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Abstract. Simulator systems are intended to facilitate access to practice in dif-

ferent test environments through a closed environment using computer vision. In 

this paper, a MANFIS model is implemented to improve the position of a trainee 

through positioning practice, which is responsible for detecting and displaying 

the errors that the trainee has when adopting the shooting position in real time. 

This environment qualifies, evaluates the pistol shooting position in a closed en-

vironment, analyzes, compares, and discusses the results obtained to determine 

the best option for evaluating the shooting position where the integrity and safety 

of the practitioner are paramount. The programs are adjusted to the process of 

identification and evaluation by Computer Vision using algorithms and pro-

cessing methods. The evaluation reached an overall efficiency 89.59 ± 3.36%, 

for 12 participants, determining the virtual simulator as adequate for training 

practices of the correct firing position. 

Keywords: Computer Vision, MANFIS, Virtual Simulator, Firing Position, 

Pose Estimation. 

1 Introduction 

The posture a shooter adopts on the practice range becomes critical because it can affect 

the accuracy and speed of the shot, where the moving parts of the body, muscles, and 

bones (such as the legs, back, and arms) are involved [1, 2]. Proper shooter's posture 

helps to maintain balance, if the shooter does not control his posture during practice, it 

will increase body fatigue, which affects his physical condition, concentration, and 

shooting efficiency [3-5].  

In the teaching-learning process, constant practice and correction of errors help to 

improve posture, accuracy, and performance on the shooting range through a continu-

ous evaluation whose results allow a significant improvement in the functional capacity 

of the practitioner  [6, 7]. Once this stage has been completed, technical and postural 

corrections are difficult to make again, an aspect that is evident in the sample studied 
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in this work, as part of a preliminary diagnosis of the level of influence of the position 

of the body in front of the target. With the use of weaponry (see Sect. 2), the technical 

focus of the preparation lies in identifying specific alterations that may affect the shoot-

er's postural control and consequently his performance [8, 9]. 

This article proposes the integration of technologies oriented to the use of immersive 

virtual reality, using an adaptive neural-fuzzy inference system for the prediction of the 

correct shooting position. The proposed model has been tested and compared with real 

cases of correct position evaluation in shooting ranges. The evaluation allows the stu-

dent to develop his skills, abilities, and professional training. At the end of the practical 

exercises, a joints analysis of the results obtained on the position simulator is presented 

for experienced and inexperienced trainees. 

2 System Desing 

Virtual reality now allows for the visualization of biomechanical agents in shooting 

position simulators during conflict situations [10], offering potential training enhance-

ments [11, 12]. Fig. 1 displays the system's design, highlighting key components: a) 

trainee positioning capture, b) recording and playback, c) a projection showcasing 

trainee silhouettes, and d) 3D representations in the projection area, supported by e) 

equipment rack, i) computer with connections, and ii) the projection area. 

 

 

Fig. 1. Main components of system. 

The virtual simulator uses a Computer Vision technique present in the Kinect sensor to 

detect the position of the practitioner [10, 11], and 4 Adaptive Neural-Fuzzy Infer-

ence System of Mamdani (MANFIS) techniques to evaluate the correct shooting posi-

tion [13, 14]. To validate the results, we propose the creation of a scenario that visual-

izes the position with a 3D representation and the silhouette of the biomechanical agents 

of the practitioner (see Sect. 4.1), which facilitates the control of the evaluation [15]. 
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3 Functional Scheme of the Firing Range Simulator 

Using the Unity3D platform, a simulator was developed to teach the correct firing po-

sition by analyzing biomechanical agents. The collected data is stored adaptively [15]. 

Fig. 2 shows the functional schematic of the simulator with two modules: 1) User in-

teraction, which places practitioners in a shooting position, and 2) Dialogue flow, which 

processes the practitioner's position and provides feedback. The reasoning is applied 

through the instructor's Knowledge Base (see Sect. 4) The final result shows both the 

firing posture and the percentage of positioning achieved using a 2D silhouette. 

  

 

Fig. 2. Functional scheme of the proposed application: 1) User Interaction for communication 

with the simulator, 2) Dialog Flow receives inputs, processes them, and returns them as outputs. 

The graphics engine, a) Unity 3D, was used to build the virtual and simulation environ-

ments (Unity SDK, Kinect 2 SDK). Blender and multimedia resources from the Unity 

Asset Store. b) The inputs and outputs of the system are realized by operating i) the 

Kinect 2 integrated motion sensor to obtain c) request or position information to be 

processed by f) MANFIS (see Sect. 4), and e) the knowledge database (see Table 2) 

and g) code return the percentage of correct firing position where the data visualization 

is obtained through the ii) projection of the scenario. 

