

Diseño hidrológico e hidráulico aplicado al diseño de puentes sobre el río Upano

Almeida Aspiazu,	Angélica	Jazmín y	Ortiz .	Jácome,	Yaritza	Clara

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Trabajo de integración curricular, previo a la obtención del título de Ingeniera Civil

Ing. Masabanda Caisaguano, Marco Vinicio Ph.D.

18 de agosto de 2023

Almeida_Ortiz_CAP1_CAP4 (1).docx

Scan details

Total Words: Scan time: Total Pages: August 22th, 2023 at 12:42 UTC 46 11358

Plagiarism Detection

	Types of plagiarism		Words	
	Identical	1.8%	203	
7.4%	Minor Changes	0.7%	75	
	Paraphrased	4.9%	562	
	Omitted Words	0%	0	

AI Content Detection

-Q Plagiarism Results: (27)

Cómo Calcular el Caudal: Una Explicación Sencilla | ...

0.9%

https://www.fontanerialucero.es/como-calcular-el-caudal-un...

Blog sobre fontaería ...

Análisis morfométrico de una cuenca hidrográfica |...

0.9%

https://acolita.com/analisis-morfometrico-de-una-cuenca-hid...

Saltar al contenido Menú Cursos...

@ T-UCE-0011-213.pdf

0.8%

http://www.dspace.uce.edu.ec/bitstream/25000/6502/1/t-uc...

SAYRA COLOMA

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE INGENIERÍA, CIENCIAS FÍSICAS Y MATEMÁTICA CARRERA DE INGENIERÍA CIVIL DISEÑO PRELIMINAR...

Ing. Marco Vinicio Masabanda Caisaguano, Ph.D Revisado por

C.C. 1802179190

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Certificación

Certifico que el trabajo de integración curricular, "Diseño hidrológico e hidráulico aplicado al diseño de puentes sobre el río Upano" fue realizado por las señoritas Almeida Aspiazu Angélica Jazmín y Ortiz Jácome Yaritza Clara; el mismo que cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, además fue revisado y analizado en su totalidad por la herramienta de prevención y/o verificación de similitud de contenidos; razón por la cual me permito acreditar y autorizar para que se lo sustente públicamente.

Sangolquí, 29 de Agosto del 2023

Ing. Masabanda Caisaguano, Marco Vinicio Msc.

C.C.: 1802179190

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Responsabilidad de Autoría

Nosotras, Almeida Aspiazu Angélica Jazmín y Ortiz Jácome Yaritza Clara, con cédulas de ciudadanía N°1722860044 y N°1003173679, declaramos que el contenido, ideas y criterios del trabajo de integración curricular "Diseño hidrológico e hidráulico aplicado al diseño de puentes sobre el río Upano" es de nuestra autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Sangolquí, 29 de agosto del 2023

Almeida Aspiazu Angélica Jazmín

C.C.: 1722860044

Ortiz Jácome Yaritza Clara

C.C.: 1003173679

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Autorización de Publicación

Nosotras, Almeida Aspiazu Angélica Jazmín y Ortiz Jácome Yaritza Clara, con cédulas de ciudadanía N°1722860044 y N°1003173679, autorizamos a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de integración curricular "Diseño hidrológico e hidráulico aplicado al diseño de puentes sobre el río Upano" en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Sangolquí, 29 de agosto del 2023

Almeida Aspiazu Angélica Jazmín

C.C.: 1722860044

Ortiz Jácome Yaritza Clara

C.C.: 1003173679

Dedicatoria

Con un corazón lleno de gratitud, dedico este logro a mis amados padres, Lenin

Almeida y Paulina Aspiazu, cuyo amor y apoyo han sido mi ancla. A mi querido hermano Mateo

Almeida, por ser mi compañero en esta travesía. A toda mi familia, por ser mi refugio en cada

desafío que he enfrentado.

A mis amigos, quienes han tejido risas y memorias imborrables en mi vida y han sido un apoyo incondicional en mi camino universitario, les dedico un rincón especial en este logro. A Gabriela Flores, mi mejor amiga, por ser mi constante apoyo y consejera en momentos cruciales. A Andrés Criollo y Johann Calderón, compañeros de desvelos durante la vida académica y amigos entrañables, les agradezco de corazón por su amistad sincera y su apoyo constante en cada paso del camino. Nuestros años juntos no solo han estado llenos de risas y momentos memorables, sino también de apoyo mutuo en los desafíos académicos. Cada uno de ustedes ha contribuido de manera invaluable a esta etapa de mi vida y este logro lleva consigo el reflejo de nuestra amistad, compañerismo y crecimiento conjunto.

Con gratitud y cariño sincero

Angélica Jazmín Almeida Aspiazu

Dedico este trabajo primeramente a Dios, fuente de toda sabiduría y guía constante en mi camino, ya que su divina providencia me ha sostenido en cada paso de esta travesía académica.

A mis queridos padres, Armando Ortiz y Silvana Jácome, ya que sin ustedes no podría haber llegado a este punto sin su amor incondicional y apoyo inquebrantable. Gracias por creer en mí, y por alentarme a seguir adelante cuando los desafíos parecían insuperables. Por sus consejos en todo momento, y a vivir un día a la vez.

Bradley Ortiz y Mishell Ortiz, ustedes han sido no solo mis hermanos, sino también mis mejores amigos y confidentes a lo largo de toda mi vida. Cuando enfrentaba desafíos académicos o personales, sabía que podía contar con ustedes para brindarme palabras de aliento y sabios consejos. Han compartido mis alegrías y triunfos, y han sido un hombro en el que apoyarme en momentos difíciles.

A mis abuelitos Gerardo Ortiz y Emma Morales, sus historias de vida, sus consejos sabios y su amor incondicional han moldeado mi carácter y mi camino académico. Han sido testigos de mi crecimiento y me han alentado en cada etapa de mi vida.

A mis queridos amigos de la universidad, que hemos compartido risas, lágrimas y momentos inolvidables que han enriquecido mi vida.

Yaritza Clara Ortiz Jácome

Agradecimiento

A mis amados padres, Lenin Almeida y Paulina Aspiazu, su amor incondicional, apoyo constante y sacrificio han sido la base sobre la cual he construido mi educación y mi futuro.

A la Universidad de las Fuerzas Armadas ESPE, y a todos los docentes quienes fueron parte de mi proceso de formación universitaria, gracias a todos ustedes.

Al director del proyecto Ingeniero Marco Vinicio Masabanda, PhD. un agradecimiento especial por sus conocimientos y su guía durante el tiempo de trabajo.

Al Ingeniero Miguel Araque, quiero expresar mi más sincero agradecimiento. Su asesoramiento experto, disposición para resolver mis dudas y apoyo constante fueron esenciales para sacar adelante este proyecto. Su guía y conocimiento fueron un faro en momentos de incertidumbre, y su contribución ha sido una parte fundamental de este logro académico.

Con sincero agradecimiento, quiero expresar mi reconocimiento a Clara Ortiz, mi compañera de proyecto de titulación.

Con gratitud y cariño sincero

Angélica Jazmín Almeida Aspiazu

A la Universidad de las Fuerzas Armadas ESPE, y a todos quienes fueron parte de mi proceso de formación universitaria, muchas gracias.

A mi director del proyecto Ingeniero Marco Vinicio Masabanda, PhD. un agradecimiento profundo por sus conocimientos.

A mis compañeros del trabajo de titulación, Francisco, Angélica y Abel por los buenos momentos compartidos y por la dedicación, sin ustedes no lo hubiera logrado.

A mis padres Armando y Silvana, hermanos Mishell y Bradley, también a mi familia en general les agradezco por haber creído en mí, y darme aliento a seguir mis sueños.

Al Ingeniero Miguel Araque y la Ingeniera Pamela Jaque quiero agradecer por sus conocimientos y apoyo en dudas que se produjeron en este proyecto.

A Kimberly y Valeria por ser cómplices en cada momento de mi vida universitaria y construir una amistad que perdurará años. A Pame y Abel ya que hemos compartido no solo aulas y libros, sino también risas interminables y consejos en la madrugada. Anita, Santy, Bryan y Kevin, nuestras experiencias en la residencia quedarán grabadas en nuestros corazones como recuerdos imborrables. Franco por ser mi confidente y apoyo en mi último semestre.

Nathy mi mejor amiga y roomie ya que, a lo largo de los años, desde nuestros días desde prepo hasta este emocionante momento de culminación, tu amistad ha iluminado mi camino en los días más oscuros y has compartido conmigo risas, lágrimas y sueños.

Yaritza Clara Ortiz Jácome

Índice de contenido

Reporte de similitud de contenidos	2
Certificación	3
Responsabilidad de Autoría	4
Autorización de Publicación	5
Dedicatoria	6
Agradecimiento	8
Capítulo I Introducción	20
Antecedentes	20
Estado del Arte	21
Planteamiento del Problema	22
Macro	22
Meso	23
Micro	24
Justificación	25
Alcance del proyecto	26
Objetivos	26
Objetivo General	26
Objetivos Específicos	26
Capítulo II Marco Teórico	27
Cuenca hidrográfica	27
Clasificación de cuencas	27
Subcuencas	27
Microcuencas	28

	Partes de la cuenca	28
	Cuenca alta	28
	Cuenca media	29
	Cuenca baja	29
	Tipos de cuencas	29
	Delimitación de una cuenca hidrográfica	30
	Morfometría	31
	Parámetros generales de una cuenca	31
	Parámetros de Relieve	32
	Caracterización de la Red de Drenaje	32
	Hidrología	32
	Precipitación	32
	Datos faltantes de precipitación de una cuenca	33
	Determinación de la Precipitación media	33
	Determinación de la Precipitación media	
		33
	Método Aritmético	33
	Método Aritmético Polígonos de Thiessen (Th)	33 33 34
	Método Aritmético	33 34 34
	Método Aritmético Polígonos de Thiessen (Th) Métodos de las Isoyetas (Iso) Hidrometría	33 34 34 34
С	Método Aritmético	33 34 34 34
С	Método Aritmético Polígonos de Thiessen (Th) Métodos de las Isoyetas (Iso) Hidrometría Caudal Medición de Caudal	33 34 34 34 35
С	Método Aritmético Polígonos de Thiessen (Th) Métodos de las Isoyetas (Iso) Hidrometría Caudal Medición de Caudal Capítulo III Materiales y Métodos	33 34 34 35 36
С	Método Aritmético Polígonos de Thiessen (Th) Métodos de las Isoyetas (Iso) Hidrometría Caudal Medición de Caudal Capítulo III Materiales y Métodos Ubicación	33 34 34 35 36 36
С	Método Aritmético Polígonos de Thiessen (Th) Métodos de las Isoyetas (Iso) Hidrometría Caudal Medición de Caudal Capítulo III Materiales y Métodos Ubicación Clima de Morona Santiago	33343435363636

Precipitación media anual	49
Parámetros de la Cuenca del Río Upano	51
Área de la cuenca	53
Perímetro	54
Longitud del Cauce Principal	54
Longitud Axial (La)	56
Curva Hipsométrica	57
Codificación de la Cuenca	59
Ancho promedio	60
Coeficiente de compacidad Gravelius	60
Factor Forma	62
Pendiente de la cuenca	63
Pendiente media del cauce principal	64
Vegetación	65
Cálculo del coeficiente de escorrentía (C)	66
Método Racional - ArcGis	66
Cálculo por el Método de Nadal	69
Órdenes del suelo en Ecuador	71
Tiempo de Concentración	71
Fórmula por Kirpich	71
	70
Número de Curva de la cuenca	12
Número de Curva de la cuenca Caudales	
	73
Caudales	73 75
Caudales Método de Sandoval	73 75

Resultados de la Modelación en el HEC-RAS	90
Conclusiones	102
Recomendaciones	103
Bibliografía	104
Apéndices	107

Indice de tablas

Tabla 1	Coordenadas del Río Upano	36
Tabla 2	Temperatura Medida °C	39
Tabla 3	Temperatura media por isoterma	41
Tabla 4	Precipitaciones mensuales Enero - Junio	41
Tabla 5	Precipitaciones mensuales Julio - Diciembre	43
Tabla 6	Test de tendencias por el método de Mann Kendall	46
Tabla 7	Valores críticos	48
Tabla 8	Cálculo de la precipitación media anual con los valores máximos	49
Tabla 9	Coeficiente de compacidad (Kc)	61
Tabla 10	Valores interpretativos	62
Tabla 11	Cálculo del coeficiente de escorrentía con el coeficiente C	67
Tabla 12	Factor K3 para determinación del Coeficiente de escorrentía	69
Tabla 13	Valores de k para calcular la fórmula por el método anónimo	70
Tabla 14	Tipo de cobertura vegetal en la cuenca del Río Upano	72
Tabla 15	Distribución de probabilidades pluviométricas mediante Gumbel	76
Tabla 16	Duraciones en Horas	78
Tabla 17	Precipitaciones máximas para diferentes tiempos de duración de lluvias	78
Tabla 18	Intensidades de lluvia a partir de Pd, según Duración de precipitación y Frecue	ncia
de la misn	na	79
Tabla 19	Período de retorno para 2 años	79
Tabla 20	Período de retorno para 5 años	81
Tabla 21	Período de retorno para 10 años	82
Tabla 22	Período de retorno para 25 años	83
Tabla 23	Período de retorno para 50 años	84
Tabla 24	Período de retorno para 100 años	85

Tabla 25	Período de retorno para 500 años	.86
Tabla 26	Regresión Potencial	.87
Tabla 27	Resultados del modelamiento en HEC-RAS	.99

Índice de figuras

Figura 1	Mapa del Ecuador	.36
Figura 2	Ubicación del proyecto	.37
Figura 3	Tipo de climas en Morona Santiago	.38
Figura 4	Mapa de isotermas del Ecuador.	.40
Figura 5	Precipitaciones mensuales	.45
Figura 6	Valores de dispersión	.51
Figura 7	Localización de la cuenca del Río Upano	.52
Figura 8	Área de la cuenca del Río Upano	.53
Figura 9	Perímetro de la cuenca del Río Upano	.54
Figura 10	Longitud del cauce principal del Río Upano	.55
Figura 11	Longitud Axial del Río Upano	.57
Figura 12	Áreas	.58
Figura 13	Curva Hipsométrica de la Cuenca	.58
Figura 14	Codificación de la Cuenca del Río Upano	.59
Figura 15	Pendientes de la cuenca	.64
Figura 16	Tipo de vegetación en la cuenca	.65
Figura 17	Coeficiente de escorrentía. Método Racional	.66
Figura 18	Mapa de vegetación y tipo de pendiente	.67
Figura 19	Órdenes de suelos en Ecuador	.71
Figura 20	Primera sección (-0+100 m Aguas Abajo del Puente)	.90
Figura 21	Segunda sección (0+000 Cota del Puente)	.91
Figura 22	Tercera sección (0+100m Aguas Arriba del Puente)	.92
Figura 23	Cuarta sección (0+200m Aguas Arriba del Puente)	.93
Figura 24	Quinta sección (0+300m Aguas Arriba del Puente)	.94
Figura 25	Sexta sección (0+400m Aguas Arriba del Puente)	.94

Figura 26	Séptima sección (0+500m Aguas Arriba del Puente)	95
Figura 27	Octava sección (0+600m Aguas Arriba del Puente)	96
Figura 28	Novena sección (0+700m Aguas Arriba del Puente)	97
Figura 29	Décima (0+800m Aguas Arriba del Puente)	98

Resumen

En el presente trabajo de integración curricular "DISEÑO HIDROLÓGICO E HIDRÁULICO DE PUENTES SOBRE EL RÍO UPANO". Este río se encuentra ubicado en la Amazonia del Ecuador, en la provincia de Morona Santiago. Para poder desarrollar este proyecto se reunió información relevante para el estudio de la cuenca del río Upano y a partir de los datos recopilados, se procedió a realizar el cálculo de los parámetros morfológicos de la cuenca, análisis de los datos de precipitaciones, caudal máximo para un tiempo de retorno de 100 años, entre otros. La precipitación máxima se obtuvo a partir de los datos obtenidos en la página de la NASA. La determinación del caudal máximo de crecida para el río Upano, con un tiempo de retorno de 100 años, se obtuvo a partir del uso de la ecuación desarrollada por Ingeniero Washington Sandoval PhD. Este caudal permitió conocer la cota máxima de crecida en el río en la sección del río donde se encuentra el puente y, por ende, su galibo. Para poder observar el comportamiento del río Upano en el periodo de retorno de 100 años se utilizó el software HEC-RAS, donde se introdujo las secciones transversales del río aguas arriba ya aguas abajo del puente además del caudal obtenido aumentado en un 30% contemplado como un factor de seguridad. El aumento de su caudal en dicho porcentaje con el objetivo de contrarrestar el aporte desconocido de material piroclástico y lava debido a la ubicación cercana al volcán Sangay. Todo lo anteriormente mencionado ha dado como resultado la altura del puente a partir de la cota de máxima crecida pronosticada en un periodo de retorno de 100 años, asegurando la permanencia del puente y la seguridad de sus usuarios.

Palabras clave: hidrología de la cuenca Upano, puente sobre el río Upano, caudal máximo de crecida.

