	m
_	entrehierro			imán	
Bg	Densidad de	Т	Br	Remanencia	Т
0	flujo en el			magnética	
	entrehierro			U	

Símbolo	Denominación	Unidades	Símbolo	Denominación	Unidades
Ø g	Flujo	Wb	Wbi	Ancho del	m
	magnético en			hierro trasero	
	el entrehierro				
Bmáx.	Densidad de	Т	kst ó fa	Factor de	-
	flujo magnético			apilamiento	
	máximo				
Wtb	Ancho del	m	Rsb	Radio del	m
	diente			hierro trasero	
				del estator	
Rri	Radio interior	m	lm	Altura del imán	т
	del rotor				
Wsb	Ancho inferior	m	Wsi	Ancho interior	m
	de la ranura			de la ranura de	
				la zapata	
α_{sd}	Fracción de	-	α_s	Fracción de	-
	intervalo de la			ranura de la	
	zapata			zapata	
ds	Profundidad	m	<i>d</i> 3	Profundidad de	m
	total de la			la ranura del	
	ranura			conductor	
As	Área del	m^2	int(x)	Valor entero de	-
	conductor			la variable x	
ns	Número de	-	E.max	Voltaje máximo	V
	vueltas por			generado	
	ranura			-	
L	Profundidad	m	emar	Pico de fuerza	V
	del núcleo		mux	contra	
	laminado			electromotriz	
Is	Corriente	A	Iph	Corriente de	A
	máxima por		£	fase	
	ranura				
Ic	Densidad de	A/m^2	kcv	Factor de	-
y -	corriente	1 -	· - r	empaque del	
	máxima en el			conductor	
	conductor				
	conductor				

Símbolo	Denominación	Unidades	Símbolo	Denominación	Unidades
$ B_s max$	Densidad de	Т	Rs	Resistencia de	Ω
	flujo máximo en			la ranura	
	la ranura				
Re	Resistencia en	Ω	Rph	Resistencia de	Ω
	la vuelta final			fase	
Lg	Inductancia en	Н	Ls	Inductancia de	Н
	el entrehierro			fuga en la	
				ranura	
Le	Inductancia del	Н	Lph	Inductancia de	Н
	final de vuelta			fase	
Vst	Volumen del	<i>m</i> ³	Pr	Pérdida de	W
	acero del			potencia	
	estator			Óhmica	
Pcl	Pérdidas en el	W	η	Eficiencia	%
	núcleo				
qs	Densidad de	\overline{W}	qst	Densidad de	W
	calor en la	m^2		calor en el	m^2
	ranura			estator	

Nota. Simbología electromagnética del diseño de un generador de flujo radial de imanes permanentes. Elaboración propia con datos tomados de (Hanselman, 1994)

Capítulo III

Diseño, construcción e implementación de un sistema de carga regenerativo

El desarrollo de la investigación comienza con la estructuración de los pasos que se deben seguir una vez estudiada la bibliografía y haber determinado los requerimientos para obtener un sistema de carga como se muestra en el siguiente flujograma.

Figura 39

Flujograma de diseño

Nota. Flujograma de diseño de un sistema de carga regenerativo.

Requerimientos del sistema de carga regenerativo

Para ensamblar un sistema de carga regenerativo se debe determinar el componente que proveerá la energía mecánica y establecer el espacio necesario para acoplar un generador eléctrico en el mismo. En en este caso entre la rueda delantera y la horquilla de suspensión delantera. Otro punto importante es la disponibilidad de una fuente de suministro DC de 12 – 24 voltios para el medidor KG-140F y el voltímetro-amperímetro. También se requiere de espacio en el maletero donde quepa una batería de ácido-plomo y un inversor de 750 W. Finalmente se debe tener en cuenta la disponibilidad de imanes de neodimio en el mercado local.

Figura 40

Flujograma de requerimientos del sistema regenerativo

Nota. Se presenta cada etapa de energía del sistema de carga regenerativo.

Diseño matemático del generador eléctrico

Este sistema cuenta con un generador eléctrico diseñado para la geometría

mecánica de la moto eléctrica presentada para el desarrollo de la investigación.

Figura 41

Flujograma de requerimientos iniciales para el diseño

Nota. Se presenta el flujograma de diseño de un generador eléctrico.

Los valores de voltaje y corriente obtenidos con el generador no serán constantes, ya que dependen de la velocidad y de las circunstancias de movilidad que intervengan en el manejo, los valores de diseño partieron en función de las revoluciones de la primera velocidad.

Tabla 8

Valores de diseño

Rpm de diseño	480 - 650 máx.
Espacio disponible	5 cm de ancho x 21 cm de diámetro
Voltaje de salida	15-20 v
Corriente de salida	0-2 A

Nota. Se presentan los valores esenciales que se consideran previo al diseño matemático.

La geometría del generador eléctrico inicia con el fundamento matemático que

considera el valor de potencia necesaria que el sistema debe entregar.

Potencia de partida

La potencia de partida (W) se estima en función de la energía que se requiere para cargar el sistema extra a implementar, este sistema en su circuito de carga cuenta con una batería de ácido plomo de 12 voltios, la misma que almacena le energía, para luego suministrarla al sistema inversor.

Ecuación 7

Cálculo de la potencia requerida (Watts)

W = I * V

Donde:

- W = Potencia en Watts
- *I* = corriente en Amperios
- *V* = *voltaje en Voltios*

A continuación se describen cuatro puntos que la investigación abordó para el desarrollo del generador eléctrico:

1 Tipo de corriente de salida: Continua

2 Voltaje de salida: Este valor varía de 13 a 20 voltios

- 3 Corriente de salida: 0 2 Amperios
- -El generador debe producir valores de carga en la velocidad a partir de la primera

velocidad.

-El generador es síncrono.

- -Radio del rotor: 30 mm=0.003 m
- -Velocidad máxima de la moto= 55 60 km/h
- -La frecuencia varía en función de las rpm
- -La primera velocidad alcanza 480 rpm

El valor de rpm inicial es demasiado bajo para generar electricidad por tal motivo, se implementa un sistema de trasmisión por banda que multiplique las rpm ya que la condición establece que genere 12 voltios con la primera velocidad que solo alcanza 480 rpm. 4 Potencia producida por el generador eléctrico:

$$W = 2 A (Valor máximo) * 20V (Valor máximo)$$

W = 40 Watts

Potencia del generador: 40 W

Cuando la frecuencia de trabajo es un valor conocido y se requiere calcular el número de polos se utiliza la siguiente ecuación:

Ecuación 8

Relación entre velocidad, frecuencia y número de polos

$$N = \frac{f * 60}{p}, rpm$$

Ecuación 9

Cálculo del mecanismo de transmisión por banda

Datos iniciales:

Diámetro de la polea conducida=44 mm

Rpm de entrada=480 rpm

Rpm deseadas=2400 rpm

$$i = \frac{R2}{R1} = \frac{2400}{480} = 5$$

Donde:

- $R2 = rpm \ de \ salida$
- $R1 = rpm \ de \ entrada$
- *i = relación de transmisión*

$$i = \frac{D2}{D1} = 5$$

Donde:

- D2 = Diámetro de polea conducida (cm)
- D1 = diámetro de polea conductora (cm)

Polea disponible= polea conducida= 44 mm

Entonces:

$$\frac{N1}{N2} = \frac{D2}{D1}$$
$$D1 = \frac{D2 * N2}{N1} = \frac{44 * 2400}{480} = 220mm = 22cm$$

Figura 42

Relación de transmisión

Nota. Se presenta una ilustración de los diámetros de la polea conductora y conducida.

Número de polos magnéticos

Figura 43

Diagrama de flujo para elegir el número de polos magnéticos

Nota. Se presenta el diagrama para elegir un número de polos magnéticos apropiado en función de la geometría del imán y el diámetro del rotor disponible.

Tabla 9

Número de polos y cantidad de imanes que lo forman

Imanes que forman cada polo magnético 4

Nota. Se presenta el arreglo de imanes para formar cada polo magnético.

Luego solo resta elegir la combinación de ranuras de acuerdo a los siguientes factores como:

- Espacio disponible
- Proceso de manufactura
- Presupuesto
- Adaptaciones mecánicas
- Factor de empaquetamiento
- Proceso de bobinado

Nota: El giro del rotor parte de estos datos para los siguientes cálculos: Se asume que la rueda delantera se mueve a las mismas rpm que la rueda de tracción posterior que contiene el motor eléctrico.

El siguiente punto es elegir el número de ranuras por polo, al ser un alternador monofásico mientras más ranuras sería mejor, pero el diseñador debe considerar el espacio con el que dispone, además del diámetro exterior del rotor seleccionado, porque es una limitante a la hora de elegir un número de ranuras apropiado, finalmente este valor debe ser múltiplo para el numero de polos.

Los valores apropiados y múltiplos de 4 polos son 8 -12 -16, para lo cual se realiza el cálculo geométrico de 8 y 12 para elegir un número conveniente. Entonces se analiza el perímetro del estator en base al valor del radio interno del rotor.

El valor del entrehierro es igual a 1 mm por lo que:

Rsi = radio interno del estator = Rri(radio interno del rotor) + 1mm = 30 + 1 = 31mmPor lo que el perímetro resulta: $Pstr = 2 * \pi * Rsi$

$$Pstr = 2 * \pi * 31 = 194.77mm$$

La abertura de la ranura toma en cuenta los siguientes puntos:

-Tipo de aislante a utilizar

-Proceso para realizar el bobinado (manual o por máquina)

-Tipo de bobinado a utilizar (concentrados o distribuidos)

-Factor de empaquetamiento

-Espesor del aislante

La investigación toma en cuenta un bobinado concentrado, es decir no hay devanados superpuestos o por capas y el proceso de bobinado es manual con alambre magneto calibre 24.

Figura 44

Estimación geométrica del número de ranuras

Nota. Cada estimación se realiza en función del calibre AWG que se puede utilizar.

Ancho de la ranura (ws) = a + 2 * b

 $ws = 1.5 + 2 * 0.45 = 2.4 \cong 3mm$ (valor adecuado)

Para 12 ranuras:

$$12 * 3 = 36mm$$

$$Pstr - 36mm = 194.77 - 36 = 158.77 \div 12 ranuras = 13.23mm$$

Para 16 ranuras:

$$16 * 3 = 48mm$$

 $Pstr - 48mm = 194.77 - 48 = 146.77 \div 16 ranuras = 9.17mm$

Ambos valores parecen oportunos pero a mayor número de ranuras el espacio para el cobre disminuye, esto se relaciona directamente con el factor de empaquetamiento que al ser manual tendrá un valor bajo, por lo que se considera oportuno elegir la siguiente combinación:

- Ns=12 ranuras
- Nm=4 polos magnéticos

Ecuación 10

Velocidad mecánica (rad/s)

$$w_m = (\frac{\pi}{30} * Sr)$$

Donde:

- $w_m = Velocidad \ mecánica \ (\frac{rad}{s})$
- *Sr* = *Velocidad nominal (rpm)*

Desarrollo:

$$w_m = \frac{\pi}{30} * Sr = \frac{\pi}{30} * 2400 \ rpm = 80\pi = 251.327 \frac{rad}{s}$$

Ecuación 11

Velocidad eléctrica (rad/s)

$$w_e = (\frac{Nm}{2} * w_m)$$

Donde:

Nm = Número de imanes (polos magnéticos)
 Desarrollo:

$$w_e = \left(\frac{4}{2} * 251.327\right) = 160\pi = 502.654 \frac{rad}{s}$$

Ecuación 12

Frecuencia eléctrica (Hz)

$$fe = \frac{W_e}{2\pi}$$

Donde:

• *fe = freucencia eléctrica (Hz)* Desarrollo:

$$fe = \frac{w_e}{2\pi} = \frac{160\pi}{2\pi} = 80 \ Hz$$

Tabla 10

Parámetros iniciales del generador eléctrico

Parametros principales								
Especificación	Valor							
Potencia	40 W							
Velocidad de rotación del rotor	2400 rpm							
Tensión de fase	20 v							
Frecuencia	80 Hz							
Pares de polos	2							

Nota. Se presentan los valores de partida en el diseño.

Ecuación 13

Torque en caballos de fuerza (Nm-Newton metro)

$$T = 746 * \frac{P_{HP}}{w_m}$$

Nota: Evitar la confusión entre Nm (número de imanes) y N.m. (Newton por metro).

Donde:

- $P_{HP} = Horsepower (Hp)$
- $w_m = Velocidad \ mecánica \ (\frac{rad}{s})$

Desarrollo:

$$T = 746 * \frac{P_{HP}}{w_m} = 746 * \frac{0.05 \ Hp}{80\pi \frac{rad}{s}} = 0.159 \ Nm$$

Nota. Este valor es bajo debido a la elevada velocidad y baja potencia del diseño (20 V y 2 A = 40 W = 0.0536 Hp).

Ecuación 14

Número de ranuras (Ns)

$$Ns = Nsp * Nph$$

Nota. El número de ranuras siempre es múltiplo del número de núcleos magnéticos.

Donde:

- Nsp = Número de ranuras por polo
- Nph = Número de fases

Desarrollo:

$$Ns = Nsp * Nph12 * 1 = 12 ranuras$$

Ecuación 15

Número de ranuras por polo por fase (Nspp)

$$Nspp = \frac{Nsp}{Nm}$$

Donde:

- Nsp = Número de ranuras por fase
- Nm = Número de imanes

Desarrollo:

$$Nspp = \frac{Nsp}{Nm} = \frac{12}{4} = 3$$

Figura 45

Número de ranuras por polo por fase

Nota. A cada polo magnético le corresponde 3 ranuras. No se debe olvidar que cada polo magnético comparte la mitad de una ranura en cada extremo.