4 Adaptive Neural-Fuzzy Inference System of Mamdani 

(MANFIS) 

Biomechanics applies mechanical principles to study human body movement, espe-

cially in shooting sports [7, 16]. Despite extensive research on licensed weapons and 

shooting psychology, there's a gap in technical and mechanical studies [17]. Biome-

chanical indicators (parts of a body) from shooters are pivotal for technical control [18, 

19]. The Kinect 2 sensor enhances this analysis by a) tracking the human body and 

identifying the joints being studied by b) shooter position using parameters and shooter 

biomechanics to obtain c) Euclidean distances and angles to be used as input data in d) 
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the Mamdani neuro-fuzzy system, uses membership functions and a neural network for 

defuzzification, with fully connected backpropagation learning (see Fig. 3). 

 

 

Fig. 3. Human body biomechanical agents tracking with Kinect 2 and correct position evaluation 

with a basic neuro-fuzzy architecture of the Mamdani system [17] 

The tracking of a) human body skeleton is provided by the Kinect 2 through the inte-

grated SDK, which uses human motion capture based on the Shotton algorithm using 

Support Vector Machine (SVM) for body part classification based on depth and RGB 

data and Randomized Decision Forests for precise joints position prediction, revolu-

tionizing human motion capture [18, 19]. With this technology, the human motion of 

up to 6 people is tracked simultaneously, identifying 25 joints [19]. Fig. 3 shows the 

tracking of the human body to capture its motion, where b) the shooter's position given 

by Sect. 4.1. The biomechanics of the shooter is used to obtain c) the distances and d) 

the angles of its biomechanical agents using parameters of the membership functions. 

These parameters are the input of the neural network that will be introduced in the fuzzy 

logic system, to be integrated into e) the MANFIS in charge of predicting f) the per-

centage of the correct firing position. 

4.1 Biomechanics of the Shooter 

Biomechanics studies the movement of the human body using mechanical principles 

[7, 20]. In shooting sports, a general technique is integrated with other scientific disci-

plines [2, 6]. Some factors can influence the assessment of athlete performance [21, 

22]. During training, instructors evaluate posture and weapon grip [6, 7]. Initially, 

shooters are taught correct positioning, but post-training technical corrections are rare. 

This neglect becomes evident in posture studies [8, 9]. Improper posture can cause in-

creased fatigue, affecting a shooter's concentration and performance. Proper postural 

control is vital for maintaining balance and shooting efficiency [3-5].  

The standard position for firing a weapon, as shown in Fig. 3, section b), has the 

arm extended, the sights oriented approximately 90° towards the feet and shoulders, to 

counterbalance the weight of the weapon [10]. However, this is not universal; factors 

such as posture, body composition, and height influence arm angle. Shorter shooters 

may raise their arms more, while taller shooters may aim lower [11]. The standard 

shooting position involves facing the target with feet shoulder-width apart, knees 

slightly bent, and aligned hips, back, shoulders, and head.  
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The body should lean forward slightly, forming an "isosceles triangle" with ex-

tended arms and straight shoulders. This stance ensures optimal balance, minimizes 

muscle strain, and offers comfort [11] (refer to Fig. 3). Angles refer to the degrees of 

rotation or flexion at specific joints, while distances indicate the spatial separation be-

tween body parts (see Table 1). Their measurement helps to correct the firing position. 

This study aims to analyze biomechanical indicators in firearm action by quantifying 

physical traits and comparing results from various practices. 

4.2 Fuzzy Logic and Training 

A Mamdani-type fuzzy system [21] can be represented by a multilayer architecture 

similar to a neural network [23]. This neuro-fuzzy architecture has as its first layer the 

calculation of the angle between two vectors in a 3D plane (see Equation 1), Fig 3 and 

the Euclidean distances between two points (see Equation 2), of the biomechanical 

agents of the shooter in a 3D environment, according to Sect. 4 and Table 1, evaluated 

in the membership functions, which gives me an idea to improve the firing position. 