Abstract

In this degree work "HYDROLOGICAL AND HYDRAULIC DESIGN OF BRIDGES OVER THE UPANO RIVER", the hydrological and hydraulic parameters for the Upano River are calculated. This river is located in the Amazon region of Ecuador, in the province of Morona Santiago. In order to develop this project, relevant information was gathered for the study of the Upano river basin and from the data collected, we proceeded to calculate the morphological parameters of the basin, analysis of rainfall data, maximum flow for a return time of 100 years, among others. The maximum precipitation was obtained from data obtained from the NASA website. The determination of the maximum flood flow for the Upano River, with a return time of 100 years, was obtained from the equation developed by Engineer Washington Sandoval PhD. This flow allowed us to know the maximum flood level in the river in the section of the river where the bridge is located and, therefore, its gauge. In order to observe the behavior of the Upano River in the 100-year return period, the HEC-RAS software was used, where the cross-sections of the river upstream and downstream of the bridge were introduced, in addition to the flow obtained, increased by 30%, considered as a safety factor. The increase of its flow in this percentage with the objective of counteracting the unknown contribution of pyroclastic material and lava due to the location near the Sangay volcano. All of the above has resulted in the height of the bridge from the maximum flood level predicted for a return period of 100 years, ensuring the permanence of the bridge and the safety of its users.

Keywords: Upano basin hydrology, Upano river bridge, peak flood flow.

Capítulo I

Introducción

Antecedentes

Los puentes han desempeñado un papel fundamental para los seres humanos, ya que estos permiten acortar distancias, permitiendo crear conexiones en zonas donde la naturaleza del terreno lo dificulta. Siendo así, de vital importancia para la comunicación entre puntos de interés, impulsando el comercio y mejorando la calidad de vida de las personas que habitan estos lugares. (Steinmann & Watson, 1979)

Para lograr su objetivo, los puentes deben superar las dificultades que la naturaleza presenta, entre estos se encuentran los cuerpos de agua, en especial, los cursos de agua como lo son los ríos. La construcción y planificación de puentes sobre cuerpos de agua requiere un enfoque técnico, ya que se debe tomar en cuenta diferentes factores que influirán en el comportamiento del puente a lo largo de su vida útil. (Wai-Fah & Lian Duan, 2014)

Dentro de los diferentes estudios técnicos necesarios para un diseño óptimo y seguro, se incluyen los estudios hidrológicos de la cuenca a la que pertenece el río sobre el cual pasará el puente. Estos estudios proporcionarán información sobre las características de dicha cuenca, permitiendo así una comprensión detallada de su comportamiento en condiciones de precipitaciones máximas. Estos factores, junto con una modelación hidráulica, servirán para presentar un diseño que sea capaz de resistir y adaptarse a las condiciones más extremas que se puedan presentar en el río. (Wai-Fah & Lian Duan, 2014)

Para poder llevar a cabo los diferentes estudios hidrológicos e hidráulicos de la cuenca estudiada, es necesario tener conocimiento detallado acerca de su entorno, tales como la geografía, clima y geología de la zona. Considerando las premisas previamente expuestas, adquiere un significado trascendental el hecho de entender que, entre dos de las cordilleras, el río Upano nace en los andes a 400 m de altura, al pie del volcán Sangay, que proviene de diversos riachuelos que bajan de las alturas andinas de la cordillera real. Dibujando un corredor

hacia el este, siguiendo con una curva brusca hacia el sur, siguiendo su cauce hasta su desembocadura. Su lecho pedregoso, su corriente y sus crecidas impiden que sea navegable, como la mayoría de los ríos en el sur de la Amazonía. Se caracteriza por la presencia de frecuentes lluvias ya que se encuentra en la selva húmeda tropical, alcanzando una temperatura agradable, variando entre los 12 y 27 °C.(Rostain & De Saulieu, 2019)

En los últimos 5 años, el río Upano ha presentado diferentes escenarios de peligrosidad debido a las fuertes e intensas precipitaciones, además de los productos volcánicos del Sangay, que se ha venido incrementado ligeramente desde abril del 2022, causando desbordamientos y con ello provocando la modificación del cauce del río. Estas modificaciones han traído frecuentes socavaciones en la vía Macas – Puyo (E45), afectando la comunicación entre las comunidades.(Brito & Piedra, 2021)

Estado del Arte

La ingeniería aplicada al diseño de puentes se ha visto beneficiada gracias al avance tecnológico. En la actualidad, se dispone de una amplia gama de fuentes confiables de información las cuales son de gran importancia para el desarrollo de diseños más óptimos y efectivos.

En el ámbito del análisis espacial y la obtención de datos geográficos, se puede optar por el uso de imágenes geoespaciales proporcionadas por el Servicio Geológico de Estados Unidos (USGS) o de cartas topográficas en formato SHAPEFILE suministradas por el Instituto Geográfico Militar (IGM). Estas cartas topográficas cuentan con información de la zona, incluyendo sus curvas de nivel, ríos y otros elementos.

Esta información puede ser procesada con ayuda de la aplicación del software de análisis geoespacial ArcGIS, este permite el análisis de los datos geográficos de manera más eficiente y efectiva. El software cuenta con diferentes herramientas que ayudan a generar mapas y un modelo de elevación digital a partir de las curvas de nivel, lo que permiten realizar la delimitación de la cuenca a estudiar.

En el ámbito hidrológico, la NASA pone a disposición del público los datos de precipitaciones en cualquier punto del planeta a través de sus satélites, estaciones en tierra y aeronaves, los cuales son indispensables en el análisis de la cuenca. Además, el Instituto Nacional de Meteorología e Hidrología (INAMHI) ha brindado información acerca del clima en la zona, complementando la información obtenida de la NASA.

La utilización del software HEC-RAS para llevar a cabo la modelación de la sección del puente y el análisis del comportamiento del flujo del agua en la zona de interés, desempeña un rol esencial de diseñar un puente. Esta permite a simular diversos escenarios, permitiendo anticipar el comportamiento del puente y el río ante las condiciones más extremas.

En conjunto, todas estas herramientas demuestran que el avance tecnológico se encuentra presente en el campo de la ingeniería civil, además de la colaboración de diferentes instituciones nacionales e internacionales. Estas herramientas han permitido realizar un análisis más preciso y ha ayudado en la toma de decisiones informadas durante diseño y construcciones de puentes.

Planteamiento del Problema

Macro

Latinoamérica es conocida por su riqueza en recursos hídricos, estos sistemas fluviales son de gran importancia ya que desempeñan un papel fundamental en la configuración de su geografía y el desarrollo de sus comunidades. No obstante, la pertenencia de este regalo hídrico viene acompañada por desafíos considerables. Tolledos (2022) destaca la importancia de realizar un adecuado manejo del agua y la prevención de las inundaciones, ya que es conocido que América Latina es protagonista de diferentes desastres naturales, entre ellos, las lluvias torrenciales que a su vez pueden desencadenar el aumento en el caudal de los ríos.

En América Latina, las crecidas de ríos e inundaciones son un fenómeno común. Es por esta razón que se tiene un sinnúmero de ejemplos de los cuales se pueden destacar la inundación ocurrida en Tabasco, México donde la mayor parte del estado se encontró inundado

a causa de las fuertes lluvias que aumentaron el caudal de sus ríos cercanos, llevándolos más allá de su límite y provocando su desborde. (López, 2007)

Además de las Iluvias torrenciales que ocurren comúnmente en Latinoamérica, es importante considerar también el impacto del fenómeno de la Niña en esta ecuación. Fuentes reconocidas como la BBC News (2021) indica que el fenómeno de la Niña es un evento natural que se produce por el enfriamiento anormal de las aguas ecuatoriales del Océano Pacífico Tropical. El fenómeno de la Niña se puede manifestar en dos maneras completamente distintas, dependiendo la ubicación. En Colombia, el norte de Brasil y el Ecuador se presenta a través de lluvias intensas y abundantes, aumentando así el caudal de sus ríos y provocando inundaciones.

A partir de lo anteriormente mencionado, es importante agregar que, según Vargas (2018) es de gran importancia realizar el estudio hidrológico y el diseño hidráulico para un puente que se ubicará sobre un río. Esto se realiza con fin de prevenir o mitigar los daños que podrían ser causados por eventos extremos de la naturaleza en las zonas donde se ubican estas estructuras. La realización inadecuada de estos estudios o su omisión conlleva graves consecuencias, ya que la estructura no estaría preparada para eventos extremos como las inundaciones. (Dávila, 2015)

Meso

En Ecuador, los desastres naturales, como las inundaciones, son un problema común y representan un desafío frecuente para sus habitantes, especialmente en las regiones costeras y la Amazonía. Según Santana y Lima (2021), estos eventos se han presentado con mayor frecuencia en los últimos años. Esta tendencia podría ser consecuencia de las actividades humanas indiscriminadas que afectan al medio ambiente, como la deforestación de las cuencas y cabeceras de los ríos, además de los factores climáticos como la precipitación intensa y la topografía particular de la región.

Además, se conoce que el Fenómeno de la Niña afecta directamente al Ecuador provocando un impacto directo en su clima y de esa manera aumentando sus precipitaciones en las zonas costeras y amazonia, en consecuencia, aumentando el caudal de sus ríos. (Cabrera & Arce, 2016)

En diferentes regiones del Ecuador se han registrado diversos incidentes catastróficos relacionados con el colapso de puentes provocado por el crecimiento de los ríos que los atraviesan. Esto se debe a las fuertes lluvias que se presentan en el invierno y los factores climáticos y geográficos mencionados anteriormente.

Micro

El puente que conecta las ciudades de Macas y Puyo se ha visto afectado por el río Upano a lo largo de los años. El río ha presentado desbordamientos y crecidas de su cauce recurrentes en la zona cercana a Macas, dando como resultado la interrupción de conexión entre estas dos ciudades y provocando molestia para los moradores del lugar y la gente que utiliza esta ruta para desplazarse. Agudizando la situación, el río Upano se encuentra cerca del volcán Sangay, el cual, al estar activo, ha generado material piroclástico y cenizas que impactan directamente sobre el cauce del río Upano. (Romo, 2023)

El 25 de septiembre del 2020, el Servicio Nacional de Riesgos reportó un desbordamiento del río Upano en el trayecto de la vía Macas – Puyo que ocasionó un socavón, dejándola parcialmente inhabilitada (Primicias, 2020).

En el presente año el río Upano ha aumentado considerablemente su caudal en consecuencia de las constantes lluvias que se dieron desde el mes de marzo. El aumento del caudal mantuvo en alerta a las autoridades e instituciones tanto nacionales como locales (Morona Santiago). En el mes de mayo, la vía Macas-Puyo (E45) fue cerrada debido a que tramos del puente sobre el río Upano colapsaron afectando seriamente al transporte y también al desarrollo económico de ciudad de Macas (El Telégrafo, 2021). El tramo afectado se encuentra ubicado en el valle del río Upano, y se puede inferir que los estudios

geomorfológicos y geológicos de la cuenca del río son insuficientes o no consideran los efectos del cambio climático y las medidas para combatir sus efectos.

Justificación

Es una realidad que la comunicación entre la ciudad de Macas y Puyo es fundamental para el desarrollo social, económico y turístico. En este contexto, el puente ubicado sobre el río Upano es una estructura de vital importancia para facilitar y optimizar la movilidad de las personas a través de este lugar donde el terreno lo dificulta. Este puente no solo permite superar el cauce del río de más de 400 metros, sino que también reafirma su función crucial en la conectividad de estas dos ciudades amazónicas.

De acuerdo con la conferencia impartida por el ingeniero Marcelo Romo (2023), el puente ha experimentado una serie de problemas relacionados con las crecidas del río Upano, sobre el cual está construido. Estos percances se han originado a partir de que se han tomado soluciones apresuradas y diagnósticos parciales que, lamentablemente, no han sido efectivos, ya que los problemas en el puente persisten. Es por esta razón que, previo a llevar a cabo el diseño de un puente, es necesario elaborar un estudio hidrológico y diseño hidráulico. Estos estudios y análisis deben contemplar de manera integral todos los factores que influyen en la cuenca que aporta al caudal del río en cuestión.

Basándonos en lo mencionado, se ha evidenciado la significativa relevancia de realizar el diseño hidrológico e hidráulico de puentes sobre el río Upano. Por lo tanto, en el presente proyecto se llevará a cabo el análisis de los parámetros geomorfológicos de la cuenca del río Upano con el objetivo de determinar criterios hidrológicos e hidráulicos para el diseño puente.

Tanto el diseño hidrológico como el diseño hidráulico se realizará con ayuda de software como ArcGIS y HEC-RAS, estos servirán como herramientas para el procesamiento de información obtenida de las distintas fuentes como el Instituto Geográfico Militar (IGM), NASA y USGS.

El objetivo del estudio hidrológico es obtener un caudal de diseño a partir del análisis de las precipitaciones de la zona de estudio, teniendo en cuenta los tiempos de retorno, en especial a los 100 años. A partir de este caudal, el diseño hidráulico evaluará el comportamiento del río y sus secciones transversales para dicho caudal.

Alcance del proyecto

El presente proyecto tendrá como resultado la determinación de los parámetros morfológicos de la cuenca del río Upano y el caudal de la misma para un tiempo de retorno de 100 años. Mediante esta información determinar del comportamiento del río y del puente ante un evento crítico de una lluvia de gran intensidad en los próximos 100 años.

Objetivos

Objetivo General

Realizar el estudio hidrológico e hidráulico para puentes sobre el río Upano en la provincia de Morona Santiago, ciudad de Macas, en la vía Macas-Puyo.

Objetivos Específicos

- Determinar los parámetros morfológicos de la cuenca del río Upano a través del software
 ArcGIS, además de sus condiciones hidrológicas.
- Analizar datos de precipitaciones y determinar su intensidad, duración y frecuencia.
- Determinar los caudales de diseño obtenidos para entender la variabilidad hidrológica de la cuenca.
- Modelar el río Upano en el software HEC-RAS y observar el comportamiento de las secciones transversales ante el caudal que se tiene para un tiempo de retorno de 100 años.
- Determinar la altura adecuada del puente considerando las condiciones geográficas y hidrológicas de la cuenca.

Capítulo II

Marco Teórico

Cuenca hidrográfica

Una cuenca hidrográfica se define como "un área geográfica delimitada por la topografía, donde todas las aguas que caen en ella convergen hacia un único punto de salida" (Chow, Maidment y Mays, 1988, p. 35). Es una unidad territorial en la cual todas las aguas superficiales y subterráneas fluyen hacia un punto de salida principal (Martínez Díaz, 2012, p. 45).

Clasificación de cuencas

Una cuenca hidrográfica puede subdividirse en unidades más pequeñas conocidas como subcuencas y, a su vez, estas subcuencas pueden subdividirse aún más en microcuencas. Según Chow, Maidment y Mays (1988), una subcuenca se define como "una subdivisión de una cuenca hidrográfica más grande, donde todas las aguas que caen en esa subcuenca convergen hacia un único punto de salida" (p. 42). Las subcuencas se delimitan mediante las líneas de divisoria de aguas y tienen su propio sistema de drenaje interno.

La clasificación de cuencas hidrográficas en subcuencas y microcuencas es un proceso adicional que se utiliza para desglosar y subdividir una cuenca hidrográfica en unidades más pequeñas y específicas. Esta clasificación permite un análisis más detallado y una comprensión más precisa de las características hidrológicas dentro de la cuenca.

Subcuencas

Una subcuenca se define como "una subdivisión de una cuenca hidrográfica más grande, donde todas las aguas que caen en esa subcuenca convergen hacia un único punto de salida" (Chow, Maidment y Mays, 1988, p. 42). Hamlin y Gray (2000, p. 67) también destacan que una subcuenca es "una unidad hidrológica con límites definidos dentro de una cuenca principal, con su propio sistema de drenaje". Además, Arnáez Vadillo y Gómez Gutiérrez (2010,

p. 122) señalan que una subcuenca es "una porción autónoma de una cuenca principal, que se delimita mediante las líneas de divisoria de aguas".

Microcuencas

Dentro de las subcuencas, se encuentran las microcuencas, que son subdivisiones aún más pequeñas y detalladas. Las microcuencas se caracterizan por tener límites aún más precisos y un área y sistema de drenaje reducidos (Chow, Maidment y Mays, 1988, p. 42). Hamlin y Gray (2000) también mencionan que las microcuencas son unidades hidrológicas más pequeñas que las subcuencas, con límites más precisos y un área y sistema de drenaje más reducidos (p. 67).

Serrano-Ortiz (2012), definen las microcuencas como subdivisiones aún más pequeñas de las subcuencas, caracterizadas por tener un área y un sistema de drenaje aún más reducidos (p. 178). Arnáez Vadillo y Gómez Gutiérrez (2010) también destacan que las microcuencas son subdivisiones más precisas y pequeñas de las subcuencas, con un área y límites más detallados (p. 122).

Partes de la cuenca

Una cuenca hidrográfica se compone de diferentes partes, cuenca alta, media y baja. La cuenca alta es la zona de origen del agua, la cuenca media es una región de transición y la cuenca baja es la zona de desembocadura. Además, se pueden identificar subdivisiones más pequeñas, como las subcuencas y las microcuencas.