Ecuación 16

Número de ranuras por polo magnético (Nsm)

$$Nsm = Nspp * Nph$$

Donde:

- Nspp = número de ranuras por polo por fase
- Nph = Número de fases

Desarrollo:

$$Nsm = Nspp * Nph = 3 * 1 = 3$$

Ecuación 17

Fracción bobina-polo (α_{cp})

$$\alpha_{cp} = \frac{int \; (Nspp)}{Nspp}$$

Nota: Si la fracción bobina polo equivale a 1 entonces $\tau_c = \tau_p$

Donde:

- *int* (*x*) = *significa que se toma en cuenta el valor entero de x*
- Nspp = número de ranuras por polo por fase
- $\tau_c \ y \ \tau_p = se \ definen \ más \ adelante$

Desarrollo:

$$\alpha_{cp} = \frac{int \; (Nspp)}{Nspp} = \frac{int \; (3)}{3} = 1$$

Ecuación 18

Paso angular del polo magnético (θp)

$$\theta p = \frac{2\pi}{Nm}$$

Donde:

Nm = número de imanes
 Desarrollo:

$$\theta p = \frac{2\pi}{Nm} = \frac{2\pi}{4} = \frac{\pi}{2} (90^\circ)$$

Ecuación 19

Paso angular de la ranura (θ s)

$$\theta s = \frac{2\pi}{Ns}$$

Donde:

Ns = número de ranuras
 Desarrollo:

$$\theta s = \frac{2\pi}{Ns} = \frac{2\pi}{12} = \frac{\pi}{6} (30^{\circ})$$

Ecuación 20

Paso de ranura (radianes eléctricos, θse)

$$\theta se = \frac{\pi}{Nsm} = \frac{\pi * Nm}{Ns}$$

Donde:

- Nsm = Número de ranuras por polo magnético
- Ns = Número de ranuras

Desarrollo:

$$\theta se = \frac{\pi}{Nsm} = \frac{\pi * Nm}{Ns} = \frac{\pi * 4}{12} = \frac{\pi}{3} (60^{\circ})$$

Ecuación 21

Radio interior del estator (m)

$$Rsi = Rro + g$$

Donde:

- Rsi = radio interno del estator
- Rro = radio externo del rotor

• g = entrehierro

Desarrollo:

$$Rsi = Rro + g = 30mm + 1 mm = 31mm = 0.031 (m)$$

Ecuación 22

Paso del polo magnético en metros (τ_p)

$$\tau_p = Rsi * \theta p$$

Donde:

- Rsi = radio interno del estator
- $\theta p = paso angular del polo$

Desarrollo:

$$\tau_p = Rsi * \theta p = 0.031 * \frac{\pi}{2} = 0.04869 m = \frac{31\pi}{2000}, (m) = 48.69 mm$$

Ecuación 23

Paso de la bobina (τ_c)

$$\tau_c = \alpha_{cp} * \tau_p$$

Donde:

• $\alpha_{cp} = fracción bobina - polo$ Desarrollo:

$$\tau_c = \alpha_{cp} * \tau_p = 1 * \frac{31\pi}{2000} = \frac{31\pi}{2000} (m)$$

Ecuación 24

Paso de la ranura en el entrehierro (τ_s)

$$\tau_s = Rsi * \theta s$$

Donde:

• $\theta s = paso angular de la ranura$ Desarrollo:

$$\tau_s = Rsi * \theta s = 0.031 * \frac{\pi}{6} = \frac{31\pi}{6000}, (m)$$

Ecuación 25

Ancho del diente en el espacio de aire (ωt)

$$\omega t = \tau_s - \omega_s = \frac{31\pi}{6000} - \frac{3mm(estimado)}{1000}m = 0.01323 m = 13.23 mm$$

Nota. Se debe procurar que el ancho del diente sea un valor entero, por lo cual la parte decimal se pasa al valor de la abertura de la ranura que se suma a la que más adelante se obtiene.

Donde:

• $\omega_s = Abertura \ de \ ranura \ en \ metros$

Cálculo de la abertura de ranura

La parte decimal del ancho del diente, se suma el ancho de la ranura.

$$P(perímetro) = \pi * Dsi = \pi * 62mm = 194.7787$$

13mm(Longitud del didente wt) * 12 (dientes) = 156mm

 $\omega_s = Psi - Ed$

$$\omega_s = 194.7787 - 156 = \frac{38.77}{12 \ ranuras} = 3.23 \ mm$$

Entonces wt:

$$\omega t = \tau_s - \omega_s = \frac{31\pi}{6000} - \frac{3.23}{1000} = 0.013m = 13 mm$$

Donde:

- Dsi = diámetro interno del estator
- *Psi = perímetro interno del estator*
- Ed = longitud ocupada por los dientes en el perímetro del estator

Ecuación 26

Factor de distribución

$$kd = \frac{sen\left(\frac{Nspp * \theta se}{2}\right)}{Nspp * sen\left(\frac{\theta se}{2}\right)} = 1$$

Donde:

- Sen(x) = función seno
- Nspp = número de ranuras por polo por fase
- $\theta se = Paso \ de \ ranura \ en \ radianes \ eléctricos$

Desarrollo:

$$kd = \frac{sen\left(\frac{1 * \frac{\pi}{3}}{2}\right)}{1 * sen\left(\frac{\pi}{3}\right)} = 1$$

Ecuación 27

Factor de paso (kp)

$$kp = \alpha_{cp}$$

 $1 = 1$

Ecuación 28

Factor de concentración de flujo (CØ)

$$C_{\phi} = \frac{2 \,\alpha_m}{1 + \,\alpha_m} = \frac{2 * (0.9430)}{1 + 0.9430} = 0.9707$$

Donde:

- $\alpha_m = Fracción magnética$
- *Pro = Perímetro exterior del rotor*

Cálculo de la fracción magnética

$$\tau_{m} = ancho \ del \ im\acute{an} \ (total \ del \ polo) = \frac{Pro}{Nm}$$
$$\pi 2r = 2(30mm)\pi = \frac{60\pi \ mm}{4(n\acute{u}mero \ de \ polos)} = 15\pi$$
$$\tau_{m} = 15\pi - (0.6 * 2) = \frac{45.9238898}{1000} = 0.04592$$

Longitud de cada polo

Nota. Rotor del generador eléctrico compuesto por 4 polos.

Número de imanes

$$N^{\circ}$$
 de imanes por polo = $rac{ au_m}{ au_{mi}}$

 N° de imanes por polo = $\frac{15\pi}{10}$ = 4.7 imanes \approx 4imanes por polo

Donde:

• $\tau_{mi} = Ancho de un solo imán$

Nota.- En el espacio dispuesto solo ingresan 4 imanes, el 0.7 no corresponde a una dimensión de un imán en el mercado.

Entonces:

$$\alpha_m = \frac{\tau_m}{\tau_p} = \frac{0.04592}{\frac{31\pi}{2000}} = 0.9430$$

Al realizar este cálculo se toma en cuenta la disponibilidad del imán y se ajusta el diámetro del rotor para que todo encaje.

Ecuación 29

Coeficiente de permeabilidad

Cálculo de lm = alto del imán = 3mm = 0.003m

g = entrehierro = 2mm = 0.0024m(revisar geometria de diseño)

Entrehierro geométrico= 0.001 m

Figura 47

Entrehierro real

Nota. El valor de entrehierro real se considera desde el imán del interior hasta el diente del núcleo de hierro del estator

$$Pc = \frac{lm}{g * C_{\emptyset}} = \frac{0.003}{0.0024 * 0.9707} = 1.2877$$

Ecuación 30

Factor de fuga del imán (kml)

$$kml = 1 + \frac{4 * lm}{\pi * u_R * \alpha_m * \tau_p} * \ln\left[1 + \pi * \frac{g}{(1 - \alpha_m) * \tau_p}\right]$$

Donde:

- $u_R = Permeabilidad \ relativa$
- lm = longitud del imán
- $u_R = Permeabilidad \ de \ retroceso \ del \ imán$

Nota. El valor típico de u_R se encuentra entre 1.0 y 1.1; tomar en cuenta que el valor de 1 describe una operación más eficiente)

 $\alpha_m = Fracciòn magnètica$

 $\tau_p = Paso \ polar$

Desarrollo:

$$kml = 1 + \frac{4 * 0.003}{\pi * 1 * 0.9430 * \frac{31\pi}{2000}} * \ln \left[1 + \pi * \frac{0.0024}{(1 - 0.9430) * \frac{31\pi}{2000}} \right]$$

$$kml = 1 + (0.08318367624 * 1.31277) = 1.1092$$

Ecuación 31

Entrehierro efectivo para el coeficiente de Carter

$$ge = g + \frac{lm}{u_R}$$

Donde

- *ge* = *entrehierro efectivo para el coeficiente de carter en metros*
- g = entrehierro
- *lm = longitud del imán*
- u_R = Permeabilidad de retroceso del imán Desarrollo:

$$ge = 0.0024 + \frac{0.003}{1} = 0.0054m = 5.4 mm$$

Ecuación 32

Coeficiente de Carter

$$kc = \left[1 - \frac{1}{\frac{\tau_s}{\omega_s} * \left(5 * \frac{g_e}{\omega_s} + 1\right)}\right]^{-1}$$

Donde:

- $\omega_s = Abertura \ de \ ranura \ en \ metros$
- $\tau_s = Paso \ de \ ranura \ en \ el \ entrehierro$
- $g_e = entrehierrro efectivo para el coeficiente de carter$

El coeficiente de Carter describe la influencia de las ranuras, su forma y geometría en el flujo magnético del generador.

Desarrollo:

$$kc = \left[1 - \frac{1}{\frac{31\pi}{\frac{6000}{3.23}} * \left(5 * \frac{0.0054}{\frac{3.23}{1000}} + 1\right)}\right]^{-1}$$
$$kc = 1.021724$$

Ecuación 33

Área del entrehierro

$$Ag = \frac{\tau_p * L * (1 + \alpha_m)}{2}$$

Donde:

- Ag = área del entrehierro
- $\tau_p = paso \ polar$
- *L* = *Longitud del imán en metros*
- $\alpha_m = Fraccción magnética$

Desarrollo:

$$Ag = \frac{\frac{31\pi}{2000} * 0.015 * (1 + 0.9430)}{2} = 0.00070963931 \, m^2 = 709.6393 \, mm^2$$

Ecuación 34

Densidad de flujo en el entrehierro (Bg)

$$Bg = \frac{C_{\varphi}}{1 + \frac{u_R * kc * kml}{Pc}} * Br$$

Donde:

- $C_{\varphi} = concentración de flujo magnético$
- $u_R = Permeabilidad \ de \ retroceso \ del \ imán$
- *kPc* = *coeficiente de permeabilidad*
- Br = remanencia magnética (en Teslas)

Desarrollo:

$$Bg = \frac{0.9707}{1 + \frac{1 * 1.028456 * 1.1092}{1.2877}} * Br$$

Valor de remanencia magnética (Br), del imán utilizado para el generador:

Figura 48

Remanencia magnética de diferentes imanes

Serie	El grado										
		Br		EI HCB		Hci		(BH) máX.		L/D=0.7	
		Т	Kg.	KA/m	KOe	KA/m	KOe	KJ/m ^{3.}	MGOe	°C.	°F
Ν	N35	1.17-1.24	11.7-12.4	≥860	≥10,8	≥955	≥12	263-295	33-37	80	176
	N38	1.22-1.30	12.2-13.0	≥860	≥10,8	≥955	≥12	287-318	36-40	80	176
	N40	1.26-1.32	12.6-13.2	≥860	≥10,8	≥955	≥12	302-334	38-42	80	176
	N42	1.29-1.35	12.9-13.5	≥860	≥10,8	≥955	≥12	318-350	40-44	80	176
	N45	1.32-1.38	13.2-13.8	≥860	≥10,8	≥955	≥12	334-366	42-46	80	176
	N48	1.37-1.43	13.7-14.3	≥836	≥10,5	≥876	≥11	358-390	45-49	80	176
	N 50	1.40-1.45	14.0-14.5	≥836	≥10,5	≥876	≥11	374-406	47-51	80	176
	N52	1.42-1.48	14,2-14,8	≥836	≥10,5	≥876	≥11	390-422	49-53	80	176
	N54	1.45-1.51	14.5-15.1	≥836	≥10,5	≥876	≥11	398-438	50-55	80	176

Nota. Se presentan los valores del imán de Neodimio N52

Br total = número de imanes por polo * Br de cada imán

Esta afirmación es verídica de acuerdo a como se apilen los imanes. Es decir el

valor de Br no es lo mismo en un arreglo de imanes uno sobre otro que uno alado de otro.

Figura 49

Diferente disposición de imanes

Nota. El arreglo de imanes interviene en el aumento de su remanencia y fuerza magnética.

Desarrollo:

$$Bg = \frac{0.9707}{1 + \frac{1 * 1.028456 * 1.1092}{1.2877}} * 1.42 = 0.7309 T$$
Flujo magnético en el entrehierro

$$\phi g = Bg * Ag$$

Donde:

- $\phi g = flujo magnético en el entrehierro (Wb)$
- Bg = Densidad de flujo magnético en el entrehierro (T)
- $Ag = \operatorname{área} del entrehierro(m^2)$

Desarrollo:

$$\phi g = 0.72166 \ T * 0.00070963931 \ m^2 = 0.00051212131 \ Wb$$

Ecuación 36

Ancho del hierro trasero

$$Wbi = \frac{\emptyset g}{2 * Bm \acute{a}x. * Kst * L}$$

Donde:

- Wbi = ancho del hierro trasero (m)
- $\phi g = flujo magnético en el entrehierro (Wb)$
- Bmáx. = Densidad de flujo magnético másximo (T)
- *kst* = *Factor de apilamiento*

A continuación de la siguiente gráfica se debe estimar el valor de magnetización máxima (Bmáx.), para el material seleccionado en el núcleo ferromagnético correspondiente a acero A-430:

Curva de magnetización de diferentes materiales

Nota. Acero al silicio (línea ploma) (1.7 T). Curva de magnetización para diferentes metales. Tomado de (Kappatou, Zalokostas, & Spyratos, 2016)

Los coeficientes de la formula mostrada describen características magnéticas del material de la chapa magnética utilizada en la laminación y constitución del núcleo.

(Bmáx.), Es un valor obtenido de la curva de magnetización de un material ferromagnético, en el caso del acero escogido para la laminación, el acero en cuestión debe poseer en su composición cierto porcentaje de silicio que evite una excesiva saturación. De las características del acero escogido: Acero inoxidable A-430 con las siguientes características: (Si=1%; C=0.08%; Mn= 1%)

Cálculo del factor de apilamiento (kst)

El factor de apilamiento describe la relación que existe entre el número de láminas, su espesor y la dimensión total del núcleo. El factor de apilamiento se utiliza al calcular la densidad de flujo magnético dentro del núcleo.