 𝛼 = 𝑎𝑟𝑐𝑜𝑠 (
𝑃1∙𝑃2

|𝑃1|∙|𝑃2|
) (1) 

 𝑑𝐸(𝑃1 ∙ 𝑃2) = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2+(𝑧1 − 𝑧2)
2 (2) 

In the second layer, the Cartesian product or minimum function is performed, where 

there are N results given by the number of IF-THEN fuzzy rules. The last two layers 

are responsible for defuzzification by the centroid method, constrained by fuzzy infer-

ence. However, this can be represented by a neural network [23, 24], so that various 

defuzzification formulas can be substituted as a function of the training samples, which 

constitute a learning sequence [25-28]. This process represents a fuzzy system model-

ing approach [29] for detecting the correct firing position with defuzzification using a 

neural network with backpropagation learning. In the following, the terms of the fuzzy 

system are defined: 

• The Universe of Discourse: for the angles is between -180 to +180 and in distance 

between 0 to 2 meters. 

• The Crisp set: the correct position of the practitioner is determined by comparing the 

angles between the centre of mass and the limbs of the body. This is considered 

accurate when it aligns with the shooter's biomechanics (see Sect. 4.1). 

• The Fuzzy set: the Head and Trunk angles are 90º and the left and right arms 40º 

according to[20, 24]; However, these elements belong to a classical set therefore, a 

representation with adjustment to a fuzzy set given by Table 1 is proposed taking 

into account the instructor's indications and the noise generated by the Kinect 2 sen-

sor. 

• The Membership function: appropriate ranks in the fuzzy set are identified using 

specific membership functions [29]. These functions use Gamma (Γ) (see Equation 

3), Lambda (Λ) (see Equation 4) for triangular shapes, and Pi (Π) (see Equation 5) 
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for trapezoidal shapes themselves to represent fuzzy sets Table 1 designates a mem-

bership function for each biomechanical agent within a category based fuzzy set.  

 𝜇(𝑥) = {

0
𝑥−𝑎

𝑚−𝑎

1

 
𝑠𝑖 𝑥 ≤ 𝑎

𝑠𝑖 𝑎 <  𝑥 < 𝑚
𝑠 𝑥 ≥ 𝑚

 (3) 

 𝜇(𝑥) =

{
 
 

 
 
0
𝑥−𝑎

𝑚−𝑎
𝑏−𝑥

𝑏−𝑚

0

 

𝑠𝑖 𝑥 ≤ 𝑎
𝑠𝑖 𝑎 < 𝑥 ≤  𝑚

.
𝑠𝑖 𝑚 <  𝑥 ≤ 𝑏

.
𝑠𝑖 𝑥 ≥ 𝑏

 (4) 

 𝜇(𝑥) =

{
 
 

 
 
0
𝑥−𝑎

𝑏−𝑎

1
𝑑−𝑥

𝑏−𝑐

0

        

𝑠𝑖 𝑥 ≤ 𝑎
𝑠𝑖 𝑎 < 𝑥 ≤ 𝑏

.
𝑠𝑖 𝑎 < 𝑥 ≤ 𝑐
𝑠𝑖 𝑐 < 𝑥 ≤ 𝑑

.
𝑠𝑖 𝑥 > 𝑑

 (5) 

Angle measures include head (H), trunk (T), left arm (LA), right arm (RA), left knee 

(LK), and right knee (RK). On the other hand, distance measurements comprise the 

arms (DAR), knees (DK) and ankles (DAN). These abbreviations simplify the identifi-

cation and categorization of measurements, as angles represent joints positions and dis-

tances quantify spatial relationships.  

Table 1.  Membership functions on the fuzzy sets of the pistol shooting position. 

  Membership function in the fuzzy set 

Element Bad Regular Good 

  a b c d F a b c d F a b c d F 

H (º) 105 120 - - Γ 115 130 145 155 Π  150 180 - - Λ 

T (º) 105 120 - - Γ 115 130 145 155 Π  150 180 - - Λ 

LA (º) 0 40 - - Λ 30 35 40 55 Π  40 65 85 105 Π 

130 180 - - Γ 95 105 120 135 Π  

RA (º) 0 40 - - Λ 30 35 40 55 Π  40 65 85 105 Π 

130 180 - - Γ 95 105 120 135 Π  

LK (º) 85 100 - - Γ 95 110 125 135 Π  130 180 - - Λ 

RK (º) 85 100 - - Γ 95 110 125 135 Π  130 180 - - Λ 

DAR (cm) 50 100 - - Γ 20 40 50 70 Π  0 25 - - Λ 

DK (cm) 75 150 - - Γ 40 55 65 80 Π  0 50 - - Λ 

DAN (cm) 30 100 - - Γ 25 30 40 55 Π  0 40 - - Λ 

 

Table 1 provides an overview of the membership functions for a fuzzy set, where each 

element represents a biomechanical agent, complete with units of measurement. The 
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descriptors "Bad", "Regular", and "Good" describe the acceptable features of the posi-

tion, which are associated with upper and lower bounds, represented in columns a, b, c, 

and d. The Gamma, Lambda, and Pi functions assign these limits, denoted by x, and are 

described in Sect. 4.1 using specific letter representations. Essentially, Table 1 catego-

rizes body measurements, such as the angle of the head or the distance between arms, 

into fuzzy sets using these membership functions. These parameters shape the functions 

and offer a structured framework for understanding and categorizing biomechanical 

measurements. 