Cuenca alta

La cuenca hidrográfica se compone de diferentes partes, cada una con características y funciones particulares. La cuenca alta, también conocida como zona de cabecera, se encuentra en la parte superior de la cuenca y se caracteriza por ser la zona de origen de los ríos y arroyos. Según Chow, Maidment y Mays (1988), la cuenca alta se define como "la región

montañosa donde se inicia el flujo de agua, generalmente a partir de precipitaciones, nieve derretida o manantiales" (p. 62). Esta región presenta pendientes pronunciadas y un mayor potencial de erosión debido a la acción del agua en su descenso hacia la cuenca media.

Cuenca media

La cuenca media se encuentra entre la cuenca alta y la cuenca baja. Según Tucci (2003), la cuenca media se caracteriza por ser una zona de transición, donde el flujo de agua se ralentiza debido a una menor pendiente y la presencia de llanuras aluviales. Esta región suele ser la más densamente poblada y se utiliza para actividades agrícolas y urbanas.

Cuenca baja

La cuenca baja, también conocida como zona de desembocadura, se encuentra en la parte inferior de la cuenca y está asociada al punto de salida del agua hacia el océano, un lago o un río más grande. Según Brakensiek (1984), la cuenca baja es la región donde "el agua proveniente de las cuencas altas y medias se encuentra y fluye hacia el punto de salida" (p. 100). Esta área suele ser más plana y está sujeta a procesos de sedimentación y deposición.

Tipos de cuencas

Existen diferentes tipos de cuencas hidrográficas, cada una con características particulares que las distinguen. Según Chow, Maidment y Mays (1988), una cuenca cerrada se define como "una cuenca sin salida natural donde el agua se acumula en una depresión y forma un cuerpo de agua" (p. 80). Estas cuencas pueden ser endorreicas, es decir, que el agua no fluye hacia el océano, sino que se acumula en un lago o una laguna interna.

Por otro lado, existen las cuencas abiertas, que son aquellas que tienen una salida natural hacia el océano, un lago o un río más grande. Según Serrano-Ortiz et al. (2012), una cuenca abierta se caracteriza por "tener un río principal que atraviesa la cuenca y actúa como el drenaje principal del agua" (p. 160). Estas cuencas son exorreicas, lo que significa que el agua fluye hacia una salida externa.

Además, dentro de las cuencas hidrográficas, se pueden encontrar cuencas endorreicas y exorreicas de tamaño variable. Según Fernández et al. (2016), una cuenca pequeña se refiere a "aquella cuenca hidrográfica de tamaño reducido, con una superficie y un sistema de drenaje limitados" (p. 45). Estas cuencas suelen ser de escala local y tienen una influencia más directa en las comunidades cercanas.

Además, una cuenca grande se caracteriza por "tener una extensa superficie y un sistema de drenaje más complejo y extenso, que abarca múltiples subcuencas y ríos principales" (Arnáez Vadillo y Gómez Gutiérrez, 2010, p. 96). Estas cuencas de mayor escala pueden abarcar varias regiones geográficas y tener un impacto significativo en el flujo de agua y los recursos hídricos.

Delimitación de una cuenca hidrográfica

La delimitación de una cuenca hidrográfica es un proceso fundamental para comprender y gestionar los recursos hídricos de un área determinada. Según Maidment (1993), la delimitación de una cuenca se basa en la identificación de las líneas de divisoria de aguas, que son las áreas de separación donde las aguas se dirigen hacia diferentes sistemas de drenaje. Estas líneas pueden ser identificadas mediante el análisis topográfico y la interpretación de las características del terreno.

El uso de herramientas y tecnologías geoespaciales es crucial en el proceso de delimitación de una cuenca hidrográfica. Según Saghafian et al. (2011), el uso de sistemas de información geográfica (SIG) y modelos digitales de elevación (MDE) permite analizar y visualizar las características topográficas y el flujo de agua en un área determinada. Estas herramientas ayudan a definir las líneas de divisoria de aguas y delinear con precisión los límites de una cuenca.

Además, la delimitación de una cuenca puede requerir la recopilación y análisis de datos hidrológicos y meteorológicos. Según Bos (2001), el estudio de los registros de precipitación y

caudales en diferentes puntos de la cuenca es esencial para comprender los patrones de flujo de agua y determinar los límites de la cuenca.

Morfometría

La morfometría de una cuenca hidrográfica es el estudio de las características geométricas y topográficas de su forma y tamaño. Esta información es fundamental para comprender el comportamiento hidrológico de una cuenca y su respuesta ante eventos de precipitación. Según Chow, Maidment y Mays (1988), la morfometría de una cuenca se basa en el análisis de parámetros como el área, la longitud del curso principal, la pendiente media, el perímetro, la densidad de drenaje y la forma de la cuenca.

Parámetros generales de una cuenca

El área de una cuenca es uno de los parámetros más básicos y representa la superficie total drenada por la red de drenaje. Según Strahler (1957), el área de una cuenca está directamente relacionada con la magnitud de los flujos de agua y la respuesta hidrológica de la cuenca ante eventos de lluvia.

La longitud del curso principal es otra medida importante en la morfometría de una cuenca. Según Abrahams (1993), la longitud del curso principal representa la distancia medida a lo largo del río principal desde la cabecera hasta la desembocadura. Esta medida puede indicar la resistencia que encuentra el agua en su recorrido, así como la cantidad de energía que se libera a medida que el agua desciende a través del curso principal.

La pendiente media de una cuenca es otro parámetro relevante en la morfometría.

Según Strahler (1957), la pendiente media se calcula dividiendo el cambio de elevación total de la cuenca entre su longitud. Esta medida puede influir en la velocidad del flujo de agua y la erosión del terreno.

La densidad de drenaje es un parámetro que indica la cantidad de canales y arroyos en relación con el área total de la cuenca. Según Schumm (1956), una alta densidad de drenaje puede indicar una mayor concentración de flujos de agua y una mayor erosión en la cuenca.

La forma de la cuenca también es un factor importante en su morfometría. Según Horton (1932), la forma de una cuenca puede influir en la respuesta hidrológica de la misma. Las cuencas alargadas pueden tener un tiempo de concentración más largo, lo que puede afectar la velocidad de respuesta a eventos de precipitación.

Parámetros de Relieve

Los parámetros de relieve mencionados son de suma importancia para comprender cómo el relieve de una cuenca afecta su respuesta hidrológica. En general, se puede afirmar que a medida que aumenta la pendiente o inclinación del terreno, la generación de escorrentía ocurre en periodos de tiempo más cortos. Los parámetros clave del relieve incluyen la pendiente media del cauce (J), la pendiente media de la cuenca (j), la curva hipsométrica, el histograma de frecuencias altimétricas y la altura media (H). Cada uno de estos parámetros proporciona información valiosa sobre la forma y características del relieve, lo que a su vez influye en el comportamiento hidrológico de la cuenca. (Anaya-Durand et al., 2014)

Caracterización de la Red de Drenaje

Hidrología

Esta rama estudia las dinámicas del agua, la misma que desempeña un papel importante en la vida de los seres humanos, y con ello en la Ingeniería Civil, para dar paso a grandes construcciones relevantes.

Precipitación

La precipitación se refiere a la caída de agua en forma de lluvia, nieve, granizo o cualquier otra forma de humedad que se deposita desde la atmósfera hacia la superficie

terrestre. Es un componente esencial del ciclo hidrológico y desempeña un papel crucial en el suministro de agua a los ecosistemas y las actividades humanas. (Chow, Maidment y Mays, 1988)

Datos faltantes de precipitación de una cuenca

Es el proceso de estimar o inferir los valores de precipitación que no están disponibles en un conjunto de datos de precipitación observados. Esto se realiza utilizando métodos estadísticos, técnicas de interpolación espacial o modelos matemáticos para completar la serie temporal de precipitación y obtener una representación más completa de los patrones de lluvia en una cuenca hidrográfica. (McCuen, R. H., 2005)

Determinación de la Precipitación media

Es el cálculo o estimación de la cantidad promedio de precipitación que ocurre en un área o cuenca hidrográfica durante un período de tiempo determinado. Se basa en el análisis de los datos de precipitación recolectados a lo largo de ese período y puede realizarse utilizando diversos métodos, como el método aritmético, los polígonos de Thiessen o los métodos de las isoyetas. (Maidment, D. R.,1993).

Método Aritmético

Es un método utilizado para calcular la precipitación media en una cuenca hidrográfica o área específica. Consiste en sumar todas las mediciones de precipitación registradas en diferentes estaciones o puntos de observación y dividir el resultado entre el número total de estaciones o puntos. Este enfoque simple proporciona una estimación promedio de la precipitación, pero no considera las variaciones espaciales y temporales de la lluvia. (Singh, V. P.,1992)

Polígonos de Thiessen (Th)

Los polígonos de Thiessen son una técnica utilizada para dividir un área en regiones o polígonos contiguos, donde cada polígono está asociado a una estación meteorológica. Se

basa en la idea de que cada estación meteorológica influye principalmente en su área circundante, y se utiliza para estimar la precipitación media en diferentes partes de una cuenca hidrográfica. La precipitación registrada en una estación se asigna al polígono correspondiente, lo que permite una representación espacial de la distribución de la precipitación. (Viessman Jr, W., & Lewis, G. L.,2002)

Métodos de las Isoyetas (Iso)

Los métodos de las isoyetas son técnicas utilizadas para mapear la distribución espacial de la precipitación en una cuenca hidrográfica. Se basan en el trazado de líneas (isoyetas) que conectan puntos con la misma cantidad de precipitación. Estas líneas se dibujan utilizando técnicas de interpolación entre las estaciones meteorológicas o puntos de observación, y proporcionan una representación visual de los patrones de precipitación en un área determinada. (Maidment, D. R.,1993).

Hidrometría

La hidrometría es una rama de la hidrología que se ocupa de la medición y estudio de las propiedades y características del agua en ríos, arroyos, lagos y otras masas de agua. Incluye la medición de variables como el caudal, la altura del agua, la velocidad de flujo y la calidad del agua. La hidrometría es fundamental para comprender el comportamiento de los recursos hídricos y para el diseño y manejo de infraestructuras hidráulicas. (McCuen, R. H.,2005).

Caudal

El caudal se refiere a la cantidad de agua que fluye a través de un punto en un río, arroyo u otra corriente de agua en un determinado intervalo de tiempo. Se expresa generalmente en unidades de volumen por unidad de tiempo, como metros cúbicos por segundo (m³/s) o litros por segundo (L/s). El caudal es una medida importante para la gestión

de los recursos hídricos, el diseño de obras hidráulicas y la evaluación del estado y la salud de los cuerpos de agua. (McCuen, R. H.,2005).

Medición de Caudal

La medición de caudal se refiere al proceso de determinar la cantidad de agua que fluye en un punto específico de una corriente de agua en un momento dado. Se utilizan diferentes técnicas y dispositivos de medición, como correntómetros, molinetes, vertederos, flotadores o sensores de presión, para obtener una estimación precisa del caudal. Estas mediciones son esenciales para el monitoreo de recursos hídricos, el diseño y la operación de sistemas de abastecimiento de agua y el estudio de la hidrología de una cuenca. (Viessman Jr, W., & Lewis, G. L.,2002).

Capítulo III

Materiales y Métodos

Ubicación

El estudio hidrológico e hidráulico del río Upano se encuentra realizado en la Provincia Amazónica de Morona Santiago.

Figura 1

Mapa del Ecuador

Este estudio está diseñado para la colocación de un puente en las siguientes coordenadas:

Tabla 1Coordenadas del Río Upano

Coordenad	as
Coordenadas Geo	ográficas
Latitud (° ' ")	S 02 18 01.
Lamoa ()	417

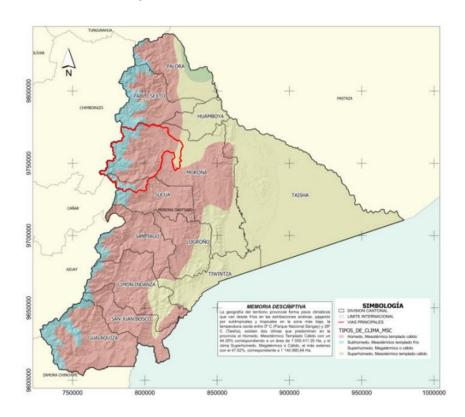
Coordenadas					
Longitud (° ' '')	W 078 06				
	20. 4742				
Altura Elipsoidal (m)	956.756				
Coordenadas UTM - 2	Zona 17 S				
Norte (m)	9745409,41				
Este (m)	821944,15				

Nota. Sistema de valores referenciales del sitio de análisis en el río Upano

Figura 2

Ubicación del proyecto

Nota: Ubicación del puente sobre el Río Upano visto desde Google Earth.


Clima de Morona Santiago

Según el Plan de Desarrollo y Ordenamiento Territorial de Morona Santiago, vigente en el periodo de 2019 hasta el 2023, indica que, debido al relieve presente en la provincia de Morona Santiago, se puede observar una variedad de climas que abarcan desde los fríos hasta

climas más tropicales en la zona más baja. Se tiene una temperatura que fluctúa entre 12 °C en el Parque Nacional Sangay y 28°C en la llanura Amazónica.

Figura 3

Tipo de climas en Morona Santiago.

Nota: Tomado de SENAGUA-2018, CONALI-2018, INAMHI-2008

La cuenca del río Upano se encuentra ubicada en el cantón de Morona, como se puede observar en la Figura 3, según el PDOT () se concluye que el tipo de climas presentes en la cuenca son:

Sub húmedo con pequeño déficit de agua mesotérmico templado frío: para su zona más elevada con una altura que oscila entre los 2000-3000 metros sobre el nivel del mar y con una temperatura que fluctúa entre los 0 y 12 °C.

Húmedo con pequeño déficit de agua mesotérmico templado o cálido: la altura a la que se encuentra este tipo de clima está dentro de los 900 o 2000 metros sobre el nivel del mar y con un rango en la temperatura de 12 a 24 °C.

Según el Instituto Nacional de Meteorología e Hidrología (2018), la provincia de Morona Santiago cuenta con registros de temperaturas de una serie histórica de información sobre la temperatura media mensual en la Tabla 2 registrados en el 2018 de las estaciones del INAHI.

Tabla 2

Temperatura Medida °C

	Sangay	Gualaquiza	Maca San	Maca	Macas	-	
Mes	(P.S)	INAMHI	Isidro-PNS	INAMHI	Aeropuerto	Taisha	Guarumales
Enero	21,22	22,76	20,77	21,48	21,28	24,18	17,99
Febrero	21,71	23,16	20,22	21,15	20,85	24,23	17,70
Marzo	21,81	23,25	20,63	21,25	21,38	23,59	17,89
Abril	21,90	23,10	20,77	21,15	20,88	23,98	17,66
Mayo	21,77	22,72	20,92	21,00	21,10	23,86	17,37
Junio	21,32	21,83	20,38	20,22	20,25	23,01	16,14
Julio	20,48	20,72	19,98	19,53	19,33	22,94	15,59
Agosto	20,87	21,57	20,32	20,05	20,27	23,54	16,29
Septiembre	21,74	22,22	20,64	20,45	20,55	23,96	16,89
Octubre	22,15	23,22	21,40	21,33	21,30	24,33	17,99
Noviembre	22,17	23,72	21,22	21,58	21,65	24,57	18,13
Diciembre	21,93	23,69	20,95	21,33	20,97	24,57	17,80
Promedio	21,59	22,66	20,68	21,48	21,48	24,18	17,99

Fuente: INAMHI en PR&D, 2014

En cuanto al factor de humedad, el PDOT (), indica que la humedad relativa de la provincia de Morona Santiago es elevada, esto es consecuencia de la influencia de las masas húmedas procedentes de la Amazonía y la capacidad evaporante del suelo. La humedad relativa oscila entre los valores anuales de 87% a 90%.

Isotermas

En la Figura 4 podemos observar a la cuenca del río Upano sobre el mapa de isotermas del Ecuador según el Instituto Nacional de Meteorología e Hidrología (2010). Esto tiene el objetivo de determinar la temperatura en la zona de estudio mediante el mapa que representa una temperatura constante en las diferentes zonas del país, permitiendo así determinar la temperatura media de la cuenca y teniendo como resultado una temperatura media de 17.11 °C.

Figura 4

Mapa de isotermas del Ecuador.