Cálculo del factor de apilamiento kst

Nota. El factor de apilamiento determina la cantidad de hierro que se debe utilizar en el núcleo ferromagnético.

$$fa = kst = \frac{n * t}{b}$$

Donde:

n = numero de laminas en el núcleo

t = espesor de cada lamina

b = largo del núcleo una vez apiladas y barnizadas todas las láminas

De los resultados obtenidos se elige el siguiente material en un total de 21 láminas

de acero inoxidable para formar el núcleo ferromagnético.

$$Acero A - 430 - espesor = 0.5 mm$$

Es importante conocer el espesor del núcleo y el número de láminas:

$$fa = kst = \frac{21 * 0.5}{14.6} = 0.719178$$

Sustituir todos los valores calculados:

$$Wbi = \frac{0.00051868398 \, T. \, m^2}{2 * 1.7 \, T. * \, 0.719 * 0.015 \, m} = 0.014145 \, m = 14.14 \, mm$$

Ancho del diente

$$Wtb = \frac{2}{Nsm} * Wbi$$

Donde:

- Wtb = Ancho del diente, m
- Nsm = Número de ranuras por polo
- Wbi = ancho del hierro trasero

Desarrollo:

$$Wtb = \frac{2}{3} * 0.014145 = 0.00943 \ m = 9.43 \ mm$$

Ecuación 38

Radio del hierro trasero del estator (Rsb)

$$Rsb = Rso - Wbi$$

Donde:

- *Rso* = *radio* exterior del estator, m
- Wbi = ancho del hierrro trasero

Desarrollo:

$$Rsb = Rso - Wbi = 0.06 - 0.014145 = 0.045855 m$$

Ecuación 39

Radio interno del rotor (Rri)

$$Rri = Rro - lm - Wbi$$

Donde:

- *Rro* = *Radio* exterior del rotor, m
- *lm = altura del imán, m*
- Wbi = ancho del hierro trasero, m

Desarrollo:

$$Rri = 0.03 - 0.003 - 0.014145 = 0.012855 m$$

Ecuación 40

Ancho inferior de la ranura (Wsb)

$$Wsb = Rsb * \theta_s - Wtb$$

Donde:

- *Rsb* = radio del hierro trasero del estator, m
- $\theta_s = \acute{a}ngulo \ de \ paso \ de \ ranura$
- Wtb = Ancho del diente, m

Desarrollo:

$$Wsb = 0.045855 * \frac{\pi}{6} - 0.00943 = 0.0145796 m = 14.5796 mm$$

Ecuación 41

Ancho interior de la zapata de la ranura (Wsi)

$$Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$$

Donde:

- Rsi = Radio interior del estator, m
- $\alpha_{sd} = Fracción de intervalo de zapata$
- Wtb = Ancho del diente, m
- $\theta s = paso$ angular de la ranura

Desarrollo:

$$\alpha_{sd} = \frac{d1 + d2}{Wtb}$$
$$d1 = 2 mm$$
$$d2 = 2mm$$

$$\alpha_{sd} = \frac{2+2}{9.43} = 0.424178$$

$$Wsi = (Rsi + \alpha_{sd} * Wtb) * \theta s - Wtb$$

$Wsi = (0.031 + 0.424178 * 0.00943) * \frac{\pi}{6} - 0.00943 = 0.00889595 m = 8.89 mm$

Ecuación 42

Fracción de ranura dentro de la zapata (α_s)

$$\alpha_s = \frac{Wsi}{Wsi + Wtb}$$

Donde:

- Wsi = ancho interior de la zapata de la ranura
- Wtb = ancho del diente

Desarrollo:

$$\alpha_s = \frac{0.00889595}{0.00889595 + 0.00943} = 0.485429$$

Ecuación 43

Profundidad total de la ranura (ds)

$$ds = Rsb - Rro - g$$

Donde:

- Rsb = radio del hierro trasero del estator
- *Rro* = *radio* exterior del rotor
- g = entrehierro

Desarrollo:

$$ds = 0.045855 - 0.03 - 0.001 = 0.014855 m = 14.855mm$$

Ecuación 44

Profundidad de la ranura del conductor (d3)

$$d3 = ds - \alpha_{sd} * Wtb$$

Donde:

• ds = profundidad total de la ranura

- $\alpha_{sd} = fracci[on \ de \ intervalo \ de \ zapata$
- Wtb = ancho del diente

Desarrollo:

$$d3 = 0.014855 - (0.424178 * 0.00943) = 0.010855 m = 10.855mm$$

Ecuación 45

Profundidad del zapato dividida entre d1 y d2

$$d1 + d2 = \alpha_{sd} * Wtb$$

 $4 = 0.424178 * 0.00943$
 $4 = 4$

Ecuación 46

Área del conductor (As)

$$As = d3\left[\theta s\left(Rsb - \frac{d3}{2}\right) - Wtb\right]$$

Donde:

- d3 = profundidad de la ranura para el conductor
- $\theta s = paso \ polar$
- Rsb = radio del hierro trasero del estator
- Wtb = ancho del diente

Desarrollo:

$$As = 0.010855 * \left[\frac{\pi}{6} \left(0.045855 - \frac{0.010855}{2}\right) - 0.00943\right]$$
$$As = 0.0001274137 m^{2}$$

Ecuación 47

Número de vueltas por ranura (ns)

$$E_f = 4.44 * kd * ka * \Phi_{máx.} * N_f * f$$

Donde:

- $E_f = fuerza \ electromotriz \ engendrada \ (V)$
- kd = factor de distribución
- ka = factor de acortamiento o de paso
- $\Phi_{máx.} = flujo magnético máximo que abarca una bobina$
- $N_f = N$ úmero de espiras por fase
- f = frecuencia

Para el cálculo del número de espiras en cada bobina se debe considerar lo siguiente:

Voltaje: 20 V

$$14 * 10\% = 1.4 + 14 = 15.4$$
 (Valor apropiado)
 $14 * 40\% = 5.6 + 14 = 19.6$ (Valor de diseño) $\approx 20V$

Nota.- Se esperaba un valor de 20 voltios, para este caso se debe calcular con un 40 % de sobredimensionamiento por posibles imperfectos. Al final este valor de voltaje es regulado pero el regulador necesita un valor de voltaje de entrada superior al de salida.

Desarrollo:

$$\Phi_{m\acute{a}x.} = \frac{\phi g}{Ns} = \frac{0.00051868398 \ Wb}{12} = 0.00004322 \ Wb$$

$$E_f = 4.44 * kd * ka * \Phi_{m\acute{a}x.} * N_f * f$$

$$N_f = \frac{E_f}{4.44 * kd * ka * \Phi_{m\acute{a}x.} * f}$$

$$N_f = \frac{20}{4.44 * 1 * 1 * 0.00004322 * 80} = 1302.78 \ espiras \ por \ fase$$

Para un sistema monofásico de 12 bobinas esto resulta:

$$\frac{int(N_f)}{12} = \frac{1302}{12} = 108.5 \cong 109 \text{ espiras por bobinal}$$

Ecuación 48

Pico de fuerza contra electromotriz (e_{max})

$$e_{max} = Nm * kd * kp * Bg * L * Rro * Nspp * n_s * w_m$$

$$e_{max} = 4 * 1 * 1 * 0.7309 * 0.015 * 0.03 * 1 * 109 * 80\pi = 36.04 V$$

Corriente máxima que soporta por ranura (Is, en amperios)

$$Is = \frac{T}{Nm * kd * kp * Bg * L * Rro * Nspp}$$

Donde:

• *T* = torque en *N*. *m*. (newton metro) Desarrollo:

$$Is = \frac{0.159}{4 * 1 * 1 * 0.7309 * 0.015 * 0.03 * 3} = 40.28 A$$

Nota. De la fórmula se suprime el factor de sesgo (ks) porque se emplea un imán cuadrado sin sesgo o inclinación.

Ecuación 50

Corriente de fase (Iph)

$$I_{ph} = \frac{Is}{Nph * n_s}$$

Donde:

- Nph = númerod e fases
- $n_s = n$ úmero de vueltas

Desarrollo:

$$I_{ph} = \frac{40.28}{1 * 109} = 0.36 \, A$$

Ecuación 51

Densidad de corriente máxima en el conductor (Jc)

$$Jc = \frac{Is}{kcp * As}$$

Donde:

• *kcp* = *Factor de empaque del conductor*

Nota. Kcp por lo general es un valor inferior al 50%, el valor exacto de este parámetro se conoce a través de la experiencia (Hanselman, p. 133)

Según (Miller, p. 102), se adopta un valor del 15%,

Desarrollo:

$$Jc = \frac{40.28}{0.15 * 0.0001274137} = 2\ 107570.327 \frac{A}{m^2} = 2.10 \frac{A}{mm^2}$$

Ecuación 52

Densidad de flujo máximo en la ranura (Bs max)

$$|B_s|max = \frac{u_0 * Is}{\omega_s}$$

Donde:

- $u_0 = permeabilidad \ de \ vacio \ (4\pi x 10^{-7})$
- $w_s = abertura de la ranura$

Desarrollo:

$$|B_s|max = \frac{4\pi x 10^{-7} * 40.28}{0.00323} = 0.01567T = 156.71 \ Gauss$$

Ecuación 53

Resistencia de la ranura (Rs)

$$Rs = \frac{\rho * n_s^2 * L}{kcp * As}$$

Donde:

- $\rho = Resistividad \ del \ conductor \ y \ coeficiente \ de \ temperatura \ del \ cobre$
- *kcp* = *Factor de empaque del conductor*
- As = área del conductor

Desarrollo:

$$\rho = 1.7 x 10^{-8}$$

$$Rs = \frac{1.7x10^{-8} * 109^2 * 0.015}{0.15 * 0.0001274137} = 0.158 \,\Omega$$

Resistencia en la vuelta final (Re)

$$Re = \frac{\rho * n_s^2 * \pi * \tau_c}{2 * kcp * As}$$

Donde:

• $\tau_c = paso \ de \ bobina$

Desarrollo:

$$Re = \frac{1.7x10^{-8} * 109^2 * \pi * \frac{31\pi}{2000}}{2 * 0.15 * 0.0001274137} = 0.808\,\Omega$$

Ecuación 55

Resistencia de fase (Rph)

$$Rph = Nsp(Rs + Re)$$

Donde:

Nsp = número de ranuras por fase
 Desarrollo:

$$Rph = 12(0.158 + 0.808) = 11.592 \,\Omega$$

Ecuación 56

Inductancia en el entrehierro (Lg)

$$Lg = \frac{n_{s}^{2} * u_{R} * u_{o} * L * \tau_{c} * kd}{4(lm + u_{R} * kc * g)}$$

Donde:

- $u_R = permeabilidad \ de \ retroceso \ del \ imán$
- $\tau_c = paso \ de \ bobina$
- g = entrehierro

Desarrollo:

$$Lg = \frac{109^2 * 1 * 4\pi x 10^{-7} * 0.015 * \frac{31\pi}{2000} * 1}{4(0.003 + 1 * 1.028456 * 1)} = 0.0008836 H = 0.88 mH = 883.6 uH$$

Inductancia de fuga en la ranura (Ls)

$$Ls = n_s^2 \left[\frac{u_0 * d3^2 * L}{3 * As} + \frac{u_0 * d2 * L}{\frac{ws + Wsi}{2}} + \frac{u_0 * d1 * L}{ws} \right]$$

Donde:

• *Wsi = ancho de la zapata dentro de la ranura* Desarrollo:

$$Ls = 130^{2} \left[\frac{4\pi x 10^{-7} * 0.0091069936^{2} * 0.015}{3 * 0.0001274137} + \frac{4\pi x 10^{-7} * 0.003 * 0.015}{0.00323 + 0.0089245} + \frac{4\pi x 10^{-7} * 0.002 * 0.015}{0.00323} \right]$$

$$Ls = 109^{2} * (4.1x10^{-9} + 9.30x10^{-9} + 1.17x10^{-8}) = 0.0002982131 H = 0.298 mH$$

Ecuación 58

Inductancia del final de vuelta (Le)

$$Le = \frac{{n_s}^2 * u_o * \tau_c}{8} * \ln(\frac{{\tau_c}^2 * \pi}{4 * As})$$

Donde:

• $\tau_c = Paso \ de \ bobina$ Desarrollo:

$$Le = \frac{109^2 * 4\pi x 10^{-7} * \frac{31\pi}{2000}}{8} * \ln(\frac{\frac{31\pi}{2000}^2 * \pi}{4 * 0.0001274137})$$

$$Le = 0.000090877 * \ln(14.616) = 0.0002437 H = 0.243 mH$$

Ecuación 59

Inductancia de fase (Lph)

$$Lph = Nsp(Lg + Ls + Le)$$

Donde:

Nsp = número de ranuras por fase
 Desarrollo:

Lph = 12 * (0.0008836 + 0.0002982131 + 0.0002437) = 0.017106H = 17.106 mH

Ecuación 60

Volumen de acero del estator (Vst)

$$Vst = [\pi (R_{so}^{2} - R_{si}^{2}) - Ns * As] * L * kst$$

Donde:

- *kst* = *factor de apilamiento*
- Ns = número de ranuras
- As = Área del conductor
- Rso = radio exterior del estator
- Rsi = radio interno del estator

Desarrollo:

$$Vst = [\pi(0.06^2 - 0.031^2) - 12 * 0.0001274137] * 0.015 * 0.7$$

 $Vst = 0.00007099783 m^3 = 70.9978 cm^3$

Ecuación 61

Pérdida de potencia óhmica (Pr)

$$Pr = Nph * Iph^2 * Rph$$

Donde:

- Nph = número de fases
- *Iph* = *corrientte de fase*
- Rph = resistencia de fase

Desarrollo:

$$Pr = 1 * 0.36^2 * 11.592 = 1.50 W$$

Pérdidas en el núcleo (Pcl)

$$Pcl = \rho_{bi} * Vst * \Gamma(Bmax, f)$$

Donde:

• $\rho_{bi} = densidad \ de \ masa \ del \ hierro \ posterior$

Cálculo de $\Gamma(Bmax, f)$

Se refiere a la densidad de pérdida en el núcleo de acero frente a la densidad y frecuencia de flujo magnético. Este factor hace referencia al acero eléctrico que utiliza en el núcleo laminado. En este factor interviene la disponibilidad de materiales con las que el diseñador cuenta y el costo que significaría utilizarlo. El material debe tener un porcentaje de Silicio y bajo contenido en carbono, para el generador en cuestión se utilizó (Acero inoxidable A-430). $\Gamma(Bmax, f)$, según otros autores definen este factor como:

$$We = Ce * Bpk^2 * f^2$$
, (W/kg)

Esta fórmula está dada por el coeficiente de Steinmetz, donde:

We = densidad de pérdida en el núcleo de acero Bpk = Densidad de flujo magnpetico máximo f = frecuecnia eléctrica Ce = coeficiente de Steinmetz

