

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA EN ELECTROMECÁNICA

TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE: INGENIERO EN ELECTROMECÁNICA

"Modelamiento y análisis de la eficiencia térmica de un colector solar de tubos al vacío a través de un sistema de monitoreo en el laboratorio de energías renovables de la Universidad de las Fuerzas Armadas ESPE sede Latacunga"

AUTORES: Segovia Razo, Gustavo Fernando

Toapanta Mora, Kevin Ismael

DIRECTOR: Ing. Jiménez León, Mario Polibio M.Sc.

Latacunga, 2023

- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

OBJETIVOS

Objetivo General

Modelar y analizar la eficiencia térmica de un colector solar de tubos al vacío a través de un sistema de monitoreo en el laboratorio de Energías Renovables de la Universidad de la Fuerzas Armadas "ESPE" sede Latacunga.

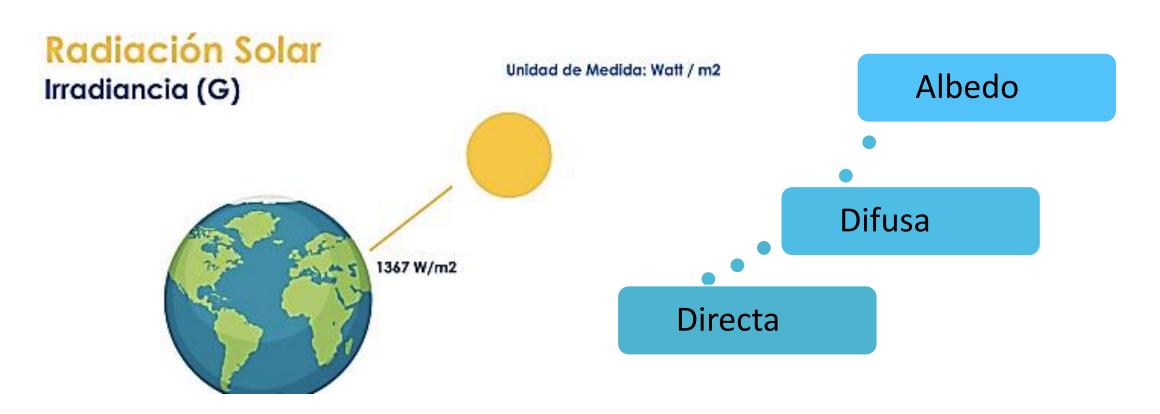
OBJETIVOS

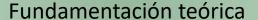
Objetivos Específicos

- Investigar y seleccionar un software asistido por ordenador adecuado para modelar el colector solar de tubos al vacío.
- Seleccionar e instalar un colector solar comercial de tubos al vacío con una capacidad de almacenamiento de 200 litros y los sensores adecuados para el monitoreo.
- Diseñar un sistema de monitoreo para las variables de radiación solar, caudal, temperatura ambiente, temperatura del agua de entrada y temperatura del agua dentro del tanque de almacenamiento del colector.

OBJETIVOS

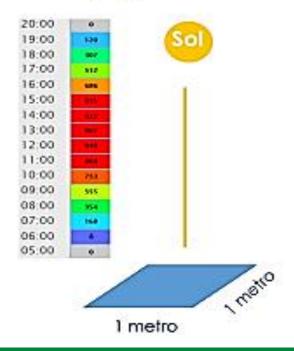
Objetivos Específicos

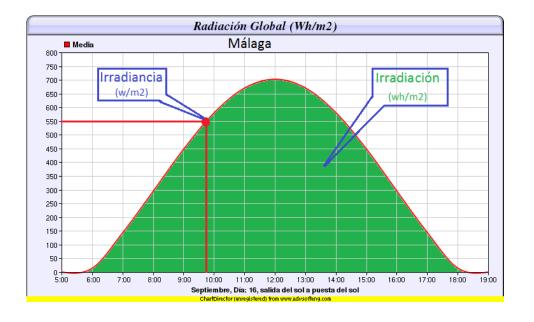

- Elegir un servicio de computación en la nube para poder implementar el internet de las cosas (IoT) con el sistema de monitoreo del colector solar.
- Realizar pruebas de funcionamiento del colector de tubos al vacío y del sistema de monitoreo implementado y analizar la eficiencia térmica del colector.



- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

Irradiancia (I)





Irradiación solar (H)

Radiación Solar Irradiación (H)

Unidad de medida: (Wh/m2)

Colector solar térmico de tubos al vacío

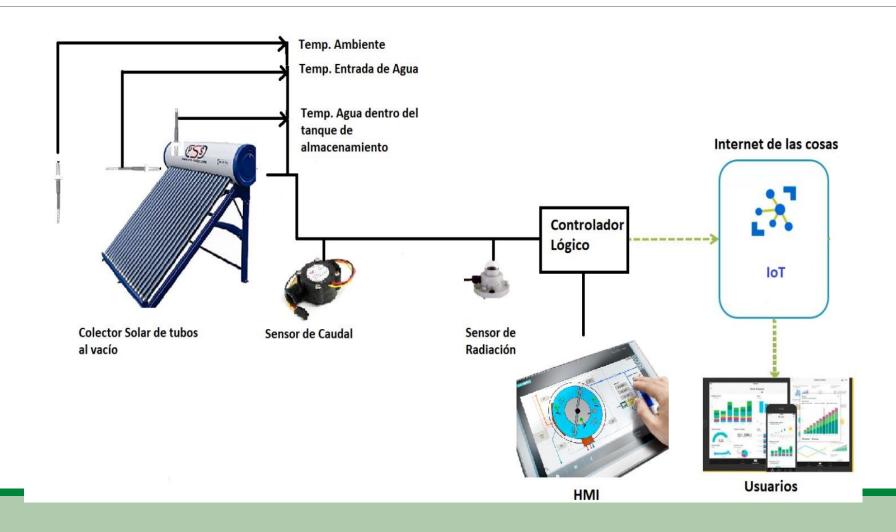
La placa de absorción contiene un recubrimiento de nitrato de aluminio con excelentes propiedades para la absorción de energía solar y mínimas propiedades de reflexión de la energía. Esta placa se encuentra dentro del tubo de vacío el cual elimina las pérdidas de calor por conducción y convección mejorando el rendimiento del colector solar térmico.

Componentes del colector solar de tubos al vacío

Internet de las cosas

El internet de las cosas se define como cualquier objeto que tenga la capacidad de conectarse a una red de internet alámbrica o inalámbrica.

La conectividad se consigue principalmente a través de una red inalámbrica wifi, mientras que, en la actualidad, la quinta generación de tecnología (5G) y otros tipos de plataformas de red son cada vez más capaces de manejar grandes cantidades de datos con una alta fiabilidad y velocidad.



- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones


Arquitectura del proyecto

- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

Modelo difuso isotrópico

El modelo permite obtener la irradiancia solar total sobre una superficie inclinada durante un periodo de tiempo horario, mediante la suma de los tres componentes que son irradiancia directa, irradiancia difusa e irradiancia reflejada o radiación de albedo.

$$I_T = I_b R_b + I_d \left(\frac{1 + \cos \beta}{2} \right) + I_{pg} \left(\frac{1 - \cos \beta}{2} \right)$$

Donde:

- I_T Irradiancia Total
- I_b Irradiancia solar directa horaria
- R_b Factor de corrección de irradiancia directa
- I_d Irradiancia solar difusa horaria
- $ightharpoonup I_{pg}$ Irradiancia solar de albedo horario
- $\triangleright \beta$ Ángulo de inclinación del colector solar

Modelamiento y simulación

I_d Irradiancia solar difusa horaria

$$I_d = K_d * I * R_d$$

Donde:

- I Irradiancia solar horaria
- R_d Factor de corrección de irradiancia difusa
- \succ K_d Factor de correlación de Erbs

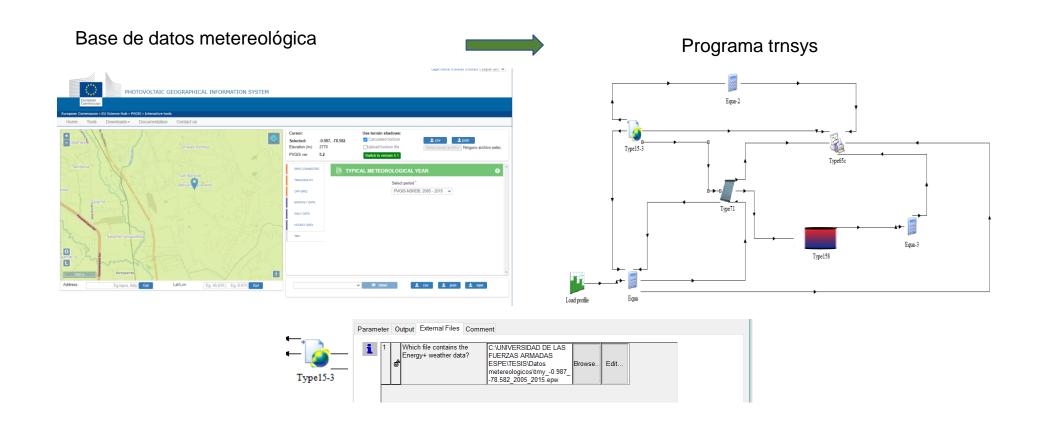
I_b Irradiancia solar directa horaria

$$I_b = (I - I_d) * R_b$$

Donde:

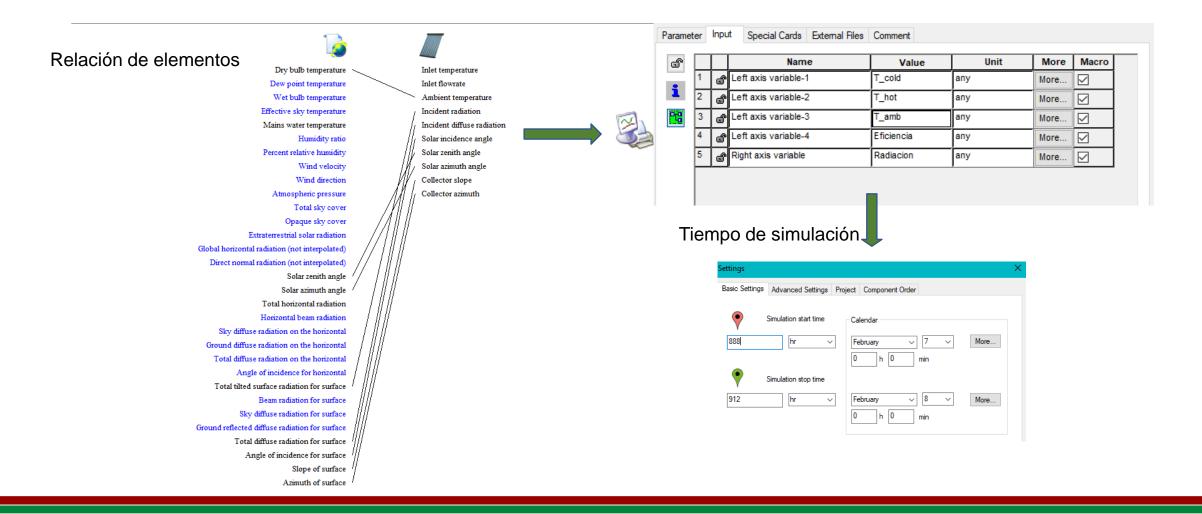
- > I Irradiancia solar horaria
- I_d Irradiancia solar difusa horaria
- R_b Factor de corrección de irradiancia directa

I_{pg} Irradiancia de albedo

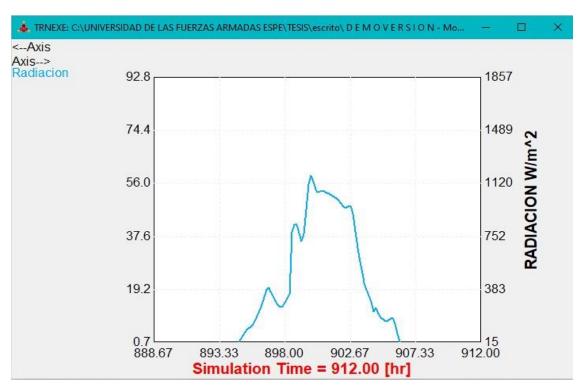

$$I_{pg} = (I_b + I_d)\rho$$

Donde:

ho Coeficiente de albedo

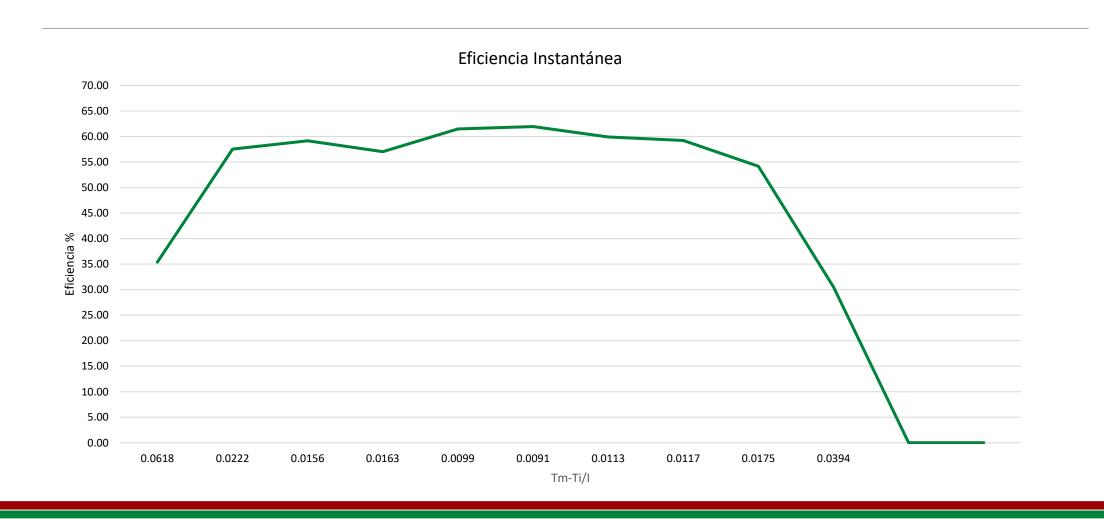


Simulación Trnsys


Simulación Trnsys

Resultados de Simulación Trnsys

Irradiancia



T hot

Resultados de Simulación Trnsys

- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

Selección de equipos

Colector Solar

■ Área de Apertura: 2.688 *m*²

■ Área de Captación Solar: 2.32 m²

■ Caudal recomendado: 10 *l/min*

■ Presión máxima de operación: 50 kPa

• Coeficiente óptico del captador: $n_0 = 0.691$

Ángulo de inclinación: 30º

Modelo JDL-TF20-58/1.8

Fabricante: JiaDele

Tubos de vacío

Material: 3.3 vidrio de borosilicato resistente

Diámetro: 58 mm

Longitud: 1800 mm

Resistencia al granizo: 25 mm

Número de tubos: 20

Peso: 65 Kg

Selección de equipos

Controlador lógico programable LOGO V8.3

Controlador	PLC LOGO V8.3 - 12/24 DC
Disponibilidad en el mercado	BUENA
Dimensiones	90*71*60 mm
Número de entradas analógicas	4
Número de entradas digitales	4
Número de salidas	4
Voltaje de alimentación	12/24V DC
Memoria Integrada	70 kByte
Lenguaje de programación	SOFT COMFORT
Comunicación	PROFINET (Ethernet)
Conexión a red	Si

UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

Selección de equipos

RTD PT-100

Sensor	RTD PT100
Rangos de medición	−100 a 200 ºC
Tolerancias	± 0.5 °C
Fuente de alimentación	-
Tiempo de respuesta	0.2 <i>seg</i>
Tipo de señal	Resistivo
Perdida de señal a distancias	No
Precisión	Alta
Sensibilidad	Alta
Exactitud	Alta
Proporcionalidad	Directa y Lineal
Material	Acero inoxidable

Caudalímetro YF-S201

Equipo	YF-S201
Voltaje de Operación (DC)	4.5V – 24V
Máxima corriente de operación	15 mA
Rango de caudal	1 – 30 l/min
Temperatura de operación	≤80°C
Presión permitida	≤ 1.75 Mpa
Señal de salida	PWM
Grado de protección	IP 65
Rango de diámetro	1/2"

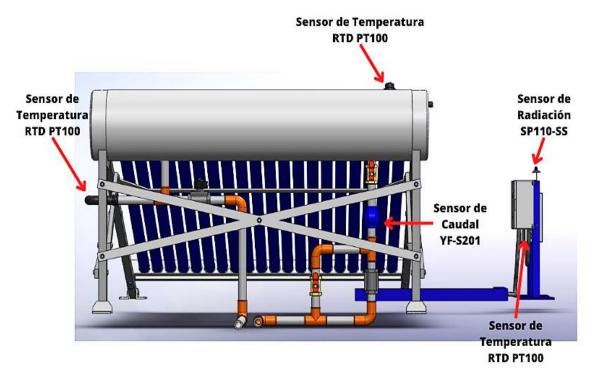
UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