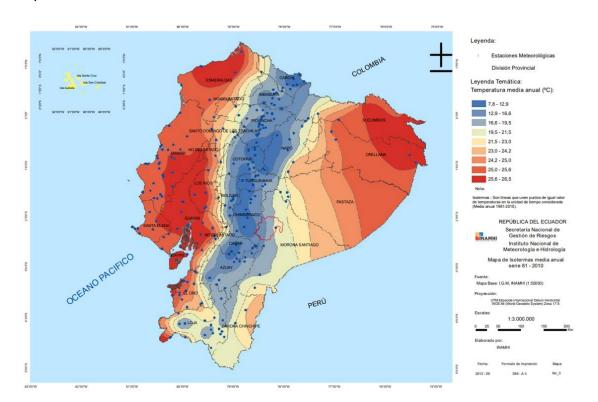


Tabla 3Temperatura media por isoterma

	Tomporoturo	Temperatura			Temperatura
Zona	Temperatura °C	media anual	Área [km²]	Peso	media por
	· ·	[°C]			isoterma
1	12,9-16,5	14,75	690,42	0,42	6,24
2	16,6-19,5	18,05	636,05	0,39	7,04
3	19,5-21,5	20,5	305,14	0,19	3,83
		TOTAL	1631,61	1,00	17,11

Datos de las precipitaciones Anuales

Para las precipitaciones se tomó datos de la NASA, en donde al ingresar valores se pudo recopilar datos

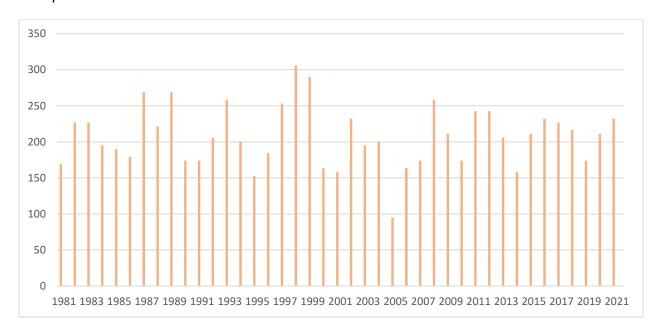
Tabla 4Precipitaciones mensuales Enero - Junio

Año	Enero	Febrero	Marzo	Abril	Mayo	Junio
1981	94,92	121,29	168,75	131,84	94,92	89,65
1982	158,20	137,11	152,93	205,66	121,29	94,92
1983	63,28	89,65	189,84	226,76	189,84	147,66
1984	126,56	184,57	195,12	163,48	100,20	105,47
1985	110,74	42,19	131,84	189,84	179,30	137,11
1986	105,47	137,11	105,47	179,30	100,20	73,83
1987	158,20	258,40	200,39	268,95	147,66	126,56
1988	116,02	221,48	79,10	195,12	179,30	121,29
1989	179,30	205,66	268,95	116,02	116,02	210,94

_							
	Año	Enero	Febrero	Marzo	Abril	Mayo	Junio
_	1990	84,38	163,48	121,29	174,02	79,10	152,93
	1991	84,38	152,93	121,29	126,56	126,56	174,02
	1992	89,65	147,66	200,39	205,66	179,30	89,65
	1993	163,48	210,94	258,40	184,57	137,11	79,10
	1994	142,38	131,84	200,39	179,30	142,38	105,47
	1995	105,47	79,10	142,38	100,20	142,38	100,20
	1996	152,93	184,57	163,48	142,38	121,29	110,74
	1997	131,84	179,30	221,48	168,75	142,38	116,02
	1998	147,66	200,39	232,03	305,86	242,58	147,66
	1999	179,30	158,20	290,04	184,57	142,38	126,56
	2000	116,02	110,74	163,48	100,20	163,48	52,73
	2001	131,84	58,01	121,29	47,46	121,29	158,20
	2002	110,74	142,38	232,03	210,94	158,20	100,20
	2003	110,74	121,29	163,48	174,02	195,12	152,93
	2004	73,83	126,56	195,12	195,12	200,39	147,66
	2005	0,00	10,55	89,65	47,46	5,27	0,00
	2006	58,01	163,48	105,47	73,83	79,10	105,47
	2007	58,01	0,00	47,46	0,00	21,09	79,10
	2008	147,66	179,30	232,03	258,40	200,39	137,11
	2009	84,38	210,94	163,48	68,55	0,00	0,00
	2010	42,19	116,02	137,11	174,02	21,09	21,09
	2011	110,74	168,75	116,02	242,58	84,38	63,28
	2012	226,76	232,03	242,58	168,75	142,38	110,74
	2013	137,11	147,66	205,66	163,48	142,38	121,29

Año	Enero	Febrero	Marzo	Abril	Mayo	Junio
2014	158,20	121,29	58,01	5,27	94,92	94,92
2015	137,11	110,74	210,94	200,39	142,38	137,11
2016	73,83	137,11	221,48	232,03	131,84	184,57
2017	189,84	137,11	226,76	210,94	179,30	158,20
2018	147,66	216,21	142,38	152,93	174,02	189,84
2019	137,11	147,66	131,84	174,02	142,38	142,38
2020	100,20	121,29	79,10	210,94	189,84	126,56
2021	232,03	142,38	168,75	176,55	157,08	208,94
MAX	232,03	258,40	290,04	305,86	242,58	210,94

Tabla 5Precipitaciones mensuales Julio - Diciembre


Año	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1981	89,65	15,82	52,73	94,92	100,20	152,93
1982	63,28	68,55	63,28	126,56	174,02	226,76
1983	126,56	36,91	105,47	147,66	110,74	126,56
1984	68,55	73,83	116,02	105,47	94,92	100,20
1985	84,38	116,02	105,47	131,84	100,20	100,20
1986	79,10	89,65	121,29	100,20	100,20	126,56
1987	63,28	31,64	68,55	158,20	58,01	36,91
1988	89,65	47,46	89,65	163,48	110,74	84,38
1989	105,47	52,73	47,46	116,02	94,92	31,64
1990	89,65	68,55	105,47	147,66	84,38	126,56
1991	52,73	21,09	68,55	89,65	110,74	84,38

Año	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1992	63,28	63,28	73,83	84,38	110,74	73,83
1993	137,11	100,20	84,38	89,65	89,65	137,11
1994	84,38	84,38	73,83	147,66	110,74	121,29
1995	152,93	52,73	63,28	52,73	121,29	105,47
1996	84,38	31,64	89,65	147,66	89,65	73,83
1997	58,01	68,55	158,20	84,38	253,12	200,39
1998	73,83	63,28	21,09	142,38	100,20	168,75
1999	42,19	84,38	131,84	79,10	84,38	200,39
2000	5,27	21,09	47,46	5,27	5,27	31,64
2001	84,38	47,46	36,91	84,38	84,38	152,93
2002	179,30	79,10	42,19	147,66	147,66	137,11
2003	89,65	42,19	89,65	116,02	100,20	179,30
2004	126,56	100,20	89,65	105,47	152,93	105,47
2005	0,00	0,00	0,00	73,83	94,92	10,55
2006	42,19	58,01	0,00	0,00	0,00	26,37
2007	5,27	110,74	89,65	152,93	174,02	110,74
2008	100,20	94,92	100,20	105,47	31,64	10,55
2009	42,19	121,29	52,73	131,84	52,73	126,56
2010	10,55	10,55	58,01	105,47	110,74	137,11
2011	121,29	63,28	47,46	110,74	168,75	89,65
2012	116,02	89,65	68,55	110,74	137,11	79,10
2013	131,84	121,29	94,92	147,66	110,74	100,20
2014	89,65	84,38	63,28	105,47	68,55	100,20
2015	110,74	68,55	47,46	137,11	137,11	105,47

Año	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
2016	73,83	68,55	126,56	94,92	94,92	84,38
2017	94,92	84,38	79,10	79,10	137,11	179,30
2018	89,65	84,38	31,64	116,02	152,93	89,65
2019	58,01	84,38	21,09	121,29	116,02	121,29
2020	84,38	21,09	42,19	26,37	36,91	131,84
2021	41,08	28,32	33,47	124,21	142,93	176,98
MAX	179,30	121,29	158,20	163,48	253,12	226,76

Figura 5

Precipitaciones mensuales

Test de Mann Kendall

La prueba de Mann-Kendall es un test estadístico que calcula un índice de desviación S de la serie, a partir del cálculo de V en la relación.

Hipótesis Nula: Todos los valores de la serie son datos aleatorios de una sola población (serie Homogénea)

Hipótesis Alternativa: Es una serie no homogénea con tendencia monótona.

Tabla 6Test de tendencias por el método de Mann Kendall

n	P máx	Si	ti
1	168,75	34,00	6,00
2	226,76	12,00	25,00
3	226,76	12,00	25,00
4	195,12	22,00	14,00
5	189,84	23,00	13,00
6	179,3	24,00	11,00
7	268,95	2,00	31,00
8	221,48	12,00	21,00
9	268,95	2,00	30,00
10	174,02	21,00	6,00
11	174,02	21,00	6,00
12	205,66	15,00	13,00
13	258,4	2,00	25,00
14	200,39	15,00	11,00
15	152,93	25,00	1,00
16	184,57	17,00	8,00
17	253,12	3,00	21,00
18	305,86	0,00	23,00
19	290,04	0,00	22,00
20	163,48	17,00	3,00
21	158,2	18,00	1,00

n	P máx	Si	ti
22	232,03	3,00	14,00
23	195,12	12,00	6,00
24	200,39	11,00	6,00
25	94,92	16,00	0,00
26	163,48	14,00	1,00
27	174,02	11,00	1,00
28	258,4	0,00	13,00
29	210,94	6,00	4,00
30	174,02	9,00	1,00
31	242,58	0,00	9,00
32	242,58	0,00	9,00
33	205,66	6,00	2,00
34	158,2	7,00	0,00
35	210,94	4,00	1,00
36	232,03	0,00	4,00
37	226,76	1,00	3,00
38	216,21	1,00	2,00
39	174,02	2,00	0,00
40	210,94	1,00	0,00
41	232,03	0,00	0,00
	Total	401,00	392,00

n= Número de registros

S= Índice de desviación calculado.

Si= Índice de desviación calculado X_j>X_i

ti = Índice de desviación calculado X_i<X_i.

$$I = \sum_{1}^{N-1} T1$$

$$I = 392,00$$

$$S = T-I$$

$$S = 9$$

$$V = \frac{S-1}{\sqrt{\frac{n(n-1)(2n+5)}{18}}}$$

$$(3.1)$$

Reemplazando en la ecuación 3.1 tenemos el siguiente valor calculado.

El valor de V calcualdo debe estar en el rango del 95% de V crítico encontrarse en el siguiente rango:

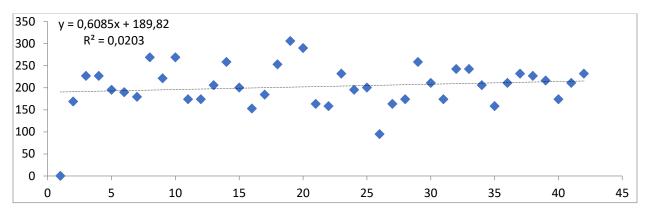
Tabla 7

Valores críticos

α	V _{crit}
0,50%	2,58
1,00%	2,33
2,50%	1,96
5,00%	1,64
10,00%	1,28

Nota: Si -1,64 y 1,64 la hipótesis es válida, por tanto, los datos son homogéneos, ya que tenemos un valor de 0.09, que entra en el rango.

Precipitación media anual


Tabla 8Cálculo de la precipitación media anual con los valores máximos

Año	N	láximo
1981	168,75	1207,62
1982	226,76	1592,56
1983	226,76	1560,93
1984	195,12	1434,39
1985	189,84	1429,13
1986	179,30	1318,38
1987	268,95	1576,75
1988	221,48	1497,67
1989	268,95	1545,13
1990	174,02	1397,47
1991	174,02	1212,88
1992	205,66	1381,65
1993	258,40	1671,70
1994	200,39	1524,04
1995	152,93	1218,16
1996	184,57	1392,20
1997	253,12	1782,42
1998	305,86	1845,71
1999	290,04	1703,33
2000	163,48	822,65
2001	158,20	1128,53

Año	N	Máximo
2002	232,03	1687,51
2003	195,12	1534,59
2004	200,39	1618,96
2005	94,92	332,23
2006	163,48	711,93
2007	174,02	849,01
2008	258,40	1597,87
2009	210,94	1054,69
2010	174,02	943,95
2011	242,58	1386,92
2012	242,58	1724,41
2013	205,66	1624,23
2014	158,20	1044,14
2015	210,94	1545,11
2016	232,03	1524,02
2017	226,76	1756,06
2018	216,21	1587,31
2019	174,02	1397,47
2020	210,94	1170,71
2021	232,03	1632,72
MAX	305,86	56967,14

Figura 6

Valores de dispersión

Entonces tenemos la siguiente ecuación (3.2):

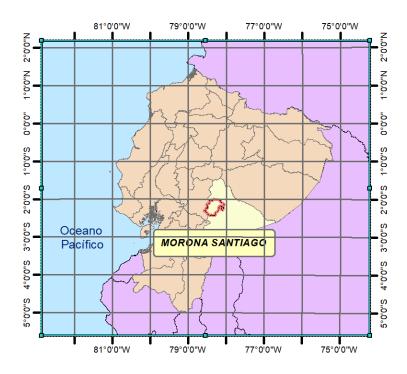
$$\overline{P} \text{ media anual} = \frac{\sum \text{Precipitaciones de los } 12 \text{ meses}}{\text{Número de años}} \text{ mm}$$

$$\overline{P} \text{ media anual} = \frac{56967,14}{41} \text{ mm}$$

$$\overline{P} \text{ media anual} = 1389.44 \text{mm}$$

Parámetros de la Cuenca del Río Upano

Para los siguientes datos se utilizó el software Arc Gis, siendo una de las herramientas que a través de sus comandos nos permite realizar un análisis profundo de la cuenca, en este caso de la cuenca para el río Upan. Utilizando estos métodos de manejo de datos, es posible obtener los parámetros deseado y exportar a hojas de cálculo de Excel. Esto permite obtener el valor requerido de manera indirecta, a través de la aplicación de diferentes técnicas de datos.


Los datos morfológicos de una cuenca se refieren a la información relacionada con las características físicas y topográficas de una cuenca hidrográfica, como la forma, el relieve, la pendiente, la red de drenaje, la distribución de la vegetación, entre otros elementos. Estos datos proporcionan una descripción detallada de la estructura y la configuración de la cuenca,

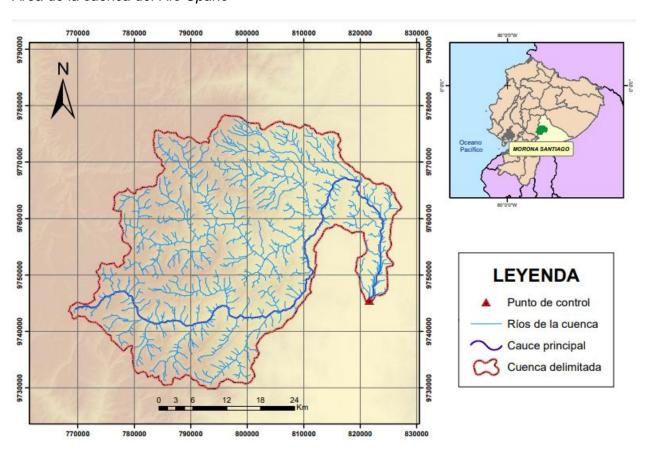
lo que resulta fundamental para comprender su comportamiento hidrológico y su respuesta frente a eventos como la precipitación y el escurrimiento.

La utilidad de los datos morfológicos de una cuenca radica en varios aspectos. En primer lugar, ayudan a caracterizar y delimitar la cuenca hidrográfica, lo que es esencial para realizar estudios hidrológicos, análisis de inundaciones, evaluación de recursos hídricos y planificación de la gestión del agua. Estos datos también permiten identificar áreas de mayor riesgo de erosión, determinar la capacidad de almacenamiento de agua en la cuenca, analizar la distribución espacial de la vegetación y evaluar la calidad del agua. (Smith, J., 2010).

Figura 7

Localización de la cuenca del Río Upano

Nota: Ubicación de la Cuenca hidrográfica


Área de la cuenca

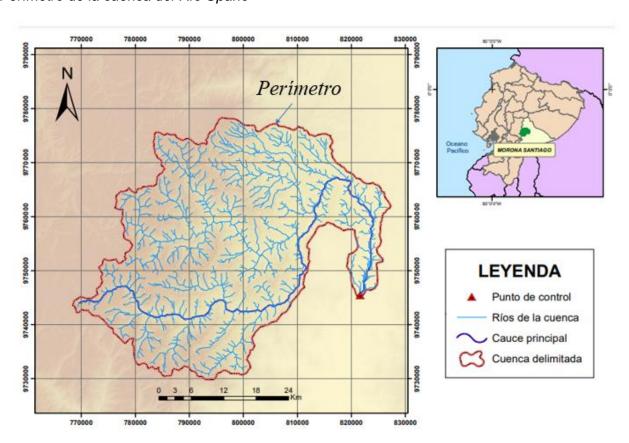
Este cálculo describe la superficie que se encuentra delimitada por una línea divisora de aguas en el Río Upano. Para llevar a cabo esta delimitación, se utiliza el software ArcGIS y se emplea la técnica de polinización de la cuenca, basándose en las coordenadas proporcionadas. Como resultado de este procedimiento, se obtiene un Modelo Digital del Terreno (MDT). Esto fue posible con cartas proporcionadas por el Instituto Geográfico Militar (IGM).

Área=1631.611 km²

Figura 8

Área de la cuenca del Río Upano

Nota: Para determinar el área de la cuenca se modeló en ArcGIS.