La ecuación de Steinmetz, a veces llamada ecuación de potencia, es una ecuación empírica (basada en la experiencia y observación de los hechos) que se utiliza para calcular la pérdida total de potencia (pérdidas en el núcleo) por unidad de volumen en materiales magnéticos cuando se somete a un flujo magnético externo que varía sinusoidalmente. El coeficiente *Ce* es un parámetro del material que generalmente se encuentran empíricamente a partir de la curva de histéresis BH del material mediante el ajuste de la curva. En los materiales magnéticos típicos, todos los coeficientes de Steinmetz varían con la temperatura. Para el cálculo de *Ce* se utiliza la siguiente fórmula del autor T. Miller:

Ecuación de Steinmetz

$$Ce = \frac{\pi^2 * t^2 * \sigma}{6 * \rho m}$$

Donde:

- t = espesor de la lámina de acero (m)
- $\sigma = conductividad \ eléctrica \ del \ acero \ en \ (\frac{Siemens}{metro})$
- $\rho m = densidad \ de \ mas \ adel \ acero \ (7850 \ Kg/m^3)$

Desarrollo:

$$Ce = \frac{\pi^2 * 0.0005^2 * 1.53x10^7}{6 * 7850} = 0.0008015$$

Entonces:

$$We = Ce * Bpk^{2} * f^{2} , (W/kg)$$
$$We = 0.0008015 * 1.8^{2} * 33.33^{2} = 2.88 , \left(\frac{W}{kg}\right) = \Gamma(Bmax, f)$$

Finalmente se reemplaza para obtener las pérdidas en el núcleo:

$$Pcl = \rho_{bi} * Vst * \Gamma(Bmax, f)$$

Donde:

$$\rho_{bi} = densidad \ de \ masa \ del \ acero$$

Desarrollo:

$$Pcl = 7850 \frac{kg}{m^3} * 0.0000740754 \ m^3 * 2.88 \ \left(\frac{W}{kg}\right) = 1.674 \ W$$

Ecuación 64

Eficiencia (η)

$$\eta = \frac{T * \omega_m}{T * \omega_m + Pr + Pcl + Ps}$$

Donde:

• T = Torque, Nm

- $\omega_m = velocidad mecánica$
- *Ps* = *Pérdidas por dispersión*

Cálculo de Ps (Pérdidas por a la fricción, viento y otros)

Ps describe la pérdida de potencia debido a la fricción, viento y otros componentes menos dominantes. El valor de Ps es el resultado de la potencia que el generador necesita para vencer la inercia, y la fricción.

Según (Hendershot & Miller, 2010, p. 678) menciona que para máquinas de imanes permanenetes sin escobillas de alta velociddad las pérdidas causadas por la fricción y la resistencia del viento, tipicamente cuentan menos alrededor del 1 o 2 % de las pérdidas totales.

Desarrollo:

$$(Pr + Pcl) = 1.50 + 1.674 = 3.174 * 0.2 = 0.6348 W$$

$$\eta = \frac{0.156 * 80\pi}{(0.156 * 80\pi) + 1.50 + 1.674 + 0.6348} * 100\%$$

$$\eta = 91.03$$
 %

Ecuación 65

Densidad de calor en la ranura (qs)

$$qs = \frac{Pr}{L(2d3 + w_{sb})Ns}$$

Donde:

- L = Profundidad del nucleo laminado
- d3 = profundidad de la ranura
- w_{sb} = ancho inferior de la ranura
- Ns = número de ranuras

Desarrollo:

$$qs = \frac{1.50}{0.015(2*0.010855 + 0.0145796)*12} = 229.634 \frac{W}{m^2}$$

Densidad de calor en el estator (qst)

$$qst = \frac{Pr + Pcl}{2\pi * Rso * L}$$

Desarrollo:

$$qst = \frac{1.50 + 1.674}{2\pi * 0.060 * 0.015} = 444.042 \frac{W}{m^2}$$

Geometría resultante

Los cálculos previos permiten obtener las dimensiones geométricas de la chapa metálica mostrada en la figura 37 y 38.

Figura 52

Geometría resultante del núcleo magnético

Nota. Se presenta la geometría de la chapa metálica para el núcleo de hierro.

Geometría resultante del rotor

Nota. Se presenta el rotor con la distribución de cavidades para los imanes de neodimio.

Análisis magnético mediante el método de elementos finitos

El software FEMM permite observar el comportamiento magnético en la geometría del generador eléctrico, para realizar correcciones y estimar el funcionamiento final. Con el objetivo de conocer la cantidad de flujo magnético entre el rotor y estator y determinar si existe demasiada saturación es preciso utilizar un análisis por el método de elementos finitos.

Figura 54

Descripción del análisis magnético

Designación de materiales

Crear malla

Se genera la malla de toda la geometría con la opción Create Mesh ubicada en la cinta de opciones. En este caso el programa crea la malla con 60 381 nodos.

Nota. El esquema presenta el proceso para desarrollar una simulación en el software FEMM

de manera comprensible.

Análisis e interpretación de resultados

Figura 55

Comportamiento magnético

Nota. Se presenta el resultado de la simulación magnética.

El número 1 describe el valor de la densidad de flujo magnético del entrehierro. La cantidad de líneas con patrones similares para los cuatro polos magnéticos del rotor describen la intensidad de campo magnético y la intensidad de campo magnético presentes. La cantidad de líneas magnéticas es relativamente normal y se considera una opción apropiada para fabricar, en todo caso el presupuesto es el factor que ajusta cada valor, debido a que con mayor número de espiras en las bobinas se alcanzarían valores de densidad magnética más elevados pero se debe aumentar el diámetro del núcleo ferromagnético y esto compromete toda la geometría la cantidad de cobre la cantidad de imanes y costo de los materiales.

El número 2 describe ttodos los valores de salida se muestran de acuerdo a las coordenadas del punto seleccionado en la geometría en donde el diseñador requiere un análisis. Si bien el panorama gráfico de las líneas de campo magnético permiten apreciar el comportamiento magnético, el programa permite conocer el valor de la densidad de flujo magnético en un punto específico y conocer en qué punto se puede mejorar, ya sea con más imanes, cambiando la forma del núcleo ferromagnético o el número de espiras.

El número 3 la tabla de densidad de flujo magnético muestra una escala de colores de acuerdo a la concentración de la mayor cantidad de líneas de flujo magnético. El análisis magnético general establece un generador de flujo magnético moderado, bajo su escala de colores describen valores medios de densidad de flujo magnético, esto quiere decir que no existirá saturación magnética excesiva en ningún punto de la estructura lo cual puede ser perjudicial para los materiales magnéticos y para la generación de excesivos valores de calor, así como pérdidas excesivas en el núcleo por corrientes parásitas. Además una consideración importante es que las pérdidas por histéresis son mínimas debido a que los dominios del material ferromagnético no estarán sometidos a grandes campos magnéticos como se muestra en la figura 40, donde la escala de colores indica que este punto alcanzará los valores más altos.

Punto con mayor saturación magnética

Nota. Un valor de 1.03 Teslas evidencian el flujo magnético entre cada polo debido a la fuga de imán que existe en cada cambio polar del rotor.

El cambio de temperatura es diferente en las ranuras de acero y en las bobinas de cobre, debido a que cada materia tiene sus propias características para retener el calor denominado como la capacidad de calor específico de la materia. Se debe calcular ambos valores y elegir el papel aislante en función del valor más alto y contemplar un margen de seguridad adecuado. Para lo cual es necesario analizar las formas de transferencia de calor que se producen en el generador eléctrico utilizando el valor de densidad de corriente en el conductor y el área del mismo obtenidos previamente en la parte matemática.

Las principales fuentes de calor son: el estator y su devanado, por lo cual se debe elegir un papel aislante apropiado. Para seleccionar el papel aislante o material aislante y su categoría de acuerdo a su clase térmica, se debe estimar la temperatura que se producirá en la ranura y bobinado con el siguiente cálculo.

Cálculo de la transferencia de calor por conducción en el generador

Este cálculo permite la estimación de temperatura que resulta del funcionamiento del generador eléctrico y con ello seleccionar un aislante de categoría térmica adecuado. La transferencia de calor por conducción se analiza entre el estator y el devanado.

Partes del estator

Nota. Se presentan las partes principales del estator.

Para calcular el valor de la transferencia de calor por conducción para un bloque de espesor t y área A se emplea la siguiente ecuación:

Ecuación 67

Tasa de flujo de calor

$$Q = k * A * \frac{dT}{dx}$$

Donde:

- $Q = Tasa \ de \ flujo \ de \ calor \ en \ W$
- $k = coeficiente de conductividad térmica en (W/m^2)$
- *A* = área de la sección transversal del conductor
- $\Delta T = diferencia de temperatura a través del espesor t$

Área del conductor

Nota. Área del conductor (As) que ocupa las espiras del alambre magneto en la ranura.

 $As = 0.0001274137 m^2$

$$Longitud = 22mm = 22x10^{-3}m$$

Densidad de corriente máxima en el conductor = $Jc = 2.10 \frac{A}{mm^2}$

Resistencia eléctrica del cobre (ρ) = 1.7 x 10⁻⁸ohm – m

Cálculo de la tasa de calor producida (Ecuación 66):

$$J^{2} * \rho = (2.52x10^{6})^{2} * (1.7X10^{-8}) = 74\,970\frac{W}{m^{3}}$$

Cálculo de pérdidas en el conductor IR²:

74 970
$$\frac{W}{m^3}$$
 * 0.0001274137 m^2 * 15 $x10^{-3}m = 0.14328 W$

Cálculo del gradiente de temperatura:

$$\frac{dT}{dx} = \frac{Q}{k * A}$$

Donde:

$$k = Condcutividad térmica del Cobre = 387 \left(\frac{W}{m^2}\right)$$

Entonces:

$$\frac{dT}{dx} = \frac{Q}{k * A} = \frac{0.14328 W}{387 \frac{W}{m^{\circ}C} * 0.0001274137 m^2} = 2.9058 = 3 \frac{C}{m}$$

Refrigeración del sistema y selección del aislante térmico

Para determinar un sistema de refrigeración se utiliza el valor de la densidad de calor generada en el marco del estator. Por deducción el movimiento relativo de la moto ayuda a enfriar el generador sin hacer necesario el uso de un sistema de refrigeración complementario. Además se hace necesario que la superficie de la carcasa se pinte de color negro para mejorar la trasferencia de calor, esto por el estudio de la emisividad en los cuerpos negros realizado.

(Hendershot & Miller, 2010) Mencionan que la radiación se describe en la siguiente ecuación:

Ecuación 68

Ecuación de Stefan Boltzmann

$$\frac{Q}{A} = e * \sigma * (T_1^4 - T_2^4)$$

Donde:

 $Q = Tasa \ de \ calor \ transferido$ $A = ext{Area} \ de \ la \ superficie \ radiante$

 $e = emisividad \ del \ material$

 $\sigma = Constante~de~Boltzmann = 5.67 x 10^{-8} rac{WK^4}{m^2}$, para un cuerpo negro

T1 = temperatura superficial absoluta del cuerpo radiante en Kelvin

T2 = temperatura absoluta del entorno en Kelvin

Desarrollo:

e = *emisividad de un cuerpo negro* = 0.9
 Datos:

Temperatura del entorno (ciudad de Latacunga) = 14° C = 287.15 K

T2=?

Desarrollo:

$$\frac{Q}{A} = 444.42 \frac{W}{m^2}$$

$$444.042 = (0.9) * (5.67x10^{-8}) * (T1^4 - 287.15^4)$$

$$T1 = \sqrt[4]{\frac{444.042}{0.9 * (5.67 \times 10^{-8})} + 287.15^4}$$

$$T1 = 352.85 K = 79.7 \,^{\circ}C$$

La variable T1 es el resultado de la suma de la temperatura del entorno y la de la superficie del estator por lo cual:

$$T1 = Tentorno + Tsuperficie$$

Tsuperficie del estator =
$$T1 - Tentorno = (79.7 - 14)$$
°C = 65.69 °C

Con las condiciones de prueba y error que se realiza en el generador eléctrico para comprobar su funcionalidad, se puede asegurar que el generador no sobrepasará los 100 °C y se decide fabricar un aislante a la medida por impresión 3D de material PLA que hace referencia a un tipo de poliéster termoplástico.

Aislante térmico del generador

Nota. El aislante se fabrica por un proceso de impresión 3D de material plástico PETG y un espesor de 0.45 mm.

Se debe tomar en cuenta que un exceso de temperatura puede ocasionar la desmagnetización de los imanes, daño en el bobinado, vida útil reducida del aislante y en general daños severos que comprometen la funcionalidad del generador.

Figura 60

Refrigeración de los componentes del sistema de carga

Nota. Cada componente es refrigerado por las corrientes de aire de su entorno.

Partes del Generador eléctrico

El generador eléctrico está compuesto por 15 partes. Su forma permite un ensamblaje detrás de la horquilla de la dirección sin ocasionar choques con la parte delantera de la moto cuando la suspensión se encuentra en funcionamiento. En la figura 60 se presentan todas las partes que conforman el generador eléctrico resultado de un análisis CAD en software especializado para identificar fallas, sobredimensionamientos, interferencias mecánicas y mejoras en la geometría.

Figura 61

Partes del generador de imanes permanentes

Nota. Las dimensiones de cada parte del generador están en función de la geometría, tamaño y disponibilidad de los imanes de Neodimio.

Cálculo del calibre de alambre magneto

El calibre se calcula en base al área del conductor que se refiere al área de la ranura donde se alojan las bobinas, este cálculo toma en cuenta el coeficiente de empaquetadura y la cantidad de espiras que se analizó en la parte de cálculos.

Figura 62

Área del conductor

Nota. Se presenta el área que ocupa el conductor en la ranura.

Datos:

$$Ns = n$$
úmero de vueltas = 109

$$As =$$
área del conductor $= 0.0001274137 m^2$

Desarrollo:

Kcp=15% pero para un factor de llenado neto "SFn" corresponde:

Ecuación 69

Factor de llenado

$$SFn = \frac{n * d^2}{As}$$

|Donde:

• n = número de vueltas por ranura

- *d* = *diámetro del alambre medidio a través del esmlate de alambre*
- As = área del conductor en la ranura

$$SFn = \frac{n * d^2}{As}$$

$$\sqrt{\frac{SFn * As}{n}} = d$$

n = número de vueltas por bobina * 2

$$n = 109 * 2 = 218$$

$$d = \sqrt{\frac{SFn * As}{n}} = \sqrt{\frac{0.314 * 0.0001274137}{218}} = 0.00042839 m$$

$$d = 0.428 \, mm$$

De la tabla 4 se elige el alambre magneto AWG 24.