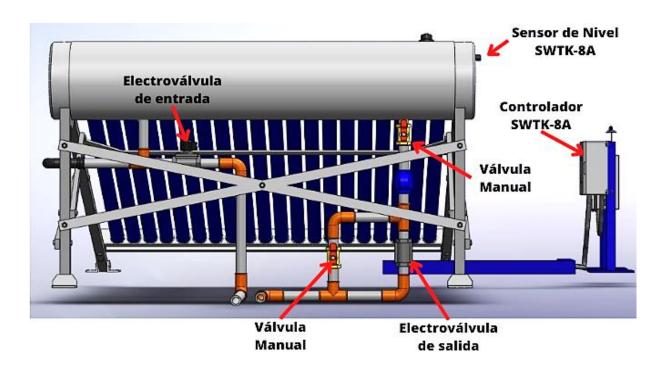
Selección de equipos

Piranómetro SP110 SS

Equipo	SP 110 SS
Alimentación	Auto alimentado
Sensibilidad	0.02 mV por m^2
Linealidad	Desviación máxima del 1% hasta 1750 W/m2
Tiempo de respuesta	Menos que 1 ms
Funcionamiento en el entorno	De -40 a 70 C; de 0 a 100 % de humedad relativa; sumergible en agua hasta 30 m
Detector	Fotocélula de silicio
Rango espectral	360nm a 1120nm

Tablero de control


- Tablero de control con grado de protección IP65.
- Garantiza una protección al polvo y líquidos.
- Es de plástico ABS con dimensiones de 300*400*165 mm.


- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

Ubicación de sensores

Ubicación de instrumentos y equipos adicionales

Monitoreo

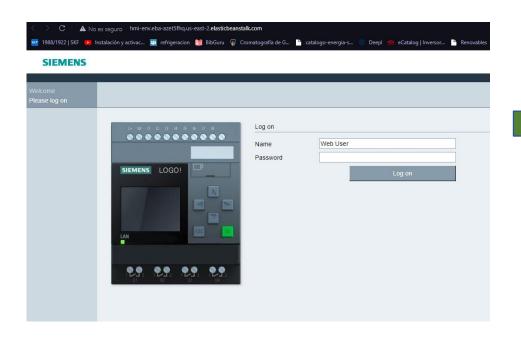
Puertos

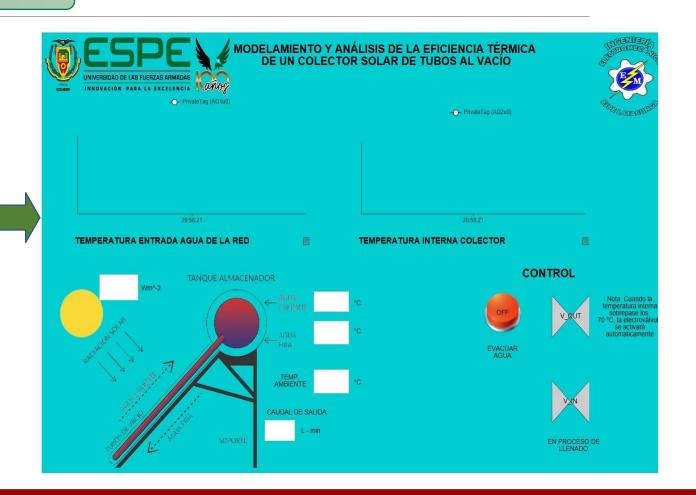
Sensor	Variable Analógica	Puertos
RTD PT100	Temperatura Ambiente	I8 (AI2) del LOGO
RTD PT100	Temperatura del agua de Entrada	M1 (Al5) Módulo AM2
RTD PT100	Temperatura del agua dentro del Tanque	M2 (Al6) Módulo AM2
SP110 Radiación		I7 (AI1) del LOGO
YF-S201	Caudal	I4 del LOGO