Perímetro

El perímetro de la cuenca se refiere a la longitud total de la línea que conforma el contorno o borde exterior de una figura plana o de un área determinada. Es la medida de la distancia alrededor de una figura cerrada. (Blaikie, 2006). Este valor se obtiene de los datos en ArcGIS con lo que se muestra a continuación:

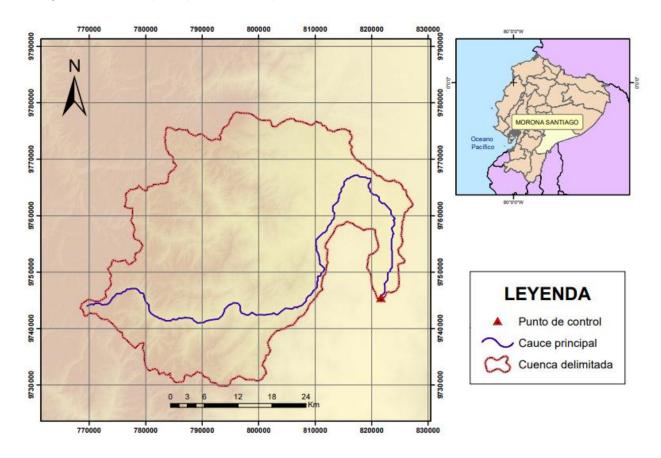
Perímetro = 238,106 km²

Figura 9

Perímetro de la cuenca del Río Upano

Nota: Para determinar el perímetro de la cuenca se modeló en ArcGIS.

Longitud del Cauce Principal


La longitud del cauce principal se refiere a la medida de la distancia a lo largo del curso de agua principal de una cuenca hidrográfica. Representa la longitud total del río o arroyo principal, desde

su origen hasta su desembocadura o punto de salida. (Leopold, Wolman & Miller, 1964). El Río puede determinar mediante do formas, es decir de la siguiente manera:

Longitud del Cauce = 108,701 km

Figura 10

Longitud del cauce principal del Río Upano

Nota: Para determinar la longitud del cauce principal se modeló en ArcGIS.

De acuerdo con una referencia citada (Campos, 1998), se plantea la posibilidad de estimar la longitud del río principal mediante la relación entre el área de la cuenca y la longitud del cauce.

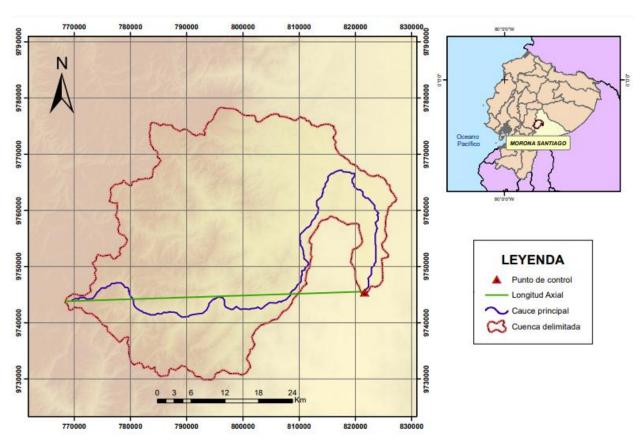
$$(L)_{Campos} = 1.312 * A^{0.568}$$
 (3.1)

Donde:

Entonces al aplicar la ecuación 3.1, se tiene:

$$(L)_{Campos} = 1.312*1631.611^{0.568}$$

 $(L_{Campos}) = 87.639 \text{ km}$


Longitud Axial (La)

La longitud axial de la cuenca se refiere a la medida de la distancia a lo largo del eje principal o eje central de una cuenca hidrográfica. Representa la longitud total de la línea que conecta los puntos más distantes a lo largo del eje principal de la cuenca. (Strahler, 1957).

Longitud Axial = 53,1026 km

Figura 11

Longitud Axial del Río Upano

Nota: Para determinar la longitud axial se modeló en ArcGIS.

Curva Hipsométrica

Esta curva describe la distribución de elevaciones en la cuenca de drenaje, esta se construye dibujando las alturas y áreas relativas. Para la clasificación de cuencas se realiza el estudio de la curva hipsométrica, considerando el drenaje a decenas de kilómetros cuadrados, estas son usadas para describir las etapas de evolución geomorfológica de las cuencas de drenaje.(Quezada et al., 2010)

Figura 12

Áreas

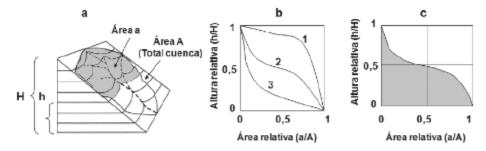
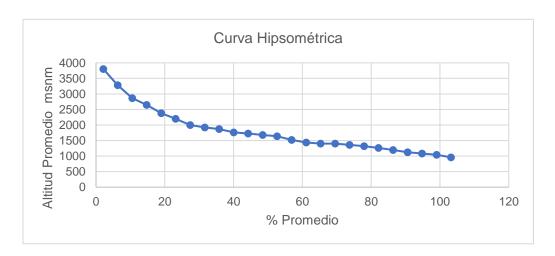



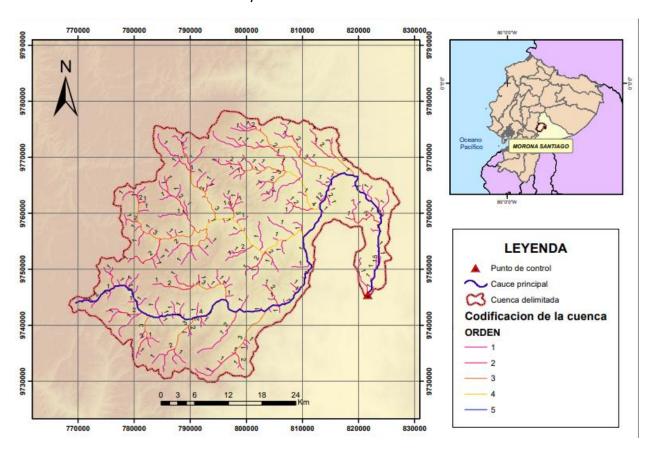
FIG. 6. Procedimiento para la determinación de la curva e integral hipsométrica. a. Ilustración del área a (sombreado) de una cuenca hidrográfica que se encuentra por sobre una cota h; b. Tipos de curvas hisométricas: 1 curva convexa, 2 curva sinusoidal, 3 curva cóncava; c. Integral hipsométrica: área bajo la curva hipsométrica (Modificado de Keller y Pinter, 1996).

Nota: Tomado de (Quezada et al., 2010)

Figura 13

Curva Hipsométrica de la Cuenca

Nota. Se puede observar que la curva es cóncava ligeramente.


Se puede observar que la figura 13 nos muestra una similitud en la dirección de la curva b-3 de la figura 12, es decir que se trata de una cuenca que tiene un relieve de baja amplitud en su elevación y posee más bien bajas altitudes; corresponde a un relieve senil en la etapa de formación de peniplani-cies, en otras apalabras una cuenca sedimentaria, en fase de vejez. (Quezada et al., 2010)

Codificación de la Cuenca

La codificación de la cuenca se refiere al proceso de asignar un identificador único o código numérico a cada subcuenca o segmento de una cuenca hidrográfica. Esta codificación es utilizada para organizar y gestionar la información relacionada con la cuenca, facilitando su análisis, representación y estudio. (Merwade, V., & Gorelick, S. M., 2007)

Figura 14

Codificación de la Cuenca del Río Upano

Nota: Para determinar la codificación de la cuenca se modeló en ArcGIS

Ancho promedio

De acuerdo con la investigación realizada por (Gaspari, Rodríguez, Senisterra, Delgado y Besteiro (2013), se establece que el ancho promedio de una cuenca se define como la proporción entre el área de la cuenca y su longitud axial.

$$Ap = \frac{A}{La}(3.3)$$

Donde:

$$\acute{A}rea(A) = 1631.611 \ km^2$$

Longitud Axial (La) =
$$53.103 \text{ km}$$

Entonces al aplicar la ecuación 3.2, se tiene:

$$Ap = \frac{1631.611 \ km^2}{53.103 \ km}$$

$$Ap = 30.725 \, km$$

Coeficiente de compacidad Gravelius

Fuentes (2004, pág. 12), el coeficiente de compacidad de Gravelius es una medida que compara la forma de una cuenca con la de una circunferencia, donde se considera un círculo inscrito en la circunferencia que tiene la misma área que la cuenca en estudio. Este coeficiente de compacidad es un índice que relaciona el perímetro de la cuenca con su área.

$$Kc = \frac{P}{2\sqrt{\pi * A}} \tag{3.3}$$

Donde:

$$\acute{A}rea(A) = 1631.611 \ km^2$$

$$Perimetro(P) = 238.106 km$$

Entonces:

$$Kc = \frac{238.106}{2\sqrt{\pi * 1631.611}}$$

$$Kc = 1.66$$

Tabla 9

Coeficiente de compacidad (Kc)

Rango de Kc	Clases de compacidad
1-1,25	Redonda a oval redonda
1,25-1,50	De oval redonda a oval oblonga
1,50-1,75	De oval Oblonga a rectangular oblonga
> 1,75	Rectangular - muy lobuladas

Fuente: (Instituto Nacional de Ecología)

En este caso el valor del coeficiente de compacidad (kc) entra en el rango de 1.60-1.75 siendo la clase de compacidad de oval oblonga a rectangular oblonga, como se muestra en la Tabla1.

Factor Forma

El factor de forma de la cuenca es una medida que describe la forma y la elongación de una cuenca hidrográfica. Representa la relación entre el perímetro de la cuenca y la raíz cuadrada del área de la misma.

$$If = \frac{A}{La^2} \tag{3.4}$$

Donde:

Área (A) = 1631.611
$$km^2$$

$$Longitud\ Axial\ (La) =\ 53.103\ km$$

Entonces:

$$If = \frac{1631.11 \ km^2}{(53.103 \ km)^2}$$

$$If = 0.57$$

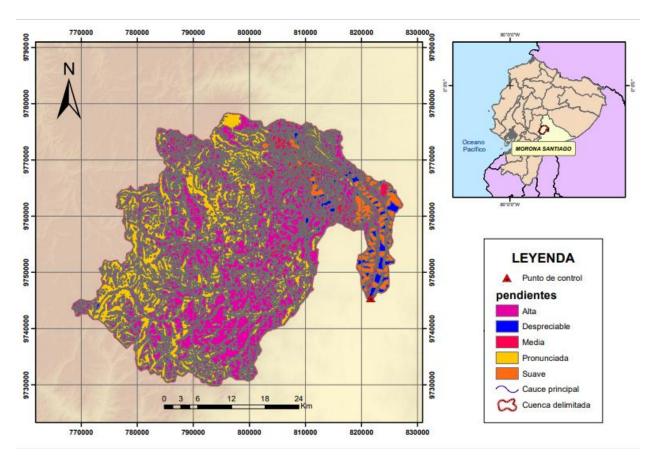
Tabla 10

Valores interpretativos

Valores	Forma de la cuenca		
Aproximados			
< 0,22	Muy alargada		
0,22 - 0,300	Alargada		
0,300 - 0,370	Ligeramente alargada		
0,370 - 0,475	Ni alargada ni ensanchada		

Valores	Forma de la cuenca	
Aproximados		
0,475 – 0,60	Ligeramente ensanchada	
0,60 - 0,80	Ensanchada	
0,80– 1,20	Muy ensanchada	
> 1,20	Rodeando el desagüe	

Fuente: (Horton, 1932)


Es decir el factor de forma se encuentra ubicado entre el rango de 0.475 – 0.60, dando como resultado la forma de la cuenca ligeramente ensanchada.

Pendiente de la cuenca

La pendiente de la cuenca se refiere a la inclinación o declive promedio del terreno dentro de una cuenca hidrográfica. Es una medida que indica la variación de altura a lo largo de la cuenca en relación con la distancia horizontal recorrida. (Knighton,1998).

Figura 15

Pendientes de la cuenca

Nota: Para determinar las diferentes pendientes de la cuenca se modeló en ArcGIS

Pendiente media del cauce principal

Está pendiente es determinada por el perfil longitudinal, con el criterio de compensación del área de estudio, está estrechamente relacionada con la velocidad de un caudal a lo largo del cauce, que concentra toda la energía cinética y con ello su capacidad erosiva. (Campo, Aldalur, & Fernández, 2012).

De acuerdo a (Smith, 1997), se define como el promedio de las cotas más alta de la cuenca, dividiendo para la longitud de cauce principal desde su nacimiento.

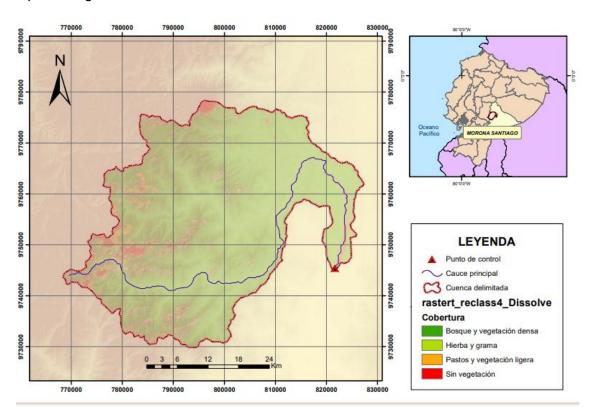
$$S_{cp} = \frac{\Delta H}{L} = \frac{H_{\text{máxima}} - H_{\text{mínima}}}{L} * 100$$
 (3.2)

S_{cp} = Pendiente media del cauce principal

ΔH = Diferencia de altura punto de control hasta la cota máxima

L= Longitud del cauce principal

Entonces aplicando la ecuación 3.2 tenemos el siguiente valor:


$$S_{cp} = \frac{5320 - 960}{108701} * 100$$

$$S_{cp} = 4,01\%$$

Vegetación

Figura 16

Tipo de vegetación en la cuenca

Nota: Para determinar el tipo de vegetación se modeló en ArcGIS.

Cálculo del coeficiente de escorrentía (C)

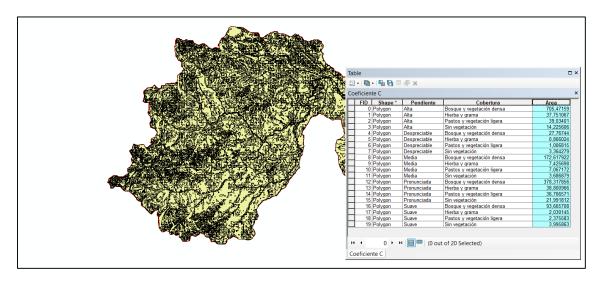
Muñoz (2013), determina que el coeficiente de escorrentía es un parámetro que se utiliza en el campo de la hidrología, su objetivo es estimar la cantidad de agua que fluye sobre la superficie de la cuenca hidrográfica estudiada después de un evento de lluvia. El coeficiente de escorrentía representa el porcentaje o porción de la precipitación que se convierte en escorrentía y fluye a través de la superficie de cuenca hasta el punto de desfogue en vez de infiltrarse en el suelo.

Método Racional - ArcGis

Para la determinación del coeficiente de escorrentía se usa los valores asignados a los diferentes tipos de vegetación, tipo de suelo y la inclinación de la pendiente para el cálculo del coeficiente C.

Figura 17

Coeficiente de escorrentía. Método Racional


Cobertura Vegetal	Tipo de suelo	Pendiente del terreno				
		Pronunciada >50%	Alta 50%-20%	Media 20%-8%	Suave 8%-1%	Despreciable <1%
Sin vegetación	Impermeable	0.80	0.75	0.70	0.65	0.60
	Semipermeable	0.70	0.65	0.60	0.55	0.50
	Permeable	0.50	0.45	0.40	0.35	0.30
Cultivos	Impermeable	0.70	0.65	0.60	0.55	0.50
	Semipermeable	0.60	0.55	0.50	0.45	0.40
	Permeable	0.40	0.35	0.30	0.25	0.20
Pastos y vegetación	Impermeable	0.65	0.60	0.55	0.50	0.45
ligera	Semipermeable	0.55	0.50	0.45	0.40	0.35
	Permeable	0.35	0.30	0.25	0.20	0.15
Hierva y grama	Impermeable	0.60	0.55	0.50	0.45	0.40
	Semipermeable	0.50	0.45	0.40	0.35	0.30
	Permeable	0.30	0.25	0.20	0.15	0.10
Bosques y vegetación	Impermeable	0.55	0.50	0.45	0.40	0.35
densa	Semipermeable	0.45	0.40	0.35	0.30	0.25
	Permeable	0.25	0.20	0.15	0.10	0.05

Fuente: Ramírez, Maritza. 2003. Hidrología Aplicada. Universidad de Los Andes.