Fabricación de piezas y componentes del generador

La manufactura de cada componente se realiza con distintos procesos de

manufactura y con diferentes materiales descritos en la siguiente tabla.

Tabla 11

Proceso de manufactura de los componentes del generador eléctrico

Pieza	Características	Procesos de	Descripción del
	del Material	fabricación	funcionamiento
Rotor	-Duraluminio (Al-		Aloja en su radio el
	Cu-Mg)	1 Torneado	conjunto de 16 imanes de
	-Densidad: 2780	2 Taladrado	Neodimio que se
A. Y	$\frac{kg}{m^3}$	3 Roscado	distribuyen en 4 polos
	-Aleación no		alrededor de todo el
	ferrosa		perímetro. Además se

Pieza	Características	Procesos de	Descripción del
	del Material	fabricación	funcionamiento
	-Conductividad		acopla en conjunto con las
	térmica: 140 ^W		tapas laterales para
	III K		mantener fijos a los
			imanes. Estos últimos se
			fijan con pegamento
			industrial.
Núcleo laminado	- Lámina de acero		El núcleo laminado evita
	inoxidable 430	1 Corte laser	pérdidas de potencias
	- 21 Láminas	2 Capa de barniz	excesivas por corrientes
	- Espesor de cada	3 Remachado	de Foucault o parásitas.
E F	lámina: 0.4 mm		Además el porcentaje de
007-57	-Se recomienda		Silicio que es de 0.75% en
0	un acero eléctrico		su aleación permite reducir
	de grano no		las pérdidas por histéresis.
	orientado.		
Carcasa			La carcasa es una pieza
	- Copolímero		fija que se sujeta al
	PETG de color	1 Impresión 3D	mecanismo tensor de la
100	rojo.	2 Taladrado	banda. Consta de orificios
			que ayudan a evacuar el
			calor.

Bobinados

-Alambre de Cobre esmaltado. -Calibre: AWG 24 1 Bobinado manual, 109 vueltas en cada bobina El alambre de cobre esmaltado se enrolla en un número determinado de vueltas, formando así las bobinas del núcleo ferromagnético. Al final se baña cada bobina con barniz para evitar que se desacomoden.

Pieza	Características	Procesos de	Descripción del
	del Material	fabricación	funcionamiento
Aislante eléctrico	-Copolímero	1 Impresión 3D	Mantiene el bobinado
	PETG de color		aislado separado del
	azul		núcleo ferromagnético y
			evita cortocircuitos.
Polea de	-Copolímero	1 Impresión 3D	Multiplica las revoluciones
trasnmisión	PETG de color		del rotor que recibe
	¯ rojo		directamente de la rueda.
Mecanismo	- Platina de hierro	1 Corte	Regula la tensión de la
regulador de	gris (5 mm se	2 Taladrado	banda mediante un perno
tensión de la	espesor)	3 Suelda SMAW	de calibración.
banda			
	_		

Nota. La presente tabla expone los componentes principales que conforma el generador eléctrico, material, proceso de fabricación y funcionamiento.

Ensamblaje del generador eléctrico

Cada componente que forma parte de la etapa de generación de energía se acoplan con tornillos con cuello de cabeza hexagonal interna con el fin de evitar complicaciones en las pruebas de funcionalidad frente a vibraciones y distintas velocidades de giro. Se debe centrar el rotor con el estator aunque la fabricación debe asegurar este paso, una forma de verificar la medida del entrehierro es con un calibrador de láminas y ajustar el valor de tal forma que el entrehierro se ajuste a 1 mm, omitir este paso o no considerarlo puede ocasionar ruidos extraños en el generador o daños por fricción entre el rotor y estator.

Los cables de salida del generador se conectan con terminales tipo banana que se protegen con cinta aislante para evitar que se topen. El cableado interno utiliza bloques de terminales para mayor seguridad. Para la instalación se debe desmontar la rueda completa, desmontar los amortiguadores de la horquilla y proceder a colocar la banda y volver a armar. Luego al momento de fijar el generador se debe primero colocar la banda en el canal de la polea conducida. Finalmente se comprueba la tensión de la banda con un valor de deflexión de 1 a 2 cm.

En la siguiente tabla se resume el proceso de ensamblaje del generador de acuerdo a la ubicación y consideraciones de cada componente.

Tabla 12

Ensamblaje del generador de imanes permanentes

Ensamblaje del generador eléctrico			
Componente	Ubicación	Consideraciones	
Componente	Ubicación	Observaciones	
Componente Polea multiplicadora	Ubicación En la rueda delantera, fijada	Observaciones Cada prisionero debe	
Componente Polea multiplicadora	Ubicación En la rueda delantera, fijada al eje con 4 prisioneros.	Observaciones Cada prisionero debe apretarse en cruz para	
Componente Polea multiplicadora	Ubicación En la rueda delantera, fijada al eje con 4 prisioneros.	Observaciones Cada prisionero debe apretarse en cruz para evitar un mal centrado.	
Componente Polea multiplicadora Rotor	Ubicación En la rueda delantera, fijada al eje con 4 prisioneros. Fijado al eje de la polea	Observaciones Cada prisionero debe apretarse en cruz para evitar un mal centrado. Las tapas laterales del rotor	
Componente Polea multiplicadora Rotor	Ubicación En la rueda delantera, fijada al eje con 4 prisioneros. Fijado al eje de la polea conducida y centrado	Observaciones Cada prisionero debe apretarse en cruz para evitar un mal centrado. Las tapas laterales del rotor no deben emplear sellante o	
Componente Polea multiplicadora Rotor	Ubicación En la rueda delantera, fijada al eje con 4 prisioneros. Fijado al eje de la polea conducida y centrado axialmente con cojinetes. El	Observaciones Cada prisionero debe apretarse en cruz para evitar un mal centrado. Las tapas laterales del rotor no deben emplear sellante o pega, debido a que se	

Ensamblaje del generador eléctrico			
Componente	Ubicación	Consideraciones	
	eje se fija al marco del		
	estator con 2 rodamientos.		
Imanes de Neodimio	Se insertan en cada	Ubicar 4 imanes con la	
	cuadrante externo del rotor	misma posición polar para	
	con pegante de silicona en	cada polo magnético del	
	sus caras para evitar que	generador.	
	vibren y no se agrieten.		
Núcleo laminado	Las 21 láminas de 0.5 mm	Prensar el paquete de	
	de espesor se barnizan en	láminas y verificar con un	
	cada cara y se unen con 4	calibrador el ancho del	
	remaches de aluminio.	núcleo, el mismo que debe	
		ser de 15 mm.	
Devanados	109 espiras en cada bobina	Cada bobina de bañarse en	
	de alambre magneto AWG	barniz para evitar que se	
	24	desacomoden	
	No es un componente físico	1 mm de separación , el	
Entrehierro	pero su importancia recae	estator y el rotor deben	
	en la importancia de	asegurar esta medida para	
	mantener separado al rotor	evitar fallos por fricción	
	del estator.		
Cubiertas laterales del	Se une al rotor con 4 pernos	La agujeros roscados como	
rotor	M4 de cabeza hexagonal	en todas las piezas	
	interna.	pequeñas requieren cuidado	
		en el apriete	
Carcasa del generador	Soporta al núcleo	Por la separación entre la	
	ferromagnético del estator	polea conducida y la rueda	
	con 4 pernos hexagonales	de la moto, la banda debe	
	de cabeza interna. El rotor	colocarse primero antes de	
	se fija a éste con	fijar la carcasa.	
	rodamientos y en conjunto		
	se atornillan a la base del		
	mecanismo tensor de la		
	banda.		

Ensamblaje del generador eléctrico			
Componente	Ubicación	Consideraciones	
Mecanismo tensor de la	Tensa la banda mediante un	La medida correcta de	
banda	tornillo regulable que separa	tensión de la banda es	
	o une las bases del	desde su posición de	
	mecanismo.	reposo hasta la flexionada	
		de 1 a 2 cm.	

Nota. Se presenta el proceso de ensamblaje del generador eléctrico en la moto eléctrica.

Selección del inversor del sistema de carga

El inversor se elige en función de la potencia de salida necesaria, es por esto que al multiplicar el voltaje (85 V) y amperaje (5 A) que necesita el cargador de la moto eléctrica se obtiene 550 W, en este punto es recomendable elegir un inversor de igual o mayor potencia para satisfacer la carga del sistema.

Figura 63

Selección del inversor

Nota. Se presenta el inversor seleccionado con sus partes principales.

Tabla 13

Características técnicas del inversor

Características del inversor

Cálculo para elegir un inversor:

Corriente de salida: 5 A

Voltaje de salida: 110 V

Potencia requerida: (5 A)*(110 V) =550 Watt

Especificaciones del inversor 750 W:

Valores de entrada DC	Valores de salida AC	
Voltaje in: 12 V	Voltaje de salida : 120 V	
Capacidad de la batería: 47 Ah	Frecuencia: 58-62 Hz	
Rango de corriente de entrada: 75 A	Máx. potencia de salida: 750 W	
Desactivación por voltaje bajo : $10.5 V \pm 0.3V$	Sobrecarga de potencia: 1500 W	
Desactivación por sobre-voltaje: 15.5 V ±0.5 V	Señal: Onda senoidal modificada	
Nota. Se presenta las características técnicas del inversor Trupper elegido. Fuente:		

elaboración propia con datos tomados de (TRUPER, 2022).

Selección del regulador de corriente del sistema de carga

El generador de imanes permanentes es un alternador por tal razón se utiliza un

regular de moto convencional para rectificar y regular la corriente alterna.

Figura 64

Regulador de corriente monofásico

Nota. Se presenta el diagrama de interno del regulador de corriente y su forma de onda resultante en cada fase de rectificación y regulación. Tomada de (Areatecnología, 2023)
Tabla 14

Especificaciones técnicas del regulador			
Valores de entrada	Valores de salida		
Voltaje: 20 – 60 V, Corriente alterna	Voltaje: 12 – 14.5 V, Corriente directa		
	Corriente de salida: 0- 4 Amperios		
Designación	de los cables		
Rosado	Cable de fase, entrada AC		
Amarillo	Cable de fase, entrada AC		
Verde	Salida negativa a la batería		
Rojo	Salida positiva a la batería		
Negro	Cable de referencia (+ de la batería a		
	través del interruptor de encendido)		

Características del regulador del sistema de carga

Nota. Se presenta los valores de trabajo del regulador de corriente y la designación de cada

cable.

Ensamblaje de los componentes que forman el sistema de carga

Figura 65

Componentes principales del sistema de carga regenerativo

Nota. Cada componente se ubica cerca de rejillas de ventilación para evacuar el calor que se genera en todo el sistema.

Etapas de potencia del sistema de carga regenerativo

El sistema de carga regenerativo en su parte eléctrica y electrónica se constituye por 6 etapas de potencia cada una descritas a continuación.

Etapa 1

Corresponde al generador en toda su constitución y la corriente alterna que este produce, el estator en su interior consta de doce bobinas inductoras con 2 arreglos conectados en paralelo, cada arreglo formado por 6 bobinas conectadas en serie, así se obtiene una salida monofásica de 17 a 20 voltios alternos y valores de corriente de 0.5 a 1 Amperio. Cada bobina se ubica en un ángulo de 30° eléctricos respecto de otra. La frecuencia varía en función de la velocidad de la moto eléctrica.

Figura 66

Nota. Se presenta el diagrama eléctrico del sistema de carga regenerativo.

Etapa 2

El generador produce un tipo de corriente alterna CA, por lo que es necesario emplear un rectificador-regulador monofásico. Los cables de salida del generador se conectan a los cables de entrada de fase del regulador que mediante un arreglo de diodos rectifican la onda completa de la corriente, para obtener solo valores positivos. Esta etapa también se constituye por un filtro de onda, formado por 3 capacitores conectados en paralelo que mejora la linealidad de la corriente para producir una salida de corriente continua y constante.

Etapa 3

La etapa de regulación de voltaje es realizada por el regulador electrónico, este componente controla los valores de salida a la batería y estabiliza los valores en 13.5 - 14 voltios indistintamente de la velocidad de la moto eléctrica siempre con el acelerador en su máxima señal.

Etapa 4

La energía recolectada pasa a cargar la batería auxiliar con un voltaje de 13.5 -14 voltios y una corriente de 0.5 a 1 Amperio en condiciones normales y con el acelerador a su máxima señal.

Figura 67

Etapa 5 del sistema de carga

Nota. La modulación por ancho de pulso permite activar y desactivar cada transistor por tiempos diferentes y durante periodos diferentes.

Etapa 5

El inversor de 750 W toma la energía almacenada en la batería auxiliar para transformarla en valores de 110-120 Voltios en corriente alterna, con esta etapa finaliza el circuito fuente de carga. Este tipo de inversor no dispone de una salida de onda completamente sinusoidal, debido a que la inversión se realiza por modulación de ancho de pulso PWM (modulación por ancho de pulso), la onda resultante es el conjunto de valores positivos y negativos se produce al activar y desactivar transistores con señales cuadradas en un trayecto de onda sinusoidal.

El ciclo de carga se completa cuando el cargador de la moto eléctrica se conecta al inversor y la carga de la batería de litio empieza, esto se puede verificar con el medidor KG-140F que muestra en pantalla el valor de corriente de color rojo.

Consideraciones de descarga y elección de la batería de ácido plomo

En la batería de ácido plomo se puede estimar su estado de carga en función del valor de voltaje medido como se muestra a continuación.

Figura 68

Estado de carga de la batería de ácido plomo

Nota. Se muestra los valores de voltaje que describen el estado de carga de la batería de ácido plomo del sistema.

Otro factor que se debe considerar es el valor de corriente y voltaje para la etapa de carga en la que trabaja el sistema regenerativo, debido a sus valores bajos de corriente se debe asegurar que el voltaje de la batería no disminuya a valores críticos que demanden demasiada corriente, por lo que se limita una descarga solo hasta el 60% que corresponde a un valor de tensión de 12 voltios.

La batería de ácido-plomo no debe someterse a valores de descarga tan bajos, por tal motivo se establece el valor del DOD (Profundidad de descarga), para calcular el valor de tensión mínimo de descarga en la batería.

El DOD se mide en porcentaje y se refiere a la energía extraída la batería en relación a su capacidad nominal.

