

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES

Carrera de Ingeniería en Electrónica y Telecomunicaciones

Mejora del desempeño de un clasificador mediante la selección de características de las señales de microsismos del volcán Cotopaxi

Autor: Morales Zapata Steve Alexander

Director: Ing. Bernal Oñate, Carlos Paúl

01. Introducción

- 02. Materiales y Métodos
- 03. Resultados

 \succ

 \geq

04. Conclusiones y Recomendaciones

01. Introducción

D

 \succ

 \triangleright

- 02. Materiales y Métodos
- 03. Resultados

04. Conclusiones y Recomendaciones

Introducción

Volcán Cotopaxi

- Debido a su potencial actividad se encuentra en constante monitoreo.
- El poder analizar las señales que este volcán produce, puede ser de gran ayuda para determinar un posibles riesgos.

Objetivos

Objetivo General

 Mejora del desempeño de un clasificador mediante la selección de características de las señales de microsismos del volcán Cotopaxi.

Objetivos

Objetivos Específicos

- Analizar el estado del arte de las metodologías utilizadas en la obtención de características.
- Identificar las mejores características mediante el empleo de escalas lineales y psico acústicas, con diferentes métodos de selección de características.
- Evaluar el desempeño del clasificador de señales de microsismos del volcán Cotopaxi y mostrarlos en un sistema en MATLAB[®].

≻

02. Materiales y Métodos

Materiales

Diagrama de Bloques

Diagrama de Bloques Base de datos Evaluación Prepocesamiento Procesamiento Salida (Entrada) **BASE DE DATOS** Eventos Volcanotectónico (VT) 1044 LP Eventos Largo Periodo (LP) 101 VT BASE DE Eventos Híbridos (HB) Cuenta con 27 REG DATOS 1187 señales. MicSigV1 Rupturas de glaciar (IC) 8 HB Eventos Regionales (RG) 7 IC

Clase Otros

Diagrama de Bloques

Diagrama de Bloques

PROCESAMIENTO

PROCESAMIENTO

Entrada

Feature Extraction

Normalización

Preparación de datos

Salida

"ESeismic: Towards an Ecuadorian volcano seismic repository" (Pérez et al., 2020).

ID	Nombre de la característica	ID	Nombre de la característica	ID	Nombre de la característica
Tim	e-domain	f28	Peak-to-RMS ratio	f56	Percentage of energy for A6
f1	Mean	f29	Power	f57	Percentage of energy for D1
f2	Standard deviation	f30	Density of peaks above RMS	f58	Percentage of energy for D2
f3	Variance	f31	2nd highest peak value	f59	Percentage of energy for D3
f4	Entropy	f32	Freq. of 2nd highest peak	f60	Percentage of energy for D4
f5	Kurtosis	f33	3rd highest peak value	f61	Percentage of energy for D5
f6	Multiscale entropy (MSE)	f34	Freq. of 3rd highest peak	f62	Percentage of energy for D6
f7	Time to reach the maximum peak	Sca	le-domain	f63	A6 RMS in time-domain
f8	RMS value	f35	A6 Max. peak in freqdomain	f64	D1 RMS in time-domain
f9	Peak-to-peak value	f36	D1 Max. peak in freqdomain	f65	D2 RMS in time-domain
f10	Peak-to-RMS ratio	f37	D2 Max. peak in freqdomain	f66	D3 RMS in time-domain
f11	Energy	f38	D3 Max. peak in freqdomain	f67	D4 RMS in time-domain
f12	Zero-crossing rate	f39	D4 Max. peak in freqdomain	f68	D5 RMS in time-domain
f13	Density of peaks above RMS	f40	D5 Max. peak in freqdomain	f69	D6 RMS in time-domain
Free	juency-domain	f41	D6 Max. peak in freqdomain	f70	A6 Peak-to-peak in time-domain
f14	Frequency of maximum peak	f42	A6 Freq. of max. peak	f71	D1 Peak-to-peak in time-domain
f15	Bandwidth of 90% energy	f43	D2 Freq. of max. peak	f72	D2 Peak-to-peak in time-domain
f16	Entropy	f44	D3 Freq. of max. peak	f73	D3 Peak-to-peak in time-domain
f17	Mean	f45	D4 Freq. of max. peak	f74	D4 Peak-to-peak in time-domain
f18	Standard deviation	f46	D5 Freq. of max. peak	f75	D4 Peak-to-peak in time-domain
f19	Variance	f47	D6 Freq. of max. peak	f76	D6 Peak-to-peak in time-domain
f20	Energy	f48	A6 Mean in freqdomain	f77	A6 Peak-to-RMS ratio in time-domain
f21	Kurtosis	f49	D1 Mean in freqdomain	f78	D1 Peak-to-RMS ratio in time-domain
f22	Multiscale entropy	f50	D2 Mean in freqdomain	f79	D2 Peak-to-RMS ratio in time-domain
f23	Maximum peak in 10–20 Hz band	f51	D3 Mean in freqdomain	f80	D3 Peak-to-RMS ratio in time-domain
f24	Freq. of max. peak in 10–20 Hz Band	f52	D4 Mean in freqdomain	f81	D4 Peak-to-RMS ratio in time-domain
f25	Maximum peak in 20–30 Hz band	f53	D5 Mean in freqdomain	f82	D5 Peak-to-RMS ratio in time-domain
f26	Freq. of max. Peak in 20–30 Hz Band	f54	D6 Mean in freqdomain	f83	D6 Peak-to-RMS ratio in time-domain
f27	RMS value	f55	Mean energy of components	f84	Mean energy of wavelet coefficients

"Clasificación de eventos sismo volcánicos usando características psicoacústicas mediante técnicas de aprendizaje automático supervisado y no supervisado." (*Minango,2022*)