Nota: Valores de C.Tomado de

Figura 18

Mapa de vegetación y tipo de pendiente

Nota: Intersección de capa de pendientes y capa de vegetación de la zona

 Tabla 11

 Cálculo del coeficiente de escorrentía con el coeficiente C

Pendiente	Cobertura	Área [km2]	C C	*Área
Pronunciada	Bosque y vegetación densa	n 378,32	0,45	170,244
Pronunciada	Hierba y grama	38,8	0,5	19,4
Pronunciada	Pastos y vegetación ligera	36,77	0,55	20,2235
Pronunciada	Sin vegetación	21,99	0,7	15,393
Alta	Bosque y vegetación densa	n 705,47	0,4	282,188
Alta	Hierba y grama	37,75	0,45	16,9875

Pendiente	Cobertura	Área [km2]	C C	*Área
Alta	Pastos y vegetación ligera	39,03	0,5	19,515
Alta	Sin vegetación	14,23	0,65	9,2495
Media	Bosque y vegetación densa	172,62	0,35	60,417
Media	Hierba y grama	7,43	0,4	2,972
Media	Pastos y vegetación ligera	7,07	0,45	3,1815
Media	Sin vegetación	3,69	0,6	2,214
Suave	Bosque y vegetación densa	93,67	0,3	28,10
Suave	Hierba y grama	2,03	0,35	0,710
Suave	Pastos y vegetación ligera	2,38	0,4	0,952
Suave	Sin vegetación	4.00	0,55	2,2
Despreciable	Bosque y vegetación densa	27,77	0,25	6,942
Despreciable	Hierba y grama	0,87	0,3	0,261
Despreciable	Pastos y vegetación ligera	1,01	0,35	0,353
Despreciable	Sin vegetación	3,36	0,5	1,68
	TOTAL	1598,26	km2	663,18
	Ср	0,41		

Nota: El valor de Cp es de 0,41

Cálculo por el Método de Nadal

K1= Factor de extensión de la cuenca

K2= Factor de la Iluvia media anual

K3= Factor de la pendiente y de la permeabilidad del suelo

Tabla 12Factor K3 para determinación del Coeficiente de escorrentía

Valores del coeficiente K3	}
Características de la cuenca	K3
Cuenca llana y permeable	0,5 a 0,7
Cuenca ondulada	0,5 a 1,2
Cuenca montañosa e impermeable	1,2 a 1,5

Nota. Para el río Upano se toma un coeficiente K3 de una cuenca ondulada, es decir el valor de 0,7. Tomado de (Sandoval W.,2010)

A=Área de la cuenca = 1631,11 km2

P= precipitación media anual =1389,44 mm

$$k1 = 3.7 * 1631,11^{-0.152} = 1.20$$

$$K2 = 0.71 * Ln(1389,44) - 3.51 = 1,63$$

El valor de K3 lo obtuvimos de la tabla, tomando de acuerdo con las características de la cuenca K3=0,7

$$C = 0.25 * 1.20 * 1.63 * 0.80 = 0.39$$

$$c = K1 + K2 + K3 + K4$$

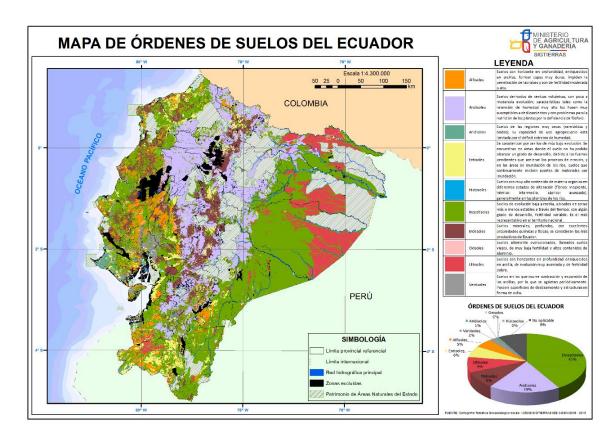
Los valores de los valores K se obtuvieron de la siguiente tabla

Tabla 13Valores de k para calcular la fórmula por el método anónimo

Pendiente	K1	Permeabilidad	K2
>0.3	0.4	Roca	0.2
De 0.1 a 0.3	0.3	Arcilla	0.15
De 0.05 a 0.1	0.2	Limos	0.10
Áreas planas	0.05	Arenas	0.05
	V2	Capacidad de	V.A
Cobertura vegetal	K 3	almacenamiento	K4
Nada	0.20	Nada	0.20
Poca	0.15	Poca	0.15
Media	0.10	Media	0.10
Mucha	0.05	Mucha	0.05

Nota. Tomado de (ENACON S.A 2012)

K1= 0,2


K2=0,15

K3=0,05

K4=0.10

Órdenes del suelo en Ecuador

Figura 19
Órdenes de suelos en Ecuador

Nota: Mapa de órdenes del suelo - Basados en la ubicación geográfica de la cuenca del Río Upano, podemos concluir que los suelos que predominan en la zona de estudio son permeables debido a la naturaleza de los Andisoles.

Tiempo de Concentración

Fórmula por Kirpich

Desarrollada a partir de información del SCS y se usa con pendientes empinadas del (3 a 10%).

Tc=0,066*
$$\left(\frac{L}{\sqrt{S}}\right)^{0,77}$$

L = Longitud del cauce principal = 108,70km

S= Pendiente = 0,04011 m/m

$$Tc=0.066* \left(\frac{108.70}{\sqrt{0.04011}}\right)^{0.77}$$

Número de Curva de la cuenca

Se define con las siglas CN y es un método que sirve para calcular la precipitación efectiva a causa de una tormenta en la cuenca. Para la determinación del número de curva se usó el programa ArcGis para los datos del tipo de suelo, cobertura natural y el área que ocupan estas diferentes secciones.(Espinales Cedeño et al., 2021)

Para el estudio se consideró un suelo tipo B debido a sus partículas que son moderadamente gruesas a moderadamente finas(Espinales Cedeño et al., 2021), esto se lo pudo guiar en base a su escorrentía que es efectiva moderadamente baja, con restos sedimentarios, que contiene antiguas areniscas, arcillas, limos y conglomerados, esta información se la obtuvo por el Mapa de Suelos del Ecuador.

Tabla 14Tipo de cobertura vegetal en la cuenca del Río Upano

Tipo de cobertura vegetal	Área	Cn
Bancos de arena	1,85	90
Bosque natural	206,11	60
Bosque natural - Cultivos de ciclo corto	0,08	60
Bosque natural - Pastos plantados	143,73	60

Tipo de cobertura vegetal	Área	Cn
Decree actual Variation advertise	040.04	
Bosque natural - Vegetación arbustiva	816,81	60
Bosque natural intervenido	4,82	60
Cuerpos de agua	19,03	100
Cultivos indiferenciados - Pastos plantados	74,57	72
Nieve, glaciares	30,04	100
Páramo	99,61	65
Páramo - Bosque natural	105,92	65
Páramo - Vegetación arbustiva	19,91	65
Páramo intervenido	1,69	65
Pastos naturales	1,64	72
Pastos plantados	38,57	72
Vegetación arbustiva	16,10	66
Vegetación arbustiva - Pastos plantados	50,06	66
TOTAL	1630,56	63,02

Nota: Información obtenida de ArcGis

Caudales

Según (Erazo & Ortiz, 2015)el caudal medio se define por la siguiente fórmula

$$Q_o = \frac{31,71 * P * A * C}{10^6}$$

 Q_o = Caudal medio de la cuenca

P= Precipitación media anual

A= Área de la cuenca

C= Coeficiente de escorrentía

Entonces al reemplazar los valores obtenemos

$$Q_{o} = \frac{31,71 * 1631,61 * 1389,44 * 0,41}{10^{6}}$$

$$Q_0 = 29,47 \frac{m^3}{s}$$

$$Q_{\text{medio}} = \frac{P^*A}{10^6}$$

 Q_{medio} = Caudal medio de la cuenca

P= Precipitación media anual

A= Área de la cuenca

$$Q_{\text{medio}} = \frac{1389,44 * 1631,61}{10^6} * \frac{\text{m}^3}{\text{s}}$$

$$Q_{\text{medio}}$$
=2,27 $\frac{\text{m}^3}{\text{s}}$

$$Q_{\text{medio}} = \frac{P^*A}{10^6} * K$$

 Q_{medio} = Caudal medio de la cuenca

P= Precipitación media anual

A= Área de la cuenca

K = Factor de 1,5

$$Q_{\text{medio}} = \frac{1389,44 * 1631,61}{10^6} * 1,5 * \frac{\text{m}^3}{\text{s}}$$

$$Q_{\text{medio}} = 3,40 \frac{\text{m}^3}{\text{s}}$$

Método de Sandoval

Para la elaboración del este método, se combina varias ecuaciones de Voscresiensky, Zhelezniakov, G. Negovskaya, T. y Ovcharov, E. y Zhivotovsky, y con un equilibrio de masas o volúmenes se propone la siguiente ecuación. Esta ecuación se usa para áreas mayores a 45 km.(Erazo & Ortiz, 2015)

$$Q_{m\acute{a}x} = a1 * \frac{\bar{P} * A}{10^3} * (0.5 * Ln (T) - 0.7)$$

 $Q_{m\acute{a}z}$ =Caudal máximo

 \bar{P} = Precipitación media anual

T= Tiempo de retorno de 100 años

$$a = 0.644 - 0.08 * In (P)$$

$$a = 0.644 - 0.08 * In (1389,44)$$

a = 0.065

$$Q_{m\acute{a}x} = a1 * \frac{1389,44 * 1631,61}{10^3} * (0,5 * Ln (100) - 0,7)$$

$$Q_{m\acute{a}x} = 1389,25 \frac{\text{m}^3}{\text{s}}$$

Distribución de probabilidad de Gumbel

 Tabla 15

 Distribución de probabilidades pluviométricas mediante Gumbel

NIO	A ~ ~	Mes	Prec	ipitación (mm)
Nº	Año	Max. Precip.	χi	(xi - x)^2
1	1981	1207,62	168,75	1528,84815
2	1982	1592,56	226,76	357,569651
3	1983	1560,93	226,76	357,569651
4	1984	1434,39	195,12	162,06532
5	1985	1429,13	189,84	324,377671
6	1986	1318,38	179,30	815,130354
7	1987	1576,75	268,95	3733,15039
8	1988	1497,67	221,48	185,763603
9	1989	1545,13	268,95	3733,15039
10	1990	1397,47	174,02	1144,50191
11	1991	1212,88	174,02	1144,50191
12	1992	1381,65	205,66	4,79823682
13	1993	1671,7	258,40	2555,25318
14	1994	1524,04	200,39	55,6588783
15	1995	1218,16	152,93	3016,25998
16	1996	1392,2	184,57	541,981112
17	1997	1782,42	253,12	2049,32873
18	1998	1845,71	305,86	9605,86448
19	1999	1703,33	290,04	6755,11591
20	2000	822,65	163,48	1968,74019

N°	Año	Mes	Prec	ipitación (mm)
IN	Allo	Max. Precip.	χi	(xi - x)^2
21	2001	1128,53	158,20	2465,17094
22	2002	1687,51	232,03	584,64881
23	2003	1534,59	195,12	162,06532
24	2004	1618,96	200,39	55,6588783
25	2005	332,23	94,92	12753,2951
26	2006	711,93	163,48	1968,74019
27	2007	849,01	174,02	1144,50191
28	2008	1597,87	258,40	2555,25318
29	2009	1054,69	210,94	9,5450856
30	2010	943,95	174,02	1144,50191
31	2011	1386,92	242,58	1206,13902
32	2012	1724,41	242,58	1206,13902
33	2013	1624,23	205,66	4,79823682
34	2014	1044,14	158,20	2465,17094
35	2015	1545,11	210,94	9,5450856
36	2016	1524,02	232,03	584,64881
37	2017	1756,06	226,76	357,569651
38	2018	1587,31	216,21	69,8814441
39	2019	1397,47	174,02	1144,50191
40	2020	1170,71	210,94	9,5450856
41	2021	1632,72	232,03	584,64881
41		Suma	8521,9	70525,6

Coeficientes para las relaciones a la lluvia de duración 24 horas

Tabla 16Duraciones en Horas

	Duraciones, en horas									
1	2	3	4	5	6	8	12	18	24	
0,30	0,39	0,46	0,52	0,57	0,61	0,68	0,80	0,91	1,00	

 Tabla 17

 Precipitaciones máximas para diferentes tiempos de duración de lluvias

Tiempo de	Cociente	Р	recipitació	n máxima	Pd (mm) p	oor tiempo	s de durac	ión
Duración	Cociente	2 años	5 años	10 años	25 años	50 años	100 años	500 años
24 hr	X24	227,0766	269,0082	296,7705	331,8483	357,8710	383,7016	443,3921
18 hr	X18 = 91%	206,6397	244,7974	270,0612	301,9820	325,6627	349,1685	403,4868
12 hr	X12 = 80%	181,6613	215,2065	237,4164	265,4787	286,2968	306,9613	354,7137
8 hr	X8 = 68%	154,4121	182,9256	201,8040	225,6569	243,3523	260,9171	301,5066
6 hr	X6 = 61%	138,5167	164,0950	181,0300	202,4275	218,3013	234,0580	270,4692
5 hr	X5 = 57%	129,4337	153,3347	169,1592	189,1535	203,9865	218,7099	252,7335
4 hr	X4 = 52%	118,0798	139,8843	154,3207	172,5611	186,0929	199,5248	230,5639
3 hr	X3 = 46%	104,4552	123,7438	136,5144	152,6502	164,6207	176,5027	203,9604
2 hr	X2 = 39%	88,5599	104,9132	115,7405	129,4208	139,5697	149,6436	172,9229
1 hr	X1 = 30%	68,1230	80,7025	89,0312	99,5545	107,3613	115,1105	133,0176

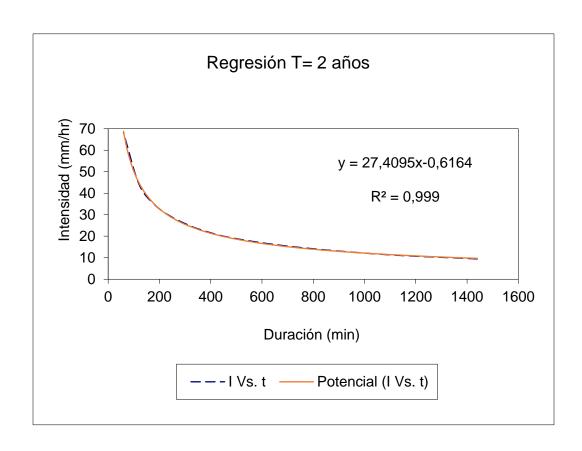
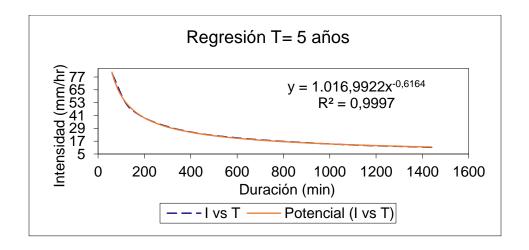
Tabla 18
Intensidades de Iluvia a partir de Pd, según Duración de precipitación y Frecuencia de la misma

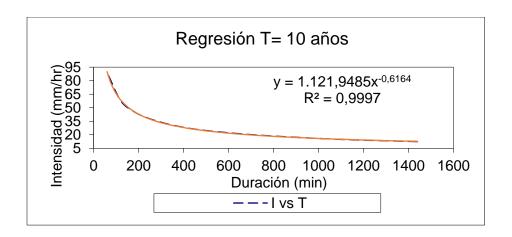
Tiempo de	duración	Inten	sidad de	la lluvia (mm /hr) s	egún el Pe	eriodo de F	Retorno
Hr	min	2 años	5 años	10 años	25 años	50 años	100 años	500 años
24 hr	1440	9,4615	11,2087	12,3654	13,8270	14,9113	15,9876	18,4747
18 hr	1080	11,4800	13,5999	15,0034	16,7768	18,0924	19,3982	22,4159
12 hr	720	15,1384	17,9339	19,7847	22,1232	23,8581	25,5801	29,5595
8 hr	480	19,3015	22,8657	25,2255	28,2071	30,4190	32,6146	37,6883
6 hr	360	23,0861	27,3492	30,1717	33,7379	36,3836	39,0097	45,0782
5 hr	300	25,8867	30,6669	33,8318	37,8307	40,7973	43,7420	50,5467
4 hr	240	29,5200	34,9711	38,5802	43,1403	46,5232	49,8812	57,6410
3 hr	180	34,8184	41,2479	45,5048	50,8834	54,8736	58,8342	67,9868
2 hr	120	44,2799	52,4566	57,8703	64,7104	69,7849	74,8218	86,4615
1 hr	60	68,1230	80,7025	89,0312	99,5545	107,3613	115,1105	133,0176

Tabla 19Período de retorno para 2 años

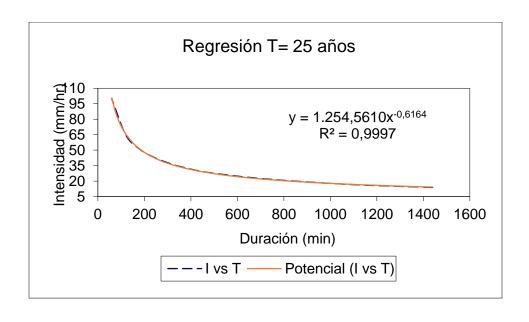
	Periodo de retorno para T = 2 años								
Nº	Х	у	ln x	In y	ln x*ln y	(lnx)^2			
1	1440	9,4615	7,2724	2,2472	16,3428	52,8878			
2	1080	11,4800	6,9847	2,4406	17,0469	48,7863			
3	720	15,1384	6,5793	2,7172	17,8774	43,2865			
4	480	19,3015	6,1738	2,9602	18,2755	38,1156			
5	360	23,0861	5,8861	3,1392	18,4778	34,6462			
6	300	25,8867	5,7038	3,2537	18,5586	32,5331			