DOD = 1 - SOCSOC = 60%DOD = 1 - 0.6 = 0.447 Ah(bateria) * 0.4 = 18.8 A h

Esto quiere decir que se pretende utilizar 18.8 A por una hora descarga, por lo que se debe asegurar que el inversor no consuma valores de corriente superiores de la batería porque el tiempo que requiere para recuperar su capacidad o estado de carga correspondiente al 100% es muy elevado.

Figura 69

Curva de carga de una batería de ácido plomo

Nota. Se presenta las etapas de carga de la batería de ácido plomo.

Instalación del voltímetro-amperímetro para el generador eléctrico

Se tiene que monitorear el voltaje y corriente producidos en el generador eléctrico por lo que se hace necesario instalar un voltímetro-amperímetro digital de corriente continua que optimice la obtención de datos. El suministro de energía para la pantalla se toma del convertidor DC (12 V) con el fin de que el display se encienda con la llave principal. El cable de medición (color amarillo) se conecta al cable positivo (color rojo) de la salida del regulador. Finalmente se conecta el derivador en serie con el cable negativo que sale del regulador hacia la batería de ácido plomo, como se muestra en la siguiente figura.

Como el cable amarillo mide la energía que llega a la carga, se debe tomar en cuenta que la carga es una batería, por lo que se debe emplear un diodo que separe esta conexión, sino el medidor solo mostrará el voltaje de la batería. Esto conlleva al uso de un medidor extra para monitorear la batería de ácido plomo.

Figura 70

Conexión del voltímetro-amperímetro

Nota. Conexión del voltímetro –amperímetro para una fuente de alimentación DC externa. Tomado de (Aideepen ELEC&Lifes, 2022)

Un punto importante a tomar en cuenta es la veracidad de los datos obtenidos, por tal motivo una vez instalado se debe verificar la medición con un multímetro conectado en paralelo y en función de un valor determinado se calibra el voltímetro-amperímetro al girar los potenciómetros en la parte posterior hasta ajustar los valores.

Instalación del medidor de voltaje

Este display muestra el estado de carga de la batería de ácido plomo mediante la lectura de su valor de tensión. Sus cables de alimentación (color rojo y negro) se conectan al convertidor DC (12 V) que le permite encenderse al mismo tiempo que con la llave de activación y su cable de medición o referencia (color amarillo) se conecta después del diodo lo que le permite obtener solo el valor de la batería.

A continuación se detalla la conexión del voltímetro.

Figura 71

Conexión del voltímetro para la batería de ácido plomo

Nota. Se presenta la conexión de los cables del voltímetro para la batería de ácido plomo.

Instalación del medidor KG-140F

El display principal de la moto eléctrica no muestra un valor de SOC (%) preciso, por tal motivo se hace necesario el uso de un medidor KG-140F. Este medidor permite monitorear en tiempo real los valores de trabajo característicos de la batería de litio, el valor del estado de carga SOC (%) se muestra en pantalla lo que permite llevar un control de la energía que dispone la batería para cada recorrido.

El medidor KG-140F tiene un módulo electrónico de control que se fija en la parte inferior debajo del maletero, el derivador que mide la corriente se coloca sobre una pieza de plástico previamente impresa para aislarlo de la base metálica. Para comprobar una buena conexión en el controlador se debe verificar un destello de luz verde y en la pantalla no debe aparecer una cruz roja sobre el indicador del puerto de comunicación 485.

Instalación del módulo electrónico de control del medidor KG-140F

Nota. Se presenta la instalación del módulo electrónico del medidor KG-140F en la parte inferior del maletero junto a la batería de litio.

El medidor cuenta con una sonda de temperatura, la cual se comprueba al exponerla a diferentes temperaturas con el fin de que el valor en pantalla varíe de igual manera, una vez hecho esto se coloca en la pared metálica de la caja de la batería de litio con cinta adhesiva.

El tipo de conexión se realiza para una fuente de suministro independiente que se toma del convertidor DC (12 v), esto permite que el medidor se active con la llave principal. Las conexiones se realizan como se muestra en la siguiente figura.

Figura 73

Diagrama de conexión del medidor KG-140F

Nota. Diagrama de conexión para una fuente de alimentación externa. Tomado de (Hangzhou Junce Instruments Co., Ltd., 2021)

Con los botones de la derecha calibran todos los valores del medidor en función de los datos característicos de la batería de litio y se bloquea los ajustes de la pantalla al presionar la tecla ok por 3 segundos.

Componentes del tablero de control

Para controlar y garantizar el suministro de energía el sistema cuenta con indicadores luminosos como son:

- Un led rojo se activa cuando el generador eléctrico no suministra energía a la batería de ácido.
- Un led verde indica la activación del generador.

Figura 74

Testigo luminoso del generador eléctrico

1	
Generador 1	
Generador eólico	OK C

Nota. El testigo luminoso de color rojo indica que el generador eléctrico no produce electricidad y el led verde se activa cuando éste comienza a producir electricidad.

Primero en la parte superior se ubica el indicador de funcionamiento del generador eléctrico, junto al tablero principal en la parte inferior se encuentra la pantalla del medidor JUNCTEK KG-140F que muestra en tiempo real los valores de salida (descarga) o entrada (carga) de la batería de litio y en su esquina superior izquierda se ubica el voltímetro para los valores de voltaje de la batería de ácido plomo. En la parte inferior se coloca el voltímetro-amperímetro del generador eléctrico.

Indicadores de monitoreo

Nota. Cada indicador permite el control de todos los valores que ingresan a la batería de ácido-plomo.

Esquema eléctrico y electrónico de la moto eléctrica

El controlador sinusoidal es el componente fundamental para el funcionamiento de una moto eléctrica. Permite el paso de energía desde la batería hacia el motor, mediante un circuito electrónico de PWM gracias a un arreglo de 6 transistores que se activan y se activan con la finalidad de generá una señal sinusoidal que energiza cada fase del motor. La designación BLDC se establece porque utiliza corriente continua para crear la onda de su funcionamiento. Además recibe la señal de los sensores hall ubicados en el motor para identificar la posición del rotor y calcular la velocidad. También recibe la señal del sensor inductivo del acelerador para determinar la entrega de potencia al motor. Esto porque la energía DC es portable mientras que en los motores de movilidad AC se requiere de inversores para su funcionamiento.

Diagrama eléctrico de la moto eléctrica

Nota. Cada número representa un bloque del circuito al que pertenece.

- 1 Interruptor de la llave de señal de encendido
- 2 Conectores
- 3 Antena
- 4 Controlador de onda sinusoidal
- 5 Motor eléctrico
- 6 Sistema de audio

7 Interruptores y mandos en los puños del manubrio

8 Bloque de terminales

9 Cargador

- 10 Conectores de las luces
- 11 Batería de litio
- 12 Interruptor automático de circuito (10 A)

Al finalizar todas las conexiones del sistema se debe emplear aislante y ordenar cada ramal de alambres sin dejar cables cruzados o colgados que puedan interferir en una fácil comprensión del circuito o fallos en el mismo.

Conexión eléctrica del sistema de carga regenerativo

Para las conexiones entre componentes del sistema se utilizan socket o conectores de pines. Los medidores digitales toman energía del convertidor DC de 12 voltios. A continuación se presenta el esquema de conexión del sistema de carga regenerativo. Cuando se utiliza una fuente externa para alimentar el módulo electrónico del medidor KG-140F, se debe colocar el interruptor ubicado en su parte posterior en la posición 3W.

Figura 77

Diagrama de conexión del sistema de carga

Nota. Se indica el diagrama de conexión del sistema de carga con los colores que corresponden a cada cable.

Capítulo IV

Pruebas y análisis de resultados

Este capítulo abarca la ejecución de pruebas dinámicas de la motocicleta eléctrica en una ruta determinada con el fin de comprobar el correcto funcionamiento del sistema de carga regenerativo y establecer las nuevas prestaciones de autonomía.

Protocolo de pruebas

El protocolo de pruebas describe los aspectos técnicos y operativos que se deben tomar en cuenta durante la ejecución de las pruebas.

Tabla 15

Protocolo de pruebas

	PROTOCOLO DE PRUEBAS	
Procedimiento	Observaciones	Imagen
1 Descargar la batería de	Este valor de descarga aun	
litio hasta su valor mínimo	permite utilizar dispositivos	
(66 - 67 Voltios); a este	luminosos e indicadores en	
valor la moto eléctrica se	el tablero por un corto	THE REAL PROPERTY OF THE PARTY
apaga por completo.	tiempo. La BMS de la	A 11663
	batería de Litio evita una	
	descarga fuera del rango	
	establecido para cada	
	celda, por lo que no se	
	causa daños al realizar esta	
	prueba.	
2 Encender el tablero de	No activar ningún	General Boostantin
instrumentos y los	consumidor de corriente.	
medidores digitales.		

3 Calibrar el medidor KG-
140F con la capacidad de
trabajo de la batería (22

El valor de capacidad puede variar de acuerdo a la profundidad de descarga a 000: 1 000:

PROTOCOLO DE PRUEBAS	,
Observaciones	

la que sea sometida la

i roccumiento
Ah), activar los avisos de
protección para valores
anormales de corriente y
voltaje.

Procedimiento

4 Conectar el cargador eléctrico. Primero se conecta el cargador al puerto de carga de la moto eléctrica posteriormente se conecta a la fuente eléctrica de 110 V. batería. Con la tecla OK presionada por 3 segundos se bloquea los botones de ajuste para evitar intervenciones de terceros. Se debe evitar el uso de extensiones en la medida de lo posible. No se debe apagar el switch principal o el tablero en ningún momento durante la carga.

5 Bloquear el motor eléctrico e iniciar la carga de la moto eléctrica.

El tiempo medido de carga completa es de 5 Horas y 22 minutos.

6 Una vez completa la carga, se comprueba el valor de la capacidad en el medidor KG-140F, el SOC deberá ser del 100%. En caso de que el SOC no alcance el 100% pero la carga esté completa se debe calibrar el KG-140F al nuevo valor de la máxima capacidad alcanzada por la batería. El cargador encenderá un foco verde cuando la carga esté completa.

Imagen

PROTOCOLO DE PRUEBAS Observaciones

Procedimiento

7 Analizar la autonomía inicial bajo las fases y condiciones establecidas en la tabla de prueba de ruta.

Antes de realizar las pruebas de autonomía se debe revisar la presión de las ruedas e interferencias mecánicas.

-

Imagen

8 Realizar la prueba de
corte y establecer el
kilometraje alcanzado y el
estado de carga de la
batería de litio.

Entre este paso y el anterior se debe dejar 60 minutos de descanso para evitar daños por temperatura en el motor eléctrico.

9 Repetir el procedimiento del paso 1 al 6.

La prueba inicial y final deben replicarse en 2 días respectivamente para evitar pruebas nocturnas.

10 Instalar el sistema de	Ensamblar el generador	
carga regenerativo.	eléctrico, el regulador, la	
	batería de ácido plomo, el	
	inversor y el cargador de la	
	moto eléctrica. Considerar	
	aspectos de la tabla 12.	
7 Analizar la autonomía final	Antes de realizar las	
bajo las fases y condiciones	pruebas de autonomía se	A A A A A A A A A A A A A A A A A A A
establecidas en la tabla 16	debe revisar la presión de	
de prueba de ruta. Se	las ruedas e interferencias	
incluye la prueba de corte	mecánicas así como cables	
para determinar la distancia	sueltos.	
extra alcanzada.		

Nota. Este proceso puede variar de acuerdo a las características de cada batería.

Desarrollo de la prueba de ruta

En esta prueba se debe contemplar aspectos de velocidad, kilómetros de recorrido, condiciones de la pista, fases y variables de prueba. Por conveniencia esta parte de la investigación se ejecuta en la vía interna de la universidad campus Belisario Quevedo, la misma que cuenta en su trayecto con una parte plana y otra de diferente inclinación que demanda mayor rendimiento de la motocicleta eléctrica. En la tabla 12 se detallan las variables que se deben considerar al momento de ejecutar la prueba, con el fin de obtener un perfil gráfico de velocidad vs tiempo similar en la prueba inicial y final.

Para efectuar este estudio se emplea una aplicación móvil velocímetro GPS Pro que monitorea la velocidad, ruta, altitud, trayecto y distancia recorrida, para obtener el ciclo de conducción en cada fase de la prueba. Además se utiliza la aplicación móvil del medidor KG-140F que muestra todos los valores medidos en tiempo real en el celular.

Figura 78

Interfaz de la aplicación KG

Nota. Se presenta la interfaz de datos de la aplicación móvil del medidor kg-140F.

Tabla 16

Especificaciones de la prueba de ruta

Prueba de ruta			
Мара	Ruta		
Fin	Campus Belisario Quevedo		
	Distancia: 2 088.96 m=2km		
Fuerzas Armadas ESPE.	Tipo de calzada: Asfalto		
	Condición climática: Despejado		
	Velocidad del viento: 4 -10 m/s		
	Tiempo de prueba aprox. : 50-60 minutos		
and the second sec	Altitud: 2820 msnm		
	Número de curvas: 6		
Variat	oles de prueba		
Velocidad I: 33-42 km/h	Temperatura del entorno: 10 °C		
Velocidad II : 41-51 km/h	Porcentaje inicial de carga SOC (%): 100		
Velocidad III : 41-56 km/h	Señal del acelerador : máxima señal		
Velocidad de corte : 41-65 km/h	Presión de las ruedas : 35 PSI		
Peso total : 75 kg	Luces y dispositivos de audio : Off		
Fase	es de prueba		
Autonomía inicial	Autonomía final		
Fase 1 = 31.2 km (15 vueltas)	Fase 4 = 31.2 km (15 vueltas)		
	Antes de iniciar esta prueba se debe		
	implementar el sistema de carga regenerativo.		
Fase 2 = descanso de 60 minutos por	Fase 5 = descanso y carga por 60 minutos de		
seguridad térmica del motor eléctrico	toda la energía almacenada en la batería de		
BLDC.	ácido plomo.		
Fase 3 = prueba de corte (n vueltas	Fase 6 = prueba de corte (n vueltas hasta que la		
hasta que la moto eléctrica se detenga)	moto eléctrica se detenga)		
Nota. Se presenta la tabla que describe los parámetros del ciclo de conducción.			

El recorrido inicia en la parte lateral del laboratorio de petroquímica al final de la vía asfaltada del parqueadero, se avanza hasta la primera rotonda cerca al sistema de tratamiento de aguas servidas, doblar a la derecha y comienza la subida hasta la segunda rotonda cerca del parqueadero principal, luego tomar a la derecha hasta el final de la vía en la vuelta en U cerca al laboratorio de Turismo y avanza de frente al punto de la segunda rotonda donde vira a la izquierda y continua por el desnivel de nuevo hasta la primera rotonda, donde toma dirección a la izquierda y avanza hasta el final del parqueadero donde realiza un giro en U y finaliza en el mismo punto de inicio; hasta aquí se ha completado 1 vuelta, que corresponde a un recorrido de 2 .08 km.