Entradas análogas Acondicionamiento Programación

Monitoreo

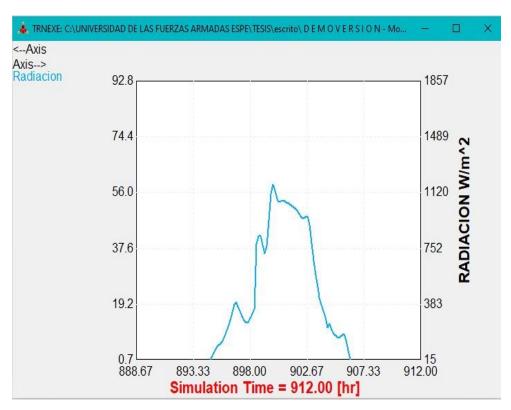
Dirección IP

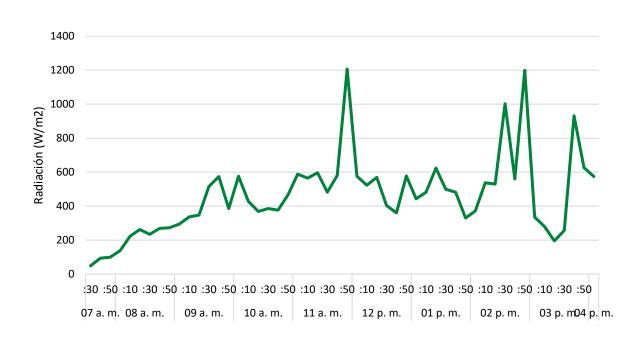

Herramienta del internet de las cosas



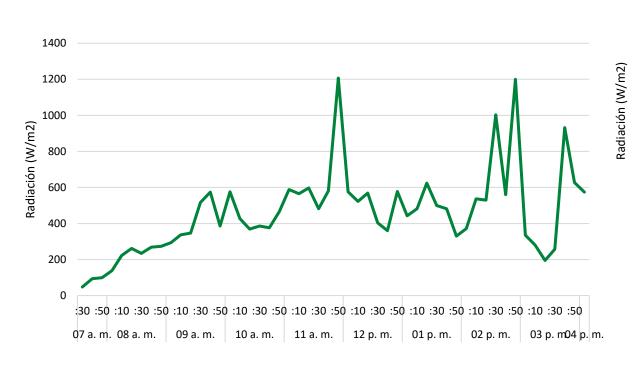
Monitoreo

Interfaz creada



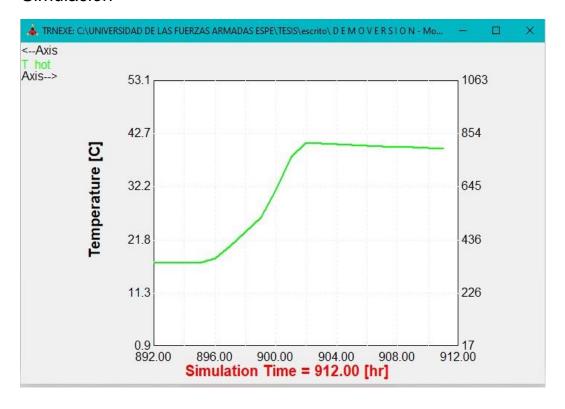

- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

Curva Radiación Simulación

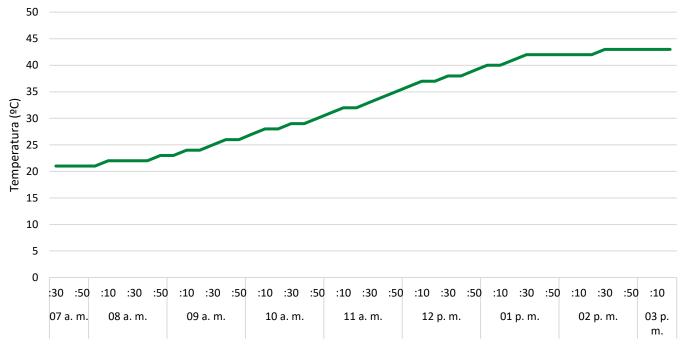


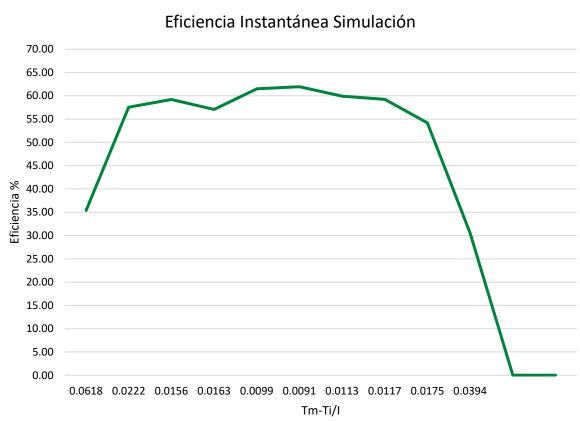
Curva Radiación SP110SS

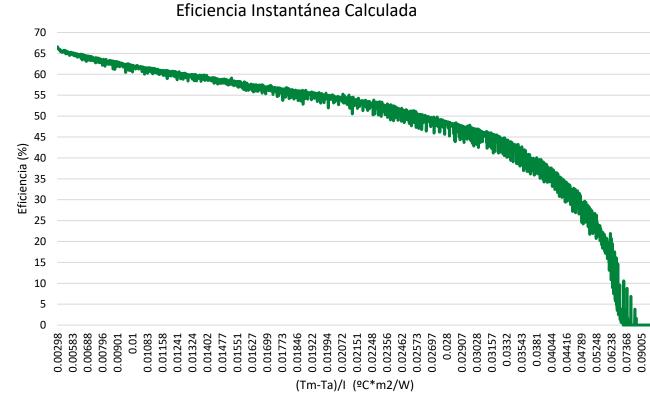
Curva Radiación SP110SS


Tiempo

Curva Radiación Patrón 1200 1000 800 600 400 200 07 08 a. m. 09 a. m. 10 a. m. 12 p. m. 01 p. m. 02 p. m. 03 p. 11 a. m. m.


07/02/2023


Temperatura del agua dentro den tanque almacenador de la Simulación



Temperatura del agua dentro del tanque almacenador

Datos de la variable de temperatura del agua dentro del tanque almacenador medida y simulada

Hora	Temperatura del agua Hora del dentro del tanque año almacenador (ºC)		Temperatura del agua dentro del tanque almacenador simulada (ºC)	
7	895 21		17.37	
8	896	22	18.50	
9	897	23	21.95	
10	898	27	24.40	
11	899	31	30.07	
12	900	36	37.03	
13	901	40	42.44	
14	902	42	42.38	
15	903	43	42.22	

Datos de eficiencia instantánea calculada y simulada

Hora	Hora del año	Eficiencia Calculada (%)	Eficiencia simulada (%)	
7	895	12.03	35.39	
8	896	49.17	57.53	
9	897	57.87	59.18	
10	898	55.53	57.05	
11	899	58.16	61.50	
12	900	55.39	61.96	
13	901 47.04		59.91	
14	902	51.64	59.24	
15	903	34.28	54.19	

Balance Energético

Hora	Min.	Caudal (L/min)	Temperatur a entrada "fría" (°C)	Temperat ura final "caliente" (°C)	Diferencia de temperaturas Tf-Ti (°C)	Energía útil (kWh)
15						
:46	1	4.25	15	47	32	0.1672