	Periodo de retorno para T = 2 años									
7	240	29,5200	5,4806	3,3851	18,5523	30,0374				
8	180	34,8184	5,1930	3,5501	18,4358	26,9668				
9	120	44,2799	4,7875	3,7905	18,1471	22,9201				
10	60	68,1230	4,0943	4,2213	17,2835	16,7637				
10	4980	281,0956	58,1555	31,7053	178,9978	346,9435				
Ln (d) =	6,7552	d =	858,4688	n =	-0,6164					


Tabla 20
Período de retorno para 5 años

		Periodo de	e retorno para	a T = 5 años	3	
N°	Х	У	ln x	In y	ln x*ln y	(lnx)^2
1	1440	11,2087	7,2724	2,4167	17,5751	52,8878
2	1080	13,5999	6,9847	2,6101	18,2305	48,7863
3	720	17,9339	6,5793	2,8867	18,9923	43,2865
4	480	22,8657	6,1738	3,1296	19,3217	38,1156
5	360	27,3492	5,8861	3,3087	19,4753	34,6462
6	300	30,6669	5,7038	3,4232	19,5251	32,5331
7	240	34,9711	5,4806	3,5545	19,4810	30,0374
8	180	41,2479	5,1930	3,7196	19,3157	26,9668
9	120	52,4566	4,7875	3,9600	18,9584	22,9201
10	60	80,7025	4,0943	4,3908	17,9773	16,7637
10	4980	333,0022	58,1555	33,3998	188,8525	346,9435
Ln (d) =	6,9246	d =	1016,9922	n =	-0,6164	


Tabla 21Período de retorno para 10 años

	Periodo de retorno para T = 10 años									
Nº	Х	У	ln x	In y	ln x*ln y	(lnx)^2				
1	1440	12,3654	7,2724	2,5149	18,2894	52,8878				
2	1080	15,0034	6,9847	2,7083	18,9165	48,7863				
3	720	19,7847	6,5793	2,9849	19,6385	43,2865				
4	480	25,2255	6,1738	3,2279	19,9281	38,1156				
5	360	30,1717	5,8861	3,4069	20,0534	34,6462				
6	300	33,8318	5,7038	3,5214	20,0853	32,533				
7	240	38,5802	5,4806	3,6527	20,0193	30,0374				
8	180	45,5048	5,1930	3,8178	19,8258	26,9668				
9	120	57,8703	4,7875	4,0582	19,4286	22,920				
10	60	89,0312	4,0943	4,4890	18,3795	16,763				
10	4980	367,3689	58,1555	34,3820	194,5644	346,943				
Ln (d) =	7,0228	d =	1121,9485	n =	-0,6164					

Tabla 22Período de retorno para 25 años

	Periodo de retorno para T = 25 años									
Nº	Х	у	ln x	In y	ln x*ln y	(lnx)^2				
1	1440	13,8270	7,2724	2,6266	19,1019	52,8878				
2	1080	16,7768	6,9847	2,8200	19,6969	48,7863				
3	720	22,1232	6,5793	3,0966	20,3735	43,2865				
4	480	28,2071	6,1738	3,3396	20,6178	38,1156				
5	360	33,7379	5,8861	3,5186	20,7110	34,6462				
6	300	37,8307	5,7038	3,6331	20,7225	32,533				
7	240	43,1403	5,4806	3,7645	20,6316	30,0374				
8	180	50,8834	5,1930	3,9295	20,4059	26,966				
9	120	64,7104	4,7875	4,1699	19,9635	22,920				
10	60	99,5545	4,0943	4,6007	18,8369	16,763				
10	4980	410,7914	58,1555	35,4992	201,0614	346,943				
Ln (d) =	7,1345	d =	1254,5610	n =	-0,6164					

Tabla 23Período de retorno para 50 años

		Periodo de	e retorno para	T = 50 año	s	
N°	Х	у	ln x	In y	ln x*ln y	(lnx)^2
1	1440	14,9113	7,2724	2,7021	19,6509	52,8878
2	1080	18,0924	6,9847	2,8955	20,2242	48,7863
3	720	23,8581	6,5793	3,1721	20,8702	43,2865
4	480	30,4190	6,1738	3,4151	21,0839	38,1156
5	360	36,3836	5,8861	3,5941	21,1553	34,6462
6	300	40,7973	5,7038	3,7086	21,1531	32,5331
7	240	46,5232	5,4806	3,8400	21,0454	30,0374
8	180	54,8736	5,1930	4,0050	20,7980	26,9668
9	120	69,7849	4,7875	4,2454	20,3249	22,9201
10	60	107,3613	4,0943	4,6762	19,1460	16,7637
10	4980	443,0046	58,1555	36,2541	205,4519	346,9435
Ln (d) =	7,2100	d =	1352,9405	n =	-0,6164	

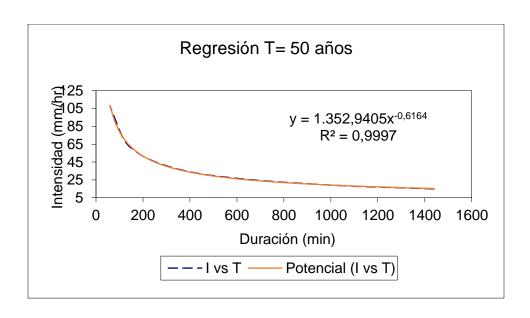


Tabla 24

Período de retorno para 100 años

Periodo de retorno para T = 100 años										
Nº	Х	у	ln x	In y	ln x*ln y	(lnx)^2				
1	1440	15,9876	7,2724	2,7718	20,1577	52,8878				
2	1080	19,3982	6,9847	2,9652	20,7110	48,7863				
3	720	25,5801	6,5793	3,2418	21,3287	43,2865				
4	480	32,6146	6,1738	3,4848	21,5142	38,1156				
5	360	39,0097	5,8861	3,6638	21,5656	34,6462				
6	300	43,7420	5,7038	3,7783	21,5506	32,5331				
7	240	49,8812	5,4806	3,9096	21,4273	30,0374				
8	180	58,8342	5,1930	4,0747	21,1599	26,9668				
9	120	74,8218	4,7875	4,3151	20,6586	22,920				
10	60	115,1105	4,0943	4,7459	19,4313	16,7637				
10	4980	474,9800	58,1555	36,9511	209,5049	346,943				
Ln (d) =	7,2797	d =	1450,5937	n =	-0,6164					

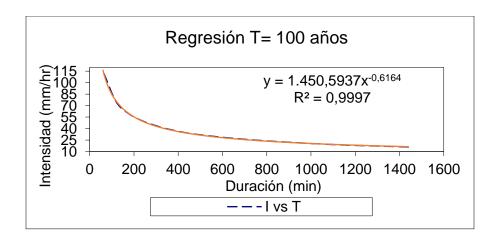
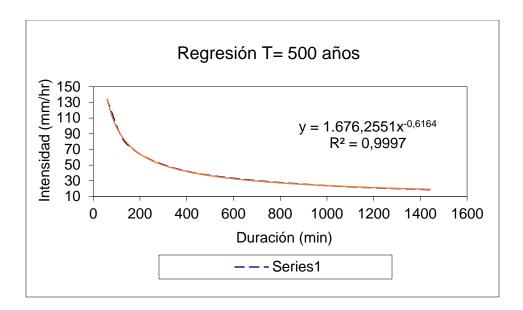
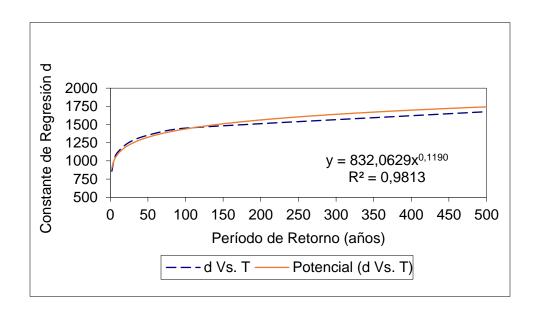



Tabla 25

Período de retorno para 500 años


	Periodo de retorno para T = 500 años									
N°	Х	У	ln x	In y	ln x*ln y	(lnx)^2				
1	1440	18,4747	7,2724	2,9164	21,2092	52,8878				
2	1080	22,4159	6,9847	3,1098	21,7209	48,7863				
3	720	29,5595	6,5793	3,3864	22,2800	43,2865				
4	480	37,6883	6,1738	3,6294	22,4068	38,1156				
5	360	45,0782	5,8861	3,8084	22,4166	34,6462				
6	300	50,5467	5,7038	3,9229	22,3754	32,5331				
7	240	57,6410	5,4806	4,0542	22,2198	30,0374				
8	180	67,9868	5,1930	4,2193	21,9107	26,9668				
9	120	86,4615	4,7875	4,4597	21,3508	22,9201				
10	60	133,0176	4,0943	4,8905	20,0233	16,7637				
10	4980	548,8702	58,1555	38,3970	217,9135	346,9435				
Ln (d) =	7,4243	d =	1676,2551	n =	-0,6164					

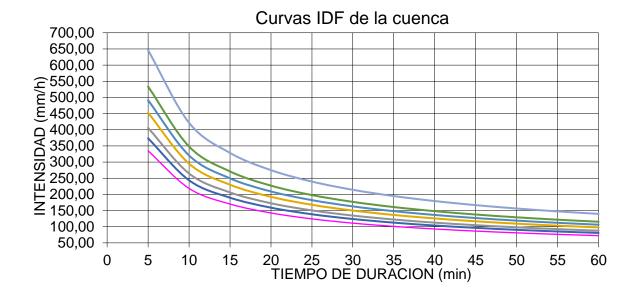
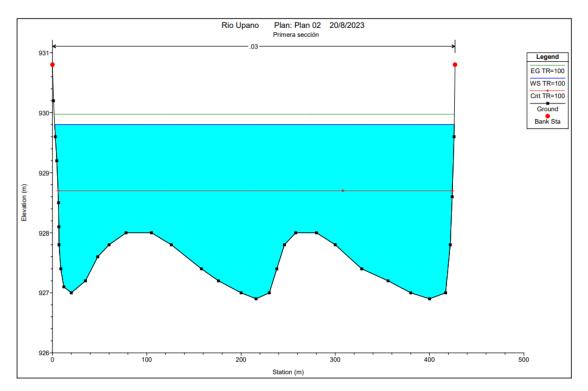


Tabla 26Regresión Potencial

Resumen d	Resumen de aplicación de regresión potencial									
Periodo de	Término ctte. de	Coef. de								
Retorno (años)	regresión (d)	regresión [n]								
2	858,46881797944	-0,61638608809								
5	1016,99219361965	-0,61638608809								
10	1121,94846186749	-0,61638608809								
25	1254,56098503230	-0,61638608809								
50	1352,94053030626	-0,61638608809								
100	1450,59365646071	-0,61638608809								
500	1676,25512349346	-0,61638608809								
Promedio =	1247,39425267990	-0,61638608809								

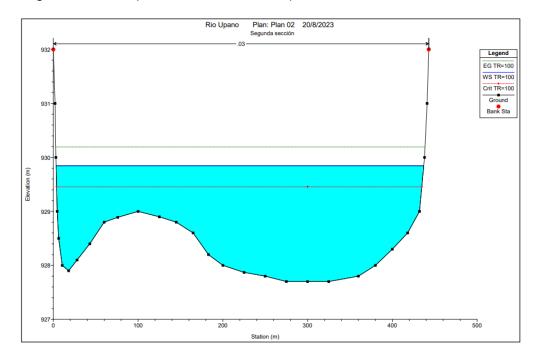
	Regresión potencial										
N°	X	У	ln x	ln y	ln x*ln y	(lnx)^2					
1	2	858,4688	0,6931	6,7552	4,6823	0,4805					
2	5	1016,9922	1,6094	6,9246	11,1447	2,5903					
3	10	1121,9485	2,3026	7,0228	16,1706	5,3019					
4	25	1254,5610	3,2189	7,1345	22,9652	10,3612					
5	50	1352,9405	3,9120	7,2100	28,2058	15,3039					
6	100	1450,5937	4,6052	7,2797	33,5244	21,2076					
7	500	1676,2551	6,2146	7,4243	46,1392	38,6214					
7	692	8731,7598	22,5558	49,7512	162,8323	93,8667					
Ln (K) =	6,7239	K =	832,0629	m =	0,1190						

Capítulo IV


Resultados y Discusiones

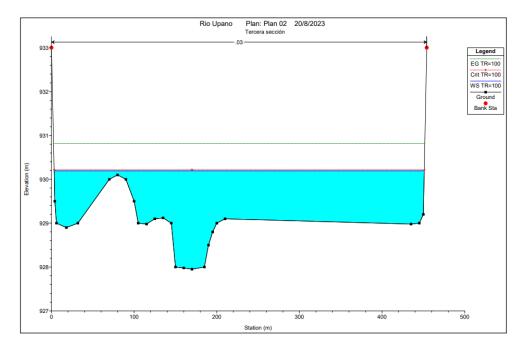
Resultados de la Modelación en el HEC-RAS

El estudio hidráulico e hidrológico se lo realiza para 100 años, en cual cuál se puede mostrar a continuación en las siguientes figuras:


Figura 20

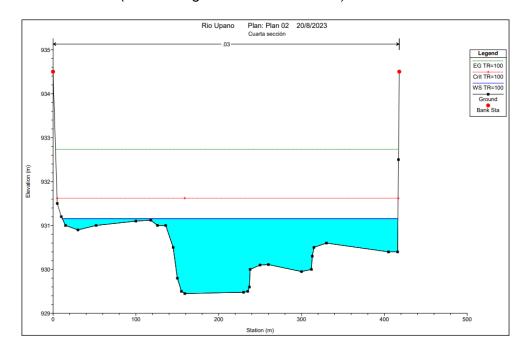
Primera sección (-0+100 m Aguas Abajo del Puente)

En la Figura 19 podemos observar la sección que se encuentra a 100m aguas abajo del punto de control, teniendo un incremento de altura de hasta los 929,80 m con un tiempo de retorno de 100 años, es decir sube 1,41 m, con respecto a un tiempo de retorno de 10 años.


Figura 21
Segunda sección (0+000 Cota del Puente)

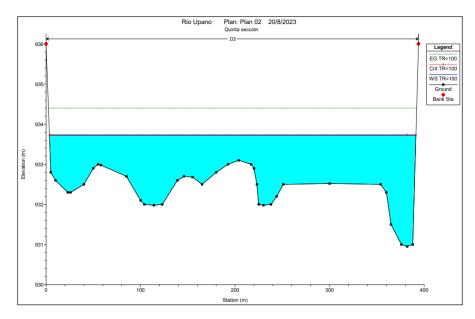
En la Figura 20 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 929,85 m con un tiempo de retorno de 100 años, es decir sube 1,33 m, con respecto a un tiempo de retorno de 10 años.

Figura 22

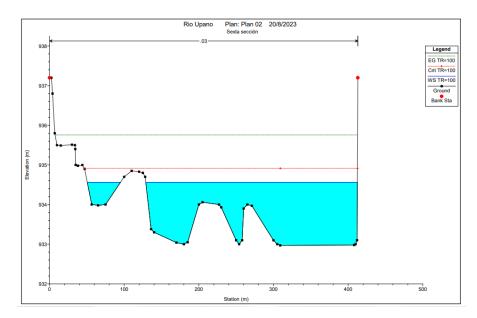

Tercera sección (0+100m Aguas Arriba del Puente)

En la Figura 21 podemos observar la sección que se encuentra a 100 m aguas arriba del punto de control, teniendo un incremento de altura de hasta los 930,19 m con un tiempo de retorno de 100 años, es decir sube 0,71 m, con respecto a un tiempo de retorno de 10 años.

Figura 23


Cuarta sección (0+200m Aguas Arriba del Puente)

En la Figura 22 podemos observar la sección que se encuentra a 200 m aguas arriba del punto de control, teniendo un incremento de altura de hasta los 931,16 m con un tiempo de retorno de 100 años, es decir sube 0,86 m, con respecto a un tiempo de retorno de 10 años.


Figura 24

Quinta sección (0+300m Aguas Arriba del Puente)

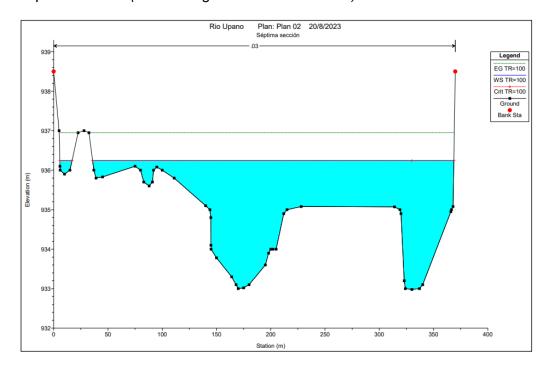

En la Figura 23 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 933,72 m con un tiempo de retorno de 100 años, es decir sube 0,86 m, con respecto a un tiempo de retorno de 10 años.