Las variables de la tabla 16 indican factores de prueba que se toman en cuenta, estas se deben emular en la prueba inicial y final. En total son 5 vueltas por velocidad (I, II y III), con esto se suma un total de 31.2 km en la fase 1, que se replica en la fase 4. Para el desarrollo de las fases 3 y 6 el trayecto es el mismo, pero la prueba de corte se realiza a máxima velocidad hasta la detención de la moto eléctrica. La siguiente figura muestra un resumen de la prueba.

Figura 79

Diagrama de prueba

Nota. En cada parada se comprueba la temperatura del motor eléctrico.

Resultados obtenidos

En la prueba de campo realizada se lograron obtener datos relevantes de

autonomía, velocidad, distancia recorrida, estado de carga de la batería de litio, valores de

voltaje, corriente y tiempo obtenidos de la aplicación Velocímetro GPS Pro, medidor KG-140F y el voltímetro amperímetro digital ubicados en el tablero, en conjunto facilitaron el análisis comparativo y deductivo de las nuevas prestaciones de autonomía.

Análisis de la fase 1

Luego de realizar las pruebas de ruta se obtuvo el ciclo de conducción (figura 78) para la primera fase con un tiempo total de 58.2 minutos y una distancia total recorrida de 34.42 km. El estado de carga de la batería de litio al final de la fase 1 fué del 62%.

Figura 80

Perfil de velocidad vs tiempo de la fase 1

Nota. Se presenta el ciclo de conducción resultante. La velocidad media en primera velocidad

es de 33 km/h, en velocidad 2 es de 40 km/h y en velocidad 3 es de 48 km/h.

Tabla 17

Velocidades de la fase 1

	Velocidad I	Velocidad II	Velocidad III
Valor máximo	38.76 km/h	50.24 km/h	57.32 km/h
Valor promedio	33.61 km/h	42.19 km/h	45.60 km/h

Nota. Se presentan las velocidades de la fase 1.

Análisis de la fase 2

La fase 2 contempla un descanso de 60 minutos pertinentes para evitar fallas por elevadas temperaturas en el motor eléctrico. Un punto importante que se debe considerar en esta fase es no apagar el tablero y dispositivos de medida porque se pierde la comunicación Bluetooth con la aplicación móvil del medidor KG-140F.

Análisis de la fase 3 o fase de corte

Luego de realizar la prueba de ruta se obtuvo el ciclo de conducción para la fase 3 (figura 79). El tiempo que tardó la moto eléctrica en detenerse es de 51.5 minutos con 20.4 km de recorrido. La velocidad máxima en esta fase fue de 55.08 km/h y un promedio de 39.02 km/h.

Figura 81

Perfil de velocidad vs tiempo de la fase 3

Nota. Se presenta el ciclo de conducción de la fase 3. La curva muestra valles debido a las curvas en U de la pista.

Autonomía inicial

El valor de autonomía inicial resulta de sumar la distancia recorrida en la fase 1 de 34.42 km, 58.2 minutos y la fase 3 con 20.4 km, 51.5 minutos. Se obtiene como resultado una autonomía inicial de 54.82 km de recorrido con un tiempo empleado de 1 hora con 49 minutos. En función de la fase 1 y 3 se analiza el perfil de velocidad obtenido durante todo el recorrido.

Gráfica de autonomía inicial

Nota. Se presenta la autonomía inicial con un valor de 54.82 km

Análisis de la fase 4

La fase 4 comprende el desarrollo de las pruebas de ruta con el sistema de carga regenerativo instalado. Se obtiene la gráfica del ciclo de conducción el cual no debe variar mucho del ya analizado en la fase 1. La fase 4 se completa con 34.47 kilómetros recorridos en un tiempo de 60 minutos. El estado de carga de la batería de litio es del 63 %. En esta fase el generador eléctrico recupera toda la energía mecánica de la rueda delantera y carga la batería de ácido plomo.

Figura 83

Ciclo de conducción de la fase 4

Nota. Se presenta el ciclo de conducción resultante de la fase 4.

Tabla 18

Velocidades de la fase 4

	Velocidad I	Velocidad II	Velocidad III
Valor máximo	37.83 km/h	50.02 km/h	55.93 km/h
Valor promedio	33.25 km/h	41.34 km/h	44.31 km/h

Nota. Se presentan las velocidades alcanzadas en la fase 4.

Análisis de la fase 5

Se utiliza como suministro de energía el sistema de carga regenerativo para cargar la batería de litio. Se activa el interruptor de paso de corriente de la batería de ácido plomo al inversor y se enciende este último. El estado de carga de la batería de litio pasa de 62 % a 79% (Figura 80) en un lapso de 60 minutos, de igual manera el nuevo valor de voltaje es de 78.68 voltios y una capacidad de 17.383 Ah.

Figura 84

Gráfica de voltaje vs tiempo de la batería de litio

Nota. Estado de carga de la batería de Litio.

Luego de realizar el proceso de carga se analiza la pérdida de energía en la batería de ácido plomo a través del tiempo para identificar su estado de carga en función del valor de tensión de la misma.

Gráfica de voltaje vs tiempo de la batería de ácido plomo

Nota. Se presenta la gráfica del nivel de descarga en valores de voltaje de la batería de ácido plomo. Su valor mínimo es de 12 voltios.

El estado de carga representado en porcentaje es la cantidad de energía almacenada en la batería de litio en relación con la capacidad en Ah (Amperios hora) nominal de la batería y representa la energía restante que puede utilizarse en un tiempo específico.

Figura 86

Nota. La figura muestra el estado de carga de la batería de litio una vez comienza el

proceso de carga con el sistema de carga regenerativo.

Análisis de la fase 6 o fase de corte

Luego de realizar la prueba de ruta se obtuvo el ciclo de conducción para la fase 6 donde también se incluye el tiempo extra de duración de la batería de litio correspondiente a 26.8 minutos. El tiempo extra depende de las características del trayecto y el clima que se presente en el entorno, esto debido a que el consumo de potencia es mayor en cuestas y climas lluviosos o con vientos fuertes.

Figura 87

Ciclo de conducción de la fase 6

Nota. Se presenta el ciclo de conducción de la fas 6.

El tiempo que tardó la moto eléctrica en detenerse es de 1 hora y 18.8 minutos con 31.85 km de recorrido. La velocidad máxima en esta fase fue de 54.18 km/h y un promedio de 37.85 km/h.

Autonomía final

El valor de autonomía final resulta de sumar la distancia recorrida en la fase 4 correspondiente a 34.47 km, 60 minutos y la fase 6 equivalente a 31.85 km, 78.8 minutos. Se obtiene como resultado una autonomía final de 66.32 km de recorrido en un tiempo de 2 horas con 18 minutos como se muestra en la figura 87.

Gráfica de la autonomía final de la moto eléctrica

Nota. Se presenta el incremento de autonomía equivalente a 11.51 km.

Este valor es válido para trayectos planos con leves ascensos de lo contrario la autonomía varía de acuerdo a las condiciones geográficas de la pista o trayecto, es decir para lugares con pendientes pronunciadas o constantes durante el recorrido este valor disminuye debido a que se utiliza mayor energía de la batería de litio.

Comportamiento del voltaje y la corriente en cada marcha

La gráfica característica de arranque hace posible identificar el consumo de corriente del motor, al vencer la inercia o acelerar bruscamente con el fin de pasar de bajas a elevadas velocidades en el menor tiempo, esto depende en gran parte de la conducción característica de cada piloto. El mayor consumo de energía en la batería de litio, sucede cuando se requiere mayor potencia para mover una carga, otro punto importante a considerar es la presión de los neumáticos que corresponde a un valor de 35 PSI.

La figura 89 evidencia que en los 0.5 segundos iniciales del movimiento se necesita un consumo elevado de corriente que corresponde a 24.6 A; sin embargo, una vez que la motocicleta alcanza velocidad crucero el consumo de corriente disminuye hasta 5.4 A.

Gráfica característica de arranque

Nota. Cada vez que el motor eléctrico rompe la inercia consume la máxima corriente.

Es preciso evaluar el comportamiento de la corriente, el estado de carga y la capacidad de la batería de litio en un tiempo específico y observar la variación de estos valores durante las pruebas a diferentes velocidades.

Figura 90

Comportamiento del consumo eléctrico en velocidad I

Nota. Se presenta el comportamiento del voltaje, la Intensidad, capacidad y estado de carga SOC en función del tiempo durante la velocidad I.

Comportamiento del consumo eléctrico en velocidad II

Nota. Se presenta el comportamiento del voltaje, la Intensidad, capacidad y estado de carga SOC en función del tiempo durante la velocidad II.

Todos los valores toman una trayectoria de pendiente negativa a excepción de la corriente que se comporta en función de la demanda de potencia con valores pico de 20-30 Amperios.

Figura 92

Comportamiento del consumo eléctrico en velocidad III

Nota. Nota. Se presenta el comportamiento del voltaje, la Intensidad, capacidad y estado de carga SOC en función del tiempo durante la velocidad III.

Pruebas del generador eléctrico

Con el fin de verificar el funcionamiento y los valores de voltaje y corriente

producidos en el generador eléctrico se realizan las siguientes pruebas:

- Prueba de circuito abierto
- Prueba de cortocircuito entre el bobinado y el núcleo ferromagnético
- Resistencia de fase
- Continuidad en los bobinados
- Voltaje alterno generado
- Corriente generada

Tabla 19

Pruebas de funcionalidad del generador eléctrico

Generador eléctrico (12-20 voltios AC)

Tipo de conexión:	Monofásica	R. del bob	binado :	9.06 - 1	Ω 0
Pruebas con el multímetro					
Prueba de circuito abierto:		Continuidad en el bobinado, lo que significa que			
	no hay cortes en el circuito.				
Prueba de cortoci	Circuito aislado, lo que refiere a un sistema				
bobinado y el núcleo de hierro:		aislado entre bobinas y núcleo,			
Valores de salida					
Velocidad I		Voltaje:	12.1 V	Intensidad:	0.4 A
Velocidad II		Voltaje:	12.8 V	Intensidad	0.6 A
Velocidad III		Voltaje:	13.5 V	Intensidad	1.0 A

Nota. Se presentan los datos de funcionamiento del generador eléctrico. El valor de voltaje

puede variar en función de velocidades superiores en bajada.

Capítulo V

Marco administrativo

Recursos

Los medios para el desarrollo de la investigación fueron: recursos humanos,

materiales y tecnológicos.

Recursos humanos

Tabla 14

Recursos humanos

Orden	Descripción	Cantidad	Función
1.	Wilmer Isaac Cuñas Picho	1	Investigador
2.	Ing. Washington Germán Erazo	1	Colaborador Científico
	Laverde		

Nota. En la tabla se describen las personas involucradas en la investigación.

Recursos materiales

Tabla 15

Recursos materiales

Orden	Cantidad	Descripción	Valor unitario	Valor total
1	1	Moto eléctrica	750	750
			(proporcional)	(proporcional)
2	16	Imanes de Neodimio	1.40	22.40
3	25	Corte laser	16	400
4	2	Duraluminio	100	200
5	1	Regulador eléctrico	10	10
6	1	Elementos eléctricos y electrónicos	50	50
7	1	Mecanismo tensor	25	25
8	1	Alambre magneto	30	30

Orden	Cantidad	Descripción	Valor unitario	Valor total
9	12	Pernos	0.30	4.80
10	1	Pintura y barniz	20	20
11	1	Inversor	50	50
12	1	Batería de ácido plomo	36	36
13	2	Aislante eléctrico (Material PETG-	5	10
		Impresión 3D)		
14	1	Núcleo del generador eléctrico	8	8
		(Material PETG-Impresión 3D)		
15	1	Cubierta posterior y frontal del	70	70
		estator (Material PETG-Impresión		
		3D)		
16	900	copias	0.02	18
17	20	combustible	2.55	51
18	2	Alimentación movilización	50	100
			Costo total	\$ 1 855.2

Nota. En la tabla se describe el presupuesto de materiales, componentes y equipos del

proyecto de investigación.

Recursos tecnológicos

Tabla 16

Recursos tecnológicos

Orden	Detalle	Cantidad	Costo Unitario	Costo
1.	Curso de motores BLDC	1	50	50
2.	Software Inventor Autodesk	1	-	-
3.	Medidor digital KG-140F	1	40	40
4.	Software FEMM	1	-	-
		TOTAL		\$ 90

Nota. En la tabla se mencionan los recursos tecnológicos utilizados en la investigación.

Costo neto de la investigación

El costo empleado para el desarrollo de la investigación es de \$\$ 1 945.2 dólares americanos.

Capítulo VI

Conclusiones y recomendaciones

Conclusiones

- Un sistema KERS utiliza generadores eléctricos para aprovechar la energía mecánica disponible en un vehículo y recuperarla en forma de energía eléctrica, este tipo de sistemas se utilizan en vehículos eléctricos e híbridos para incrementar su autonomía o aumentar la potencia en un tiempo específico.
- El voltaje producido en un generador eléctrico es directamente proporcional a la cantidad de flujo magnético, la frecuencia y el número de vueltas de la bobina.
- El factor determinante en la implementación de un sistema de carga regenerativo es el espacio disponible en la rueda y la ubicación idónea de todos sus componentes en el interior del maletero de la motocicleta eléctrica.
- El análisis por el método de elementos finitos utilizando el software FEMM, permite observar y determinar la densidad magnética en la geometría resultante del cálculo matemático para realizar correcciones y mejoras.
- Mediante la simulación y reconocimiento eléctrico se concluye que las 4 partes fundamentales para el control de tracción en una moto eléctrica son: el acelerador electrónico, el controlador de onda sinusoidal, la batería de litio y el motor eléctrico.
- La disponibilidad de imanes de Neodimio de diferentes formas y tamaños es muy escasa y con precios elevados mientras que la selección de dispositivos eléctricos y electrónicos es variada y asequible en el mercado local.
- Todos los dispositivos electrónicos de potencia generan calor y su disposición en lugares cerrados debe considerar perforaciones o rejillas que aseguren la circulación de aire y la salida de calor hacia el exterior.
- Para generar electricidad útil de carga con valores de 12 voltios el número de revoluciones (rpm) de la rueda delantera debe superar las 1000 rpm, por esto se

debe implementar un mecanismo que multiplique las rpm del rotor hasta un valor idóneo.