The defuzzification method employs a backpropagation neural network for training, 

using various inputs and their classifications [30]. This network takes its input from the 

results of the Mamdani table-based fuzzy rules [31] in the second layer of the MANFIS 

system. Table 2 shows an approach for modeling a backpropagation neural network, 

belonging to a MANFIS system, showing each biomechanical agent (see Sect. 4.1) in 

their respective units (degrees or centimeters) along with their percentages of correct 

position (see Fig. 3). 

Table 2. The training data set used in this study for the correct position of fire obtained by sen-

sor Kinect 2 and instructor. 

# 0 1 2 3 4 … 6 … 299 300 

H (°) 167 116 159 151 122 … 174 … 141 114 

T (°) 160 106 168 154 149 … 173 … 140 119 

LA (°) 43 16 99 42 47 … 104 … 120 142 

RA (°) 72 27 48 39 36 … 101 … 54 33 

LK (°) 166 119 169 146 150 … 156 … 146 112 

RK (°) 157 111 151 132 135 … 154 … 137 112 

DAR (cm) 9 66 5 30 32 … 22 … 21 126 

DK (cm) 49 81 44 54 78 … 20 … 77 100 

DAN (cm) 28 107 37 45 29 … 31 … 26 141 

Percentage 71 27 75 73 51 … 96 … 55 21 

 

Table 2 is a structured data set for training a neural network. The inputs are the biome-

chanical agents, while the percentage is the output data indicating the quality of the 

posture (rows), and the number of records used is 300 (columns) [25-28]. Using this 

data set in the training of a neural network, a model capable of predicting the percentage 

quality of the pistol shooting stance from the input values was developed. This predic-

tive capability can be used in various contexts, such as postural control applications, 

virtual exercise assistants, or postural correction systems [30]. With the use of this da-

taset and a trained neural network model, a system capable of assessing and providing 

information about the quality of a person's posture can be obtained, which can contrib-

ute to improving health and prevent possible injuries related to incorrect posture. 
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5 Execution of the Practice 

The simulator displays a 3D virtual environment in which the correct position of a char-

acter is displayed. To improve training results, practitioners must address and rectify 

positional faults. The simulation system evaluates the user's biometrics in real time, 

scoring them from 0 to 100 based on the distances and angles of the biomechanical 

agents (see Table 1). A score above 70 indicates optimal positioning, which directly 

influences the accuracy of the shot [31, 32]. 

 

 

Fig. 4. Scene 1, position training practice 

The scene is designed to detect the biomechanical components of the practitioner. It 

starts with a) the practitioner's initial position in front of the Kinect, leading to b) a real-

time representation of the practitioner's silhouette. The white boxes represent biome-

chanical angle inputs. The colors (red, yellow, and green) indicate the good position of 

each joint. The box at the bottom right projects the practitioner's movements in real-

time, the process continues with c) the adoption of the shooting position and concludes 

with d) the evaluation of the practitioner's correct position, represented by a 0-100 score 

bar on the right side of the figure. 

6 Simulation Cases and Results 

This section presents the results of 12 simulation cases performed by trainee security 

officers on the range simulator. This function makes it possible to evaluate and obtain 

real-time information on the shooter's position. By providing immediate data on the 

shooting position, the system allows for quick analysis and adjustment, improving 

training and performance evaluation. The methodology of this research focuses on ap-

plied research with a descriptive scope and its design is quasi-experimental. The data 

are not manipulated, but the situation of the trainee's position at a given time is evalu-

ated. The target population is the students of the private security training center Taurhus 

CIA. LTDA, between 18 and 48 years of age. As the population is a group of students 

made up of 9 males and 3 females, the study will be applied to the entire universe. 
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In this type of simulation, a brief induction on the scenario operation is carried out 

(see Fig. 4), where the final objective is to determine the relevance of adopting a good 

firing position. The rating metric establishes that a rating above 70% is determined as 

good and a rating above 90% is considered as a correct shooting position. 