Figura 25
Sexta sección (0+400m Aguas Arriba del Puente)

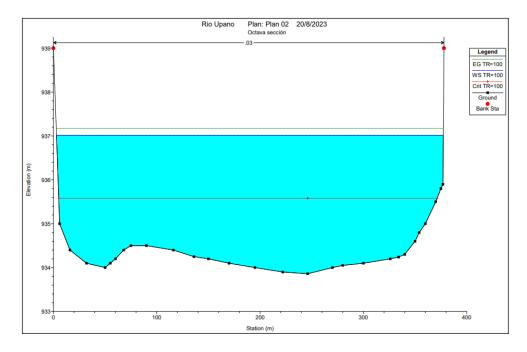
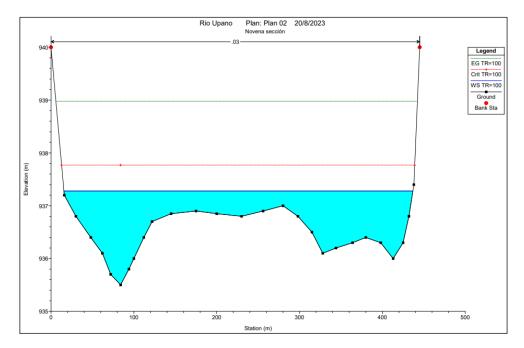

En la Figura 24 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 934,56 m con un tiempo de retorno de 100 años, es decir sube 0,72 m, con respecto a un tiempo de retorno de 10 años.

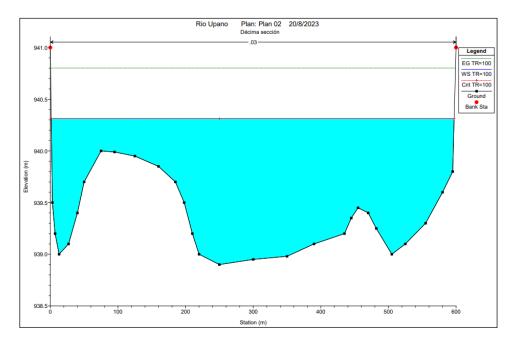
Figura 26
Séptima sección (0+500m Aguas Arriba del Puente)

En la Figura 25 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 936,24 m con un tiempo de retorno de 100 años, es decir sube 1,60 m, con respecto a un tiempo de retorno de 10 años.


Figura 27
Octava sección (0+600m Aguas Arriba del Puente)

En la Figura 26 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 937,02 m con un tiempo de retorno de 100 años, es decir sube 1,66 m, con respecto a un tiempo de retorno de 10 años.

Figura 28


Novena sección (0+700m Aguas Arriba del Puente)

En la Figura 20 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 937,28 m con un tiempo de retorno de 100 años, es decir sube 0,65 m, con respecto a un tiempo de retorno de 10 años.

Figura 29

Décima (0+800m Aguas Arriba del Puente)

En la Figura 28 podemos observar la sección que se encuentra en el punto de control, teniendo un incremento de altura de hasta los 940,31 m con un tiempo de retorno de 100 años, es decir sube 0,74 m, con respecto a un tiempo de retorno de 10 años.

Para ello se presenta a continuación los resultados del programa HEC -RAS en donde tenemos diferentes secciones con sus correspondientes crecidas a lo largo de los años, así mismo en estos resultados de la Tabla 13

Tabla 27Resultados del modelamiento en HEC-RAS

		HEC-	RAS Plan: P	lan 02 Riv	ver: Rio Upan	o Reach:	Modelaje		
				W.S.		Frctn	C & E	Q	
Reach	River Sta	Profile	E.G. Elev	Elev	Vel Head	Loss	Loss	Channel	Top Width
			(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)
Modelaje	1	TR=100	929.97	929.80	0.17	-	-	1806.00	423.84
Modelaje	1	TR=50	929.30	929.19	0.12	-	-	1089.00	420.64
Modelaje	1	TR=20	928.86	928.78	0.08	-	-	692.00	418.70
Modelaje	1	TR=10	928.44	928.39	0.05	-	-	391.00	416.98
						-	-		
Modelaje	2	TR=100	930.19	929.85	0.35	0.17	0.05	1806.00	433.84
Modelaje	2	TR=50	929.57	929.24	0.33	0.20	0.06	1089.00	429.30
Modelaje	2	TR=20	929.19	928.81	0.38	0.23	0.09	692.00	337.88
Modelaje	2	TR=10	928.81	928.52	0.29	0.23	0.07	391.00	286.17
Modelaje	3	TR=100	930.81	930.19	0.62	1.63	0.29	1806.00	447.84
Modelaje	3	TR=50	930.30	929.83	0.46	1.60	0.27	1089.00	417.37

		HEC-R	HEC-RAS Plan: Plan 02 River: Rio Upar				Reach: Modelaje			
Modelaje	3	TR=20	929.97	929.72	0.25	0.77	0.01	692.00	410.64	
Modelaje	3	TR=10	929.64	929.48	0.16	0.82	0.01	391.00	396.19	
Modelaje	4	TR=100	932.73	931.16	1.58	1.58	0.09	1806.00	405.29	
Modelaje	4	TR=50	932.15	930.81	1.34	1.60	0.09	1089.00	276.84	
Modelaje	4	TR=20	931.62	930.60	1.02	1.78	0.07	692.00	272.94	
Modelaje	4	TR=10	931.21	930.30	0.91	1.86	0.06	391.00	166.58	
Modelaje	5	TR=100	934.40	933.72	0.68	1.20	0.16	1806.00	387.71	
Modelaje	5	TR=50	933.84	933.37	0.47	0.93	0.01	1089.00	386.73	
Modelaje	5	TR=20	933.48	933.13	0.35	0.98	0.01	692.00	386.06	
Modelaje	5	TR=10	933.13	932.86	0.27	1.10	0.00	391.00	329.08	
Modelaje	6	TR=100	935.76	934.56	1.19	1.14	0.05	1806.00	328.13	
Modelaje	6	TR=50	935.08	934.24	0.84	1.20	0.02	1089.00	310.84	
Modelaje	6	TR=20	934.60	934.04	0.56	1.19	0.01	692.00	292.48	
Modelaje	6	TR=10	934.15	933.84	0.31	1.00	0.01	391.00	228.83	
Modelaje	7	TR=100	936.95	936.24	0.71	0.81	0.01	1806.00	344.07	

		HEC-F	RAS Plan: F	Plan 02 Rive	er: Rio Upano	Reach:	Modelaje		
Modelaje	7	TR=50	936.29	935.68	0.61	0.86	0.03	1089.00	258.91
Modelaje	7	TR=20	935.80	935.32	0.48	0.95	0.02	692.00	237.12
Modelaje	7	TR=10	935.19	934.64	0.56	0.88	0.07	391.00	106.25
Modelaje	8	TR=100	937.17	937.02	0.16	0.17	0.05	1806.00	374.39
Modelaje	8	TR=50	936.50	936.40	0.09	0.15	0.05	1089.00	373.27
Modelaje	8	TR=20	935.99	935.92	0.06	0.14	0.04	692.00	372.39
Modelaje	8	TR=10	935.41	935.36	0.04	0.16	0.05	391.00	361.78
Modelaje	9	TR=100	938.98	937.28	1.70	1.70	0.12	1806.00	421.23
Modelaje	9	TR=50	938.33	937.05	1.28	1.95	0.09	1089.00	413.21
Modelaje	9	TR=20	937.94	936.89	1.05	2.08	0.07	692.00	353.26
Modelaje	9	TR=10	937.58	936.63	0.95	2.13	0.07	391.00	204.63
Modelaje	10	TR=100	940.80	940.31	0.49	0.86	0.01	1806.00	595.76
Modelaje	10	TR=50	940.38	940.03	0.35	0.97	0.01	1089.00	594.02
Modelaje	10	TR=20	940.08	939.78	0.30	1.05	0.00	692.00	476.93
Modelaje	10	TR=10	939.79	939.57	0.22	1.17	0.00	391.00	426.12

Conclusiones

Los parámetros morfológicos de la cuenca del río Upano con el uso del software ArcGIS, se ha determinado una configuración geomorfológica. Los datos revelan que el área de la cuenca tiene una dimensión aproximadamente de 1631,611 km² y con un perímetro de 238,106 km. La longitud total del cauce abarca los 108,701 km, mientras que la longitud axial es de 53,1026 km. La cuenca ha sido codificada con orden 5 según la clasificación utilizada. Además, se ha determinado un factor de forma de 0,57, lo que indica que la cuenca presenta una ligera tendencia a estar ensanchada en comparación con una forma más alargada. Así mismo un coeficiente de compacidad Gravelius de 1,66, dando como resultado una cuenca oval oblonga a rectangular oblonga. Estos hallazgos proporcionan una base sólida para comprender la morfología y las características físicas de la cuenca del río Upano. La combinación de parámetros como el área, el perímetro, las longitudes del cauce y axial, la codificación, el factor de forma y coeficiente de compacidad permite conocer sus procesos hidrológicos. Estos resultados son esenciales para la planificación y la gestión de recursos hídricos, así como para comprender mejor los procesos de erosión, sedimentación y flujo de agua en la cuenca.

Considerando un período de retorno de 100 años para el río Upano, se ha calculado un caudal máximo de 1389,25 m³/s. Sin embargo, debido a la presencia de sedimentos provenientes del volcán Sangay en la zona, se ha aplicado un factor de seguridad del 30%, es decir 1,3 para garantizar la seguridad de las infraestructuras y comunidades cercanas a la zona. Esto implica que se utilizará un caudal de diseño superior, multiplicando el caudal máximo por dicho factor de seguridad, con el fin de prevenir desbordamientos y situaciones peligrosas en caso de eventos extremos.

Al utilizar datos meteorológicos proporcionados por la NASA (Satélite que genera datos meteorológicos) para el cálculo de la precipitación media anual, se ha observado que dicho punto difiere de la ubicación del punto de control. Esta disparidad se debe a la falta de homogeneidad

en los datos recopilados. A pesar de esta diferencia de distancias entre los puntos para el estudio, se ha calculado una precipitación media anual de 1389,44 mm. Estos resultados subrayan la importancia de considerar la calidad y la consistencia de los datos meteorológicos utilizados en los análisis, ya que la falta de homogeneidad en los cálculos puede introducir variaciones significativas en los resultados obtenidos.

La altura adecuada para la construcción del puente se puede considerar desde los 931,85 msnm, es decir a 2 metros de la altura original desde su crecida, esto también dependerá del diseño estructural y estudio de suelos.

Recomendaciones

Se recomienda colocar un pluviómetro cerca de la zona de estudio, debido a que las estaciones que se encuentran en la cercanía de la cuenca no pueden proporcionar los datos necesarios para realizar un estudio de precipitaciones.

Se recomienda la revisión de todos los documentos tipo shapefile a usarse en el software ArcGIS, para tener una mejor precisión en el cálculo de parámetros morfológicos, así mismo manejar el programa minuciosamente para que no exista cálculos distorsionados por el programa.

Se recomienda utilizar un tiempo de retorno de 100 años, debido a la importancia del puente para la movilidad entre Macas y el Puyo. Ya que de esta manera se podrá tener mayor seguridad que la obra civil no se verá afectada ante un desastre natural como una creciente que pueda suceder en el río de 50 años.

Se recomienda utilizar un factor de seguridad al determinar el caudal de diseño, especialmente si se tiene presentes efectos de vulcanismos y arrastres de sólidos en la zona. De esta manera aumenta la probabilidad de que la estructura trabaje de manera adecuada, incluso en eventos de crecidas extremas.

Bibliografía

- Brito, A., & Piedra, B. (2021). *Implicaciones geológicas y geomorfológicas del valle del río Upano y el puente de la vía Macas –Puyo, Morona Santiago, Ecuador.* Semantics.

 https://www.dspace.espol.edu.ec/bitstream/123456789/52328/1/T-70608%20Brito%20-%20Piedra.pdf
- Campo, A., Aldalur, N., & Fernández, S. (2012). Morfometría fluvial aplicada a una cuenca urbana en Ingeniero White, República Argentina. *Investigaciones Geográficas*, *1*(77), 7-17.
- Chen, W.-F., & Duan, L. (Eds.). (2014). Bridge Engineering Handbook. CRC Press.
- Dávila, C. (2015). Análisis hidrológico-hidráulico para los puentes en zonas de inundación generadas por el Proyecto. Briton.edu

 https://www.semanticscholar.org/paper/An%C3%A1lisis-hidrol%C3%B3gico-hidr%C3%A1ulico-para-los-puentes-en-D%C3%A1vila-Sebasti%C3%A1n/bd134227945c4cf13417ea7d47c442491a9986e6
- Jaam, J. (2019). Actualización del plan de desarrollo y ordenamiento territorial (PDOT) del gobierno autónomo descentralizado provincial de Morona Santiago. Semantics.
- Knighton, D. (1998). Fluvial forms and processes: A new perspective. Hodder Education.
- Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). *Fluvial processes in geomorphology.* W. H. Freeman and Company.
- López, L. M. (2007, October 31). Agua cubre estado mexicano Tabasco tras desborde ríos.

 U.S. Reuters. https://www.reuters.com/article/latinoamerica-mexico-inundacion-sol-idLTAN3134087020071031

- Merwade, V., & Gorelick, S. M. (2007). A GIS framework for automatic extraction and regionalization of drainage networks at intermediate scales. *International Journal of Geographical Information Science*, *21*(7), 701-716.
- Panduro, H. (2021). Impacto de la variabilidad climática en la economía de los productores de plátano de comunidades nativas de la Amazonia Peruana. Semantics.

 https://www.semanticscholar.org/paper/Impacto-de-la-variabilidad-clim%C3%A1tica-en-la-econom%C3%ADa-Panduro-Avalos/fe86dc2c8d437c826c2acde9dd20850c4c1493ee
- Pauta, M. (2013). Estudio para determinar la variación del coeficiente de escorrentía y su impacto en los colectores de la calle Larga y calle Miguel Vélez de la ciudad de Cuenca.

 Semantics. https://www.semanticscholar.org/paper/Estudio-para-determinar-la-variaci%C3%B3n-del-de-y-su-en-Pauta

 Fern%C3%A1ndo/1309312a52b1c0eddc8641029926457b1669c07c
- Romo, L. M. (2023, 22 de mayo). Diagnóstico y Soluciones de Ingeniería para los Desbordamientos del Río Upano. Semantics.
- Rostain, S., & De Saulieu, G. (2019). El Pastaza y el Upano, dos ríos tropicales que conectan los Andes a la Amazonía. *Revista Del Museo de La Plata*, *4*(2), 353–384. https://doi.org/10.24215/25456377e081
- Smith, J. (2010). Morphological Data of a Watershed: Definition and Significance. *Journal of Hydrology*, *35*(2), 123-140.
- Steinmann, D. B., Watson, S. R. (1979). Puentes y sus constructores, Turner.
- Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38(6), 913-920.

- Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. *Transactions, American Geophysical Union, 38(6)*, 913-920.
- Talledos-Sánchez, E. (2022). *Prácticas locales ante inundaciones urbanas en la ciudad de San Luis Potosí*. Semantics.https://www.semanticscholar.org/paper/Pr%C3%A1cticas-locales-ante-inundaciones-urbanas-en-la-Talledos-S%C3%A1nchez-Vel%C3%A1zquez-Zapata/6fe8f7f179edfe2b4e761bd0dd2bb7fc955687d5
- Ubillús, E. a. M. (2017). Mapa con fotografías georreferenciadas de los daños causados por el Fenómeno del Niño costero 2017 en Piura. Semantics.

 https://www.semanticscholar.org/paper/Mapa-con-fotograf%C3%ADas-georreferenciadas-de-los-da%C3%B1os-Ubill%C3%BAs-C%C3%A9spedes/b2bb3f24b425325cdf6be0cd155e45b2433bd1a3
- Vargas, D. (2018). Estudio hidrológico e hidráulico para el diseño del sistema de drenaje de la carretera departamental SM-110 Metal Marcos, distrito Shunte, provincia Tocache San Martín. Semantics. https://www.semanticscholar.org/paper/Estudio-hidrol%C3%B3gico-e-hidr%C3%A1ulico-para-el-dise%C3%B1o-del-Vargas-Banessa/79c713047df5b0a408986b2accf3f61e00bc4f17#related-papers
- Verzosa, K. V. C. (2016). Influencia de El Niño Oscilación del Sur (ENOS) en la producción de banano: provincia de El Oro (2001-2014). Semantics.

https://www.semanticscholar.org/paper/Influencia-de-El-Ni%C3%B1o-

Oscilaci%C3%B3n-del-Sur-(ENOS)-en-Verzosa-

Gallegos/9fa6698b35fba70521db8d8520f4f414a1545134

Apéndices