- Para obtener valores claros del estado de carga de una batería de litio y en tiempo real es imprescindible utilizar un medidor KG-140F que monitorea la batería y muestra los datos en pantalla. Además implementar un voltímetro-amperímetro en el tablero facilita la obtención de datos de voltaje y corriente producidos por el generador eléctrico.
- Un protocolo de pruebas enmarca todos los factores técnicos y variables que se deben tomar en cuenta para realizar una prueba de ruta y obtener un perfil de velocidad vs tiempo o ciclo de conducción específico para cada prueba.
- Para producir valores de corriente más elevados dentro de las rpm disponibles es indispensable disminuir el calibre del alambre magneto o aumentar la intensidad de campo magnético. Estos dos puntos implican aumento de costos en el diseño.
- El mayor consumo de corriente (15 a 25 Amperios) de una moto eléctrica sucede al romper la inercia y comenzar su movimiento, así como también en cuestas y al mover grandes cargas, esto significa un trabajo de los componentes electrónicos con valores de corriente elevados, que en un tiempo considerable produce daños en el puente de transistores.
- La implementación de sistemas de carga regenerativa proporciona una autonomía extra en la motos eléctrica del 15 al 25 %, esto condiciona su uso entre otras razones porque considera un cargador extra para el acumulador auxiliar y menos espacio en el maletero.
- Un estado de carga del 20% no permite seguir operando el motor eléctrico con carga, sin embargo esta energía aún es suficiente para encender el tablero y prender las luces por un tiempo determinado.
- El circuito electrónico que indica la activación del generador eléctrico emplea un relé que se activa cuando el generador eléctrico produce electricidad y activa un led

177

verde, en caso de una mala conexión o circuito abierto el relé no se activa y el led rojo queda encendido para denotar que el cableado se debe revisar.

 Se concluye que se puede optimizar el tiempo de fabricación y ensamblaje de un generador eléctrico al utilizar un proceso de fabricación por impresión 3D de componentes como: aislante, cubiertas y carcasa.

Recomendaciones

- Es indispensable conocer el número de revoluciones exactas del objeto del cual se toma la energía mecánica para evitar fallos en el cálculo matemático y el uso de mecanismos extras que multiplican la velocidad del rotor.
- Para iniciar el diseño del generador eléctrico se recomienda enlistar los dispositivos, objetos o materiales que no se pueden manufacturar o alterar su geometría como los imanes y el alambre magneto.
- Se recomienda utilizar chapas metálicas de 1 milímetro para la fabricación del núcleo ferromagnético, para lograr una mayor longitud del mismo y abaratar costos, si bien esto repercute en las perdidas por corrientes de Foucault lo que ocasiona una mayor temperatura en los bobinados, la ubicación del generador eléctrico permite una buena refrigeración por el flujo de aire durante el movimiento.
- Bajo condiciones normales de uso de la motocicleta eléctrica se recomienda conectar un cargador para la batería de ácido plomo cuando se realice una carga de la batería de litio, el primero es opcional pero mantiene el estado de carga de la batería en valores óptimos sin dejar toda la carga al generador eléctrico ya que se requieren de 2 viajes completos para recuperar toda la energía.
- Se recomienda trabajar con un ancho de diente de 4-6 mm para asegurar un margen de espacio extra al momento de bobinar o bien restar el espesor del aislante a utilizar entre el bobinado y el núcleo ferromagnético.
- La batería de ácido plomo y la batería de litio no deben permanecer inactivas por largos periodos de tiempo, por lo que se recomienda realizar ciclos de carga y descarga almenos una vez por semana.
- Con el fin de evitar fallos por cortocircuitos o circuitos abiertos, para unir los cables se recomienda utilizar terminales de conexión o socket, además de mantener un orden y etiquetado en cada cable añadido para evitar confusiones.

 Para mejorar los valores de autonomía establecidos en esta investigación, para futuros proyectos se recomienda diseñar un generador eléctrico de mayor diámetro y utilizar una batería de mayor capacidad.
Bibliografía

- M.I.T. (Massachusetts Institute of Technology). (1965). *Circuitos Magnéticos y Transformadores.* New York: REVERTÉ.
- Admin. (05 de Junio de 2014). *Blog Baterias de Litio*. Obtenido de Bateriasdelitio.net: https://www.bateriasdelitio.net/?p=6
- Agotegara, J., & Pinzón, A. (Noviembre de 2020). *Motor de Imanes Permanentes [Gráfico]*. Obtenido de Editores: https://bit.ly/3hnbyyA
- Aideepen ELEC&Lifes. (12 de Diciembre de 2022). Voltímetros digitales [Gráfico]. Obtenido de Aliexpress Store: https://es.aliexpress.com/item/32968097355.html
- Automoción, S. d. (2011). Vehículo Eléctrico: Desafíos tecnológicos, infraestructuras y oportunidades de negocio. Barcelona: LIBROOKS.
- Ballesteros, L., Padilla, J., & Franco, D. (2018). *Política de movilidad sustentable en la Ciudad de México. Hacia un nuevo modelo.* México: Proyecto M2050.
- Banco Bilbao Vizcaya Argentaria. (24 de Febrero de 2021). ¿Qué es una moto eléctrica? Obtenido de BBVA: https://www.bbva.com/es/sostenibilidad/que-es-una-motoelectrica/
- Basekga, M. (2019). Inatalaciones Solares Fotovoltaicas. Madrid: Editex, S. A.
- Bastian, P., Eichler, W., Huber, F., Jaufmann, N., Manderla, J., Spielvogel, O., . . . Tkotz, K. (2001). *Electrotecnia*. Madrid: Ediciones AKAL.
- Boylestad, R. (2004). Introducción al Análisis de Circuitos. Mexico: PEARSON EDUCACIÓN.

BUN-CA. (2011). Motores Eléctricos. San Jossé, Costa Rica: Diseño Editorial S.A.

- Chiroque, J. (2010). *Microaerogenerador IT-PE-100 PARA ELECTRIFICACIÓN RURAL*. Lima: Soluciones Prácticas.
- dcbBALLESTER. (11 de 12 de 2022). *Carga de batería en 3 etapas [Gráfico]*. Obtenido de dcbBALLESTER: https://dcbballester.com/carga-de-baterias-en-3-etapas
- Dietsche, K.-H., & Klingebiel, M. (2005). *Manual de la Técnica del Automóvil.* Plochingen: Robert Bosch GmbH.

Discoveries, I. (22 de Enero de 2020). Sistema KERS [Gráfico]. Obtenido de Innovation Discoveries: https://innovationdiscoveries.space/kinetic-energy-recovery-systemkers/

Domínguez, E., & Ferrer, J. (2018). Sistemas de Transmisión y frenado. Madrid: Editex.

Donate, A. H. (1999). Pricncipios de Electricidad y Electrónica II. Barcelona: Marcombo.

Electrocables. (2018). Catálogo de Productos. Daule.

- Enríquez, G. (2004). *El libro de los generadores, transformadores y motores eléctricos.* [Gráfico], Gilberto Enríquez: Limusa.
- Espinosa, M., & Belenguer, E. (2004). *Problemas Resueltos de Circuitos Magnéticos y Transformadores.* Balaguer: Universitat Jaume I.
- EUROBALT. (6 de Noviembre de 2022). *Imanes Permanentes*. Obtenido de EUROBALT: https://eurobalt.net/es/blog/2019/04/16/permanent-magnet/
- Fink, D., Beaty, W., & Carroll, J. (1981). *Manual Práctico de Electricidad para Ingenieros.* Barcelona: REVERTÉ.
- Fitzgerald, A., Kingsgley, C., & Umans, S. (2004). *Máquinas Eléctricas*. [Gráfico]: McGraw-Hill.
- Fowler, R. (1994). *Electricidad Pirncipios y Aplicaciones*. [Gráfico], Richard Fowler: Reverté S.A.
- Gac, A. (2016). Técncio Electricista 3- Magnetismo. Barcelona: RedUSERS.
- Garcia, C. (04 de Junio de 2018). *Noticias del motor [Gráfico]*. Obtenido de Autonoción: https://www.autonocion.com/magnax-motor-electrico-flujo-axial/
- García, M. C. (2017). Diseño Electromagnético de un Generador Eléctrico para Turbina Eólica de 100 KW. [Tesis de ingeniería, Universidad politécnica de Madrid]. Repositorio institucional UPM. https://oa.upm.es/.
- Gómez, Á. (2019). Diseño de un Motor Síncrono de Imanes Permanentes Para el Accionamiento de un Dispositivo Elevador. [Tesis de Ingenería, Universidad Politécnica de Madrid], Repositorio Institucional UPM. https://oa.upm.es/.

Guru, B. (2003). Máquinas Eléctricas y Transformadores. México: Alfaomega.

Gussow, M. (1991). Fundamentos de Electricidad. México: McGraw-Hill.

- Hangzhou Junce Instruments Co., Ltd. (17 de Diciembre de 2021). DC Voltage and Current meter [Gráfico]. Obtenido de junteks: http://www.junteks.com/
- Hanselman, D. (1994). Brushless Permanent-Magnet Motor Design. New York: McGraw-Hill, Inc.
- Harper, H. (2004). El Libro Práctico de los Generadores, Transformadores y Motores Eléctricos. México: Limusa.
- Hendershot, J., & Miller, T. (2010). *DESIGN OD BRUSHLESS PERMANENT MAGNET MACHINES.* Florida: Bookmasters, Inc.

Hewitt, P. (2004). Fisica Conceptual (Vol. IX). México: PEARSON EDUCACION.

Jmotoblogs. (24 de Abril de 2020). *Jmotoblogs*. Obtenido de https://jaramotoblogs.wordpress.com/2020/04/24/jmotoblogs-sistema-de-

rectificacion-y-carga-de-motos-para-principiantes/

- Kappatou, J., Zalokostas, G., & Spyratos, D. (2016). Design Optimization of Axial Flux
 Permanent Magnet (AFPM) Synchronous Machine Using 3D FEM Analysis. *Journal* of Electromagnetic Analysis and Applications, 8, 257.
- Khan Academy. (11 de Noviembre de 2022). ¿Qué es el flujo magnético? [Gráfico]. Obtenido de Khan Academy: https://bit.ly/3UhrWzk
- Kuphal, T. (14 de Noviembre de 2020). *Lessons In Electric Circuits Volume III*. Obtenido de Ibiblio: https://www.ibiblio.org/kuphaldt/electricCircuits/Semi/SEMI_3.html
- Lucendo, J. (2019). Manual Técncio del Automóvil.
- Manzano, J. (1999). Mantenimiento de máquinas eléctricas. Madrid: Paraninfo.
- Manzano, J. (2008). Electricidad I: Teoría básica y prácticas. Barcelona: MARCOMBO.
- Martínez, O. (2014). Sistemas de almacenamiento energético mecánico en el mundo de la automoción. Valladolit: Cidaut.
- MathWorks. (15 de Noviembre de 2022). *Understanding the Motor Control BLDC Algorithms*. Obtenido de MathWorks:

https://la.mathworks.com/campaigns/offers/next/understanding-bldc-motor-controlalgorithms/motor-speed-control.html?s_tid=dl_prv_nxt

Minguela, I. (2016). Diseño eléctrico y electrónico de una motocicleta eléctrica infantil 2x2.
 [Tesis de ingeniería, Universidad de Valladolid Escuela de Ingenirías Industriales].
 Repositorio institucional UVaDOC. https://uvadoc.uva.es/.

Montoya, F. (2016). México Patente nº WO2016076699A1.

Mujal, R. (2004). Tecnología eléctrica. Barcelona: EDICIONS UPC.

Pérez, W. (2000). Fisica Teoría y Práctica. Perú: San Marcos.

- Rashid, M. (2004). *Electrónica de Potencia Circuitos, Dispositivos y Aplicaciones.* México: PEARSON.
- Redacción. (15 de Noviembre de 2010). *Generador Motor Integrado (IMG) [Gráfico].* Obtenido de Motorenlinea.es: https://www.motorenlinea.es/articulo-848-audi-q5ahora-tambien-hibrido
- Redacción. (11 de Agosto de 2010). *Motor Generador de Bosch [Gráfico]*. Obtenido de motorenlinea.es: https://www.motorenlinea.es/articulo-456-bosch-a-la-vanguardiade-la-tecnologia-hibrida

Ros, A., & Barrera, Ó. (2017). Vehículos Eléctricos e Hibridos. Madrid: Paraninfo.

Sáenz, G., & Vidaller, T. (2210). Sistema para la Recuperación de la Energía Cinética perdida durante la Frenada en la Fórmula 1. Zaragoza.

Senner, A. (1994). Principios de Electrotecncia. Barcelona: REVERTÉ.

Soloelectronicos. (1 de Noviembre de 2016). *Construyase su propia batería [Gráfico]*. Obtenido de Soloelectrónicos.com:

https://soloelectronicos.com/2016/11/01/construyase-su-propia-bateria/

TEINSER, S. (s.f.). Materiales de Aislamiento Eléctrico. Bogotá: Hoja de especificaciones técnicas. Obtenido de http://deltamackalles.azurewebsites.net/wpcontent/uploads/2016/10/03-Isonom-NMN-es-Clase-H.pdf

Trashorras, J. (2019). Vehículos Eléctricos. Madrid: Paraninfo.

- TRUPER. (19 de Diciembre de 2022). *Inversor de corriente de 750W, Truper*. Obtenido de Truper.com: https://www.truper.com/ficha_tecnica/Inversor-de-corriente-de-750-W-4.html
- Vallcorba, G., Roncal, B., & Arias, J. (2006). Electrotecnia. Mc Graw Hill.
- Vargas, F., & Saldarriaga, M. (1990). Máquinas Eléctricas Rotativas. Lima: CONCYTEC.
- Wikipedia. (2011). *Reluctancia magnética*. [Gráfico]. Wikipedia la Enciclopedia Libre, https://es.wikipedia.org/wiki/Circuito_magnetico.
- Yupanqui, M. (2017). Diseño de generador hidroeléctrico portable para zonas rurales. [Tesis de Ingeniería, Pontificia Universidad Católica del Perú], Repositorio Institucional PUCP. https://repositorio.pucp.edu.pe/.
- Zapata, F. (19 de Febrero de 2020). *Lifeder*. Obtenido de Lifeder: https://www.lifeder.com/reluctancia-magnetica/
- Zbar, P., Malvino, A., & Miller, M. (2001). Prácticas de Electrónica . México: Alfaomega.

Anexos