Table 3. Positioning practices on the virtual simulator. 

Practitioner 
Iteraction 

first second third fourth fifth average 

1 87,23 94,12 78,34 83,23 93,12 87,208 

2 73,12 71,23 85,23 87,34 89,23 81,23 

3 89.04 87 91,4 87,34 91,5 89,31 

4 78.6 89,4 78,23 91 89,23 86,965 

5 89,45 93,12 93,5 89,23 95 92,06 

6 92 94,23 93,45 93,6 95,34 93,724 

7 87.56 89,2 94,23 98,23 92,45 93,5275 

8 85,23 88 89,34 93,65 91,23 89,49 

9 89,23 93,23 94,2 89,56 96,2 92,484 

10 89 92,23 94,23 87,2 94,2 91,372 

11 88,3 90 94,2 87,23 89,34 89,814 

12 84,23 85,34 87 93,2 90 87,954 

 

Table 3 shows the positional results of 5 interactions in 25 seconds and ending with an 

individualized average, for 12 pupils. The instructors of the CIA Taurhus. LTDA. in-

structors consider that this time is sufficient to adopt a correct shooting position. After 

an introduction to the virtual simulation system, the trainees adjust their positions with 

real-time feedback. During the exercise, it is observed that in each interaction, the train-

ees obtain good scores thanks to the real-time evaluation of the system, which proves 

its effectiveness and is approved by the instructors of CIA Taurhus. LTDA. 

 

 
 

Fig. 5. Comparison of results of five interaction and efficiency by practitioner 
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Fig. 5 Interactions: shows that the score of the group of participants is above 70 out of 

100 points. Each participant takes the shooting position for 5 seconds and at the end of 

the cycle, a new practice begins, thus obtaining individual results that are used for a 

more efficient analysis. For 25 seconds, spread over 5 interactions, it is observed that 

the overall trajectory decreases with each practice. With repeated use of the system, the 

results become more linear. Efficiency is calculated from 0 to 100, showing that con-

stant interaction with the system leads to an improvement that can be visualized from 

the first practice to the last. In the first iteration, the practitioners' correct position score 

ranged from a minimum of 73.12% to a maximum of 92%. In the last iteration, the 

score ranged from a minimum of 89.23% to a maximum of 96.20%, indicating an al-

leged progressive improvement see Fig. 5. first and last interaction. Real-time evalua-

tion allows immediate adjustment of the score without the need for constant interven-

tion by the instructor. 

7 Conclusions and Future Work 

The research highlighted the effectiveness of the MANFIS model in the assessment of 

shooting posture as a valuable tool for handling complex data. The virtual simulator of 

this research met the expectations and the participants showed great interest. Through 

this simulator, trainees observe their virtualization in 3D and 2D formats (see figure 3). 

This immersive experience, coupled with real-time feedback, facilitates the adoption of 

an optimal shooting posture. Trainees experience a reduction in body fatigue (see sec-

tion 1) and an increase in concentration, improving shooter efficiency. The importance 

of correct posture for safe shooting was emphasized. Despite research in the field of 

shooting, biomechanics, particularly in MANFIS, is an under-explored area. This study 

helps to fill this gap and suggests that MANFIS should be incorporated into training 

programs. Finally, the success of the model suggests its potential use in other areas of 

shooting and related sports. 

This simulator plays a crucial role in helping shooters perfect their shooting position. 

With 300 postural records obtained by the instructors (see Table 2), the system's effec-

tiveness is constantly monitored. The evaluation is carried out with inexperienced par-

ticipants on a shooting range. The most remarkable result is an efficacy rate of 89.59 ± 

3.36%, thanks to the proposed tool that guides the shooters to perfect their posture and 

achieve an appropriate position. This drastically improves shooting accuracy and effi-

ciency, providing a competitive advantage. 

Shooters can view real-time scores on the simulator, allowing instant adjustments 

and improved techniques (see Fig. 4). While accuracy in virtual simulators can vary 

based on various factors, experienced shooters usually achieve around 90% accuracy 

in physical practice [20]. Tests with the proposed simulator, mainly with new shooters, 

indicate its potential for high performance and alignment with traditional training. 

Future research will broaden the study of shooting positions to cover all body bio-

mechanics and adapt to various weapons. There's a plan to develop virtual shooting 

training programs that evaluate a practitioner's shooting traits and accuracy. Based on 
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the results, a proficiency report will be produced, confirming the effectiveness of the 

shooting simulator training. 
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