:47	2	4.43	15	47	32	0.16459911
:48	3	4.41	15	47	32	0.16459911
:49	4	4.37	15	47	32	0.16162667
:50	5	4.38	15	47	32	0.16162667
:51	6	4.45	15	47	32	0.16162667
:52	7	4.5	15	47	32	0.16459911
:53	8	4.5	15	47	32	0.1672
:54	9	4.48	15	47	32	0.1672
:55	10	4.43	15	47	32	0.16459911
:56	11	4.38	15	47	32	0.16459911
:57	12	4.35	15	47	32	0.16162667
:58	13	4.37	15	46	31	0.15657583
:59	14	4.44	15	46	31	0.15945539

16							
	:00	15	4.5	15	46	31	0.161975
	:01	16	4.47	16	46	30	0.15675
	:02	17	4.43	16	46	30	0.15675
	:03	18	4.35	16	46	30	0.151525
	:04	19	4.35	16	46	30	0.151525
	:05	20	4.33	16	46	30	0.151525
	:06	21	4.4	16	46	30	0.151525
	:07	22	4.49	16	46	30	0.15675
	:08	23	4.45	16	46	30	0.15675
	:09	24	4.39	16	45	29	0.14782106
	:10	25	4.37	16	45	29	0.14647417
	:11	26	4.33	16	45	29	0.14411711
	:12	27	4.3	16	35	19	0.09596583
	:13	28	4.36	16	33	17	0.08586417
	:14	29	4.47	16	33	17	0.088825
	:15	30	4.46	16	33	17	0.08744328
	:16	31	4.39	16	31	15	0.07715583
	:17	32	4.35	16	31	15	0.0757625
	:18	33	4.34	16	31	15	0.0757625
	:19	34	4.3	15	30	15	0.07454333
	:20	35	4.34	15	29	14	0.07071167
	:21	36	4.34	14	26	12	0.06061
	:22	37	1.28	14	26	12	0.06061
						Energía Total	4.97387

Cálculo de Eficiencia

$$E_{incidente} = H * A_c$$

$$E_{\text{\'util}} = m * C_p * (\Delta T)$$

$$\eta = rac{E_{ ext{\'u}til}}{E_{incidente}}$$

El valor de irradiación determinado desde las 07:30H hasta las 15:17H es de $3.59 \ kWh/m^2$, con el cual la energía incidente calculada fue de $8.32 \ kWh$ para un área de captación de $2.32 \ m^2$. El valor de la energía útil es de $5.10 \ kWh$, dando como resultado una eficiencia térmica de 61%. El sumatorio total del balance energético fue de $4.973 \ kWh$ durante un tiempo de descarga de agua de $37 \ minutos$.

- 1. Objetivos
- 2. Fundamentación teórica
- 3. Arquitectura del proyecto
- 4. Modelamiento y simulación
- 5. Selección de equipos
- 6. Implementación del sistema
- 7. Análisis de resultados
- 8. Conclusiones y recomendaciones

Conclusiones

Se modeló un colector solar de tubos al vacío mediante el software TRNSYS, obteniendo como resultados una eficiencia instantánea del 61.96% al medio día, una temperatura máxima registrada de 42.44°C. Esto con relación a la base de datos meteorológica obtenida del sitio web Photovoltaic Geographical Information System ingresada al programa, la cual según la curva de radiación resultó ser un día parcialmente nublado con radiación mínima de 91.62 W/m^2 y un valor máximo de 1084 W/m^2 al medio día.

Se seleccionó y se implementó un colector solar de tubos al vacío modelo JDL-TF20-58, que posee una capacidad de 200 litros del tanque de almacenamiento de agua, 20 tubos de vacío y un área de captación de 2.32 m^2, cuenta con un controlador local SWTK-8A que ayuda al control de la entrada del agua al colector solar, posee un sensor de nivel de agua que ayuda para el control de la electroválvula de entrada y un sensor de temperatura para activar la resistencia auxiliar en caso de implementarlo para días con poca radiación solar.

Conclusiones

• Se realizó el análisis de la eficiencia instantánea recomendada por el fabricante, la eficiencia inicial es de 65%, mientras aumenta el valor de la función de (Tm-Ta)/I la eficiencia baja hasta 0%. Mediante el cálculo de la energía útil con un valor de 5.10 kWh y la energía incidente con un valor de 8.32 kWh se determinó la eficiencia térmica del colector solar dando un valor del 61% valores que caen dentro del rendimiento máximo dado por el fabricante.

 Los datos obtenidos del monitoreo muestran un valor máximo de 47°C para la temperatura del agua dentro del tanque almacenador durante el ensayo realizado el 7 de febrero del 2023, considerándose un día parcialmente nublado con mínimas de irradiancia de entre 48 a 576 W/m^2 en la mañana, un valor máximo de 1207 W/m^2 al medio día y valores de 500 a 300 W/m^2 para la tarde.

Conclusiones

 La cuantificación del calor almacenado se la realiza mediante el ensayo de descarga en la cual se determinó un valor de 4.973 kWh, este valor representa la energía acumulada en el tanque almacenador durante la prueba realizada el 7 de febrero de 2023.

Los valores obtenidos muestran una buena correlación entre los resultados simulados y los datos reales, para el colector solar de tubos al vacío modelado se obtuvo una curva de temperatura del agua dentro del tanque almacenador aproximada a la obtenida durante el ensayo realizado el 7 de febrero de 2023, demostrando estar en lo correcto. El error de la radiación determinado entre el sensor patrón y el sensor SP110SS es del 1.88%, lo cual indica que el sensor implementado es fiable.

Recomendaciones

- Para determinar la eficiencia optima del colector el monitoreo debe realizarse en un día despejado con mayor radiación para elevar la temperatura del agua. Es indispensable utilizar la cubierta protectora del colector cuando no se encuentre en funcionamiento para evitar la temperatura de estancamiento que corresponde a la máxima temperatura que el agua puede alcanzar y evitar el daño a los sensores utilizados para su monitoreo.
- Verificar la dirección IP del PLC y la dirección de pasarela del PLC que coincidan con las mismas direcciones del ordenador utilizado para el monitoreo. La conexión con la nube de Amazon se debe registrar la contraseña creada por la cuenta IAM de Amazon con la cual se tiene acceso a la interfaz de comunicación.
- Utilizar el software Logo Soft Comfort V8.3 para la descarga de datos en el ordenador del laboratorio de Fuentes Renovables, existe una tarjeta micro SD insertada para el almacenamiento de datos en el PLC Logo que permite guardar todos los datos del monitoreo.

GRACIAS