CARACTERÍSTICAS PSICOACÚSTICAS

ID	Nombre de la característica	ID	Nombre de la característica
f85	Kurtosis	f92	Spread
f86	Slope	f93	Centroid
f87	Crest	f94	Entropy
f88	Flux	f95	RolloffPoint
f89	Skewness	f96	shorTimeEnergy
f90	Decrease	f97	harmonicRatio
f91	Flatness	f98	zeroCrossRate

Diagrama de Bloques

PROCESAMIENTO

Diagrama de Bloques

EVALUACIÓN

FEATURE SELECTION

Mutual Information (MI)

Statistical Dependency (SD)

FEATURE SELECTION

Sequential Forward Selection (SFS)

Sequential Forward Floating Selection (SFFS)

CLASIFICACIÓN

Aprendizaje No Supervisado

Autoencoder

CLASIFICACIÓN

Aprendizaje Supervisado

K-nearest neighbor (KNN)

Decision Tree (DT)

MÉTRICAS

INNOVACIÓN PARA LA EXCELENCIA

Steve Alexander Morales Zapata

INTERFAZ GRÁFICA

Pestaña Ejecutable

Clasificador de señales del volcán Cotopaxi

Pestaña Informativa

Clasificador de señales del volcán Cotopaxi

Ejecutable Informativo Ejecutable Informativo Clasificadores: 2 Selectores: 1 Tipo Exactitud Presición Sensibilidad Especificidad Ber Title MI Autoencoder Selectores: 1 Clasificadores: 2 VT 97.1831 90.0000 79.4118 97.8462 0.1137 OSD **○KNN** LP 0.1482 0.9 OSFS 95,4930 98.4026 96.5517 73.8095 MI Autoencoder ○ SFFS Otros 99,7085 0.2515 OSD 96 6197 8 3333 50 0000 ODT 0.8 Ninguno **OKNN** Overal 94.6479 94.4909 93.4422 76.7720 0.1489 OSFS 0.7 Ingrese el número de nueronas OSFFS 8 ODT 50 2 3 0.6 Ninguno Ingrese el valor de Q de MI 7 Ingrese el numero de Q 3 > 0.5 No #Caracterisitica Caracteristica 9 🗘 4 Ingrese el peso de las características de MI 72 0.4 w_t_peak2peak_D2 5 Ŧ 0.2 3 5 37 w_f_maxval_D2 Ingrese el número de nueronas 4 0.3 On 6 3 24 f_peak_1020_pos 20 w. 0.2 30 Ejecutar 7 Train y Test Aleatorio 4 f_PeaksAboveRMSDensity_fun Ingrese el núimero de peso de selector 🕫 0.1 0.04 × 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Buscar 6 х

Steve Alexander Morales Zapata

Diagrama de flujo de la interfaz gráfica

 \triangleright

02. Materiales y Métodos

03. Resultados

04. Conclusiones y Recomendaciones

FASE 2

- NINGUNO
- SFS
- SFFS

FASE 1

Solostor	Clasificador	Valor de parámetro	Porcentaje de
Selector	Clashicador	del clasificador	clasificación
SFS		10	94.1
SFFS	Autoencoder	20	93.8
Ninguno	(neuronas)	50	94.6
SFS		8	93.24
SFFS	KNN (vecinos)	30	92.96
Ninguno		8	93.8
SFS		8	93.24
SFFS	DT (divisiones)	3	94.65
Ninguno		3	94.08

FASE 2

		Valor de		Número de	Porcentaje de	
Selector	Clasificador	parámetro del	Pesos	características	clasificación	
		clasificador				
SD			0.48	4	94.10	
	Autoencoder	50				
MI	(neuronas)	50	0.2	4	94.64	
SD	KNN		0.082	1352	95.21	
МІ	(vecinos)	8	0.7	769	95.77	
SD	DT	2	0.33	11	94.64	
МІ	(divisiones)	3	0.19	10	94.64	

CLASIFICADORES

Resultados

0.6%

2.5%

0.3%

8.3%

91.7%

OHOS

Target Class

79.4%

20.6%

96.6%

3.4%

50.0%

50.0%

94.6%

5.4%

AUTOENCODER

										Confusi	on Matrix
	Clasificador de señales del volcán Cotopaxi Steve Alexander Morales Zapata						VT	27 7.6%	5 1.4%	2 0.6%	
Ejecutable	Informativo							-			
Selectores:	Clasificadores:	Tipo	Exactitud	Presición	Sensibilidad	Especificidad	Ber				
	 Autoencoder 	VT	97.1831	90.0000	79.411	18 97.8462	0.1137	LP	2	308	9
SFS	◯ KNN	LP	95.4930	98.4026	96.551	7 73.8095	0.1482	ass	0.0%	00.076	2.07
OSFFS	ODT	Otros	96.6197	8.3333	50.000	99.7085	0.2515	ö			
Ninguno	Ŭ	Overal	94.6479	94.4909	93.442	2 76.7720	0.1489	but			
Ingrese el núm	iero de nueronas							Dut			
	50 -							Otros	1	0	1
Ingrese el valo	r de Q de MI		No	#Caraa	torioition	Corpotoriotion			0.3%	0.0%	0.3%
	9 -		NO	#Calac	ciensiica c	alacterística					
Ingrese el peso	o de las características de MI		1	72	v	w_t_peak2peak_D2					
	0.2 - Off	On	2	37	v	v_f_maxval_D2					
		011	3	24	f,	_peak_1020_pos			00.001		
Ej	jecutar Train y Tes	st Aleatorio	4	30	f	_PeaksAboveRMSE	Density_fun		90.0%	98.4%	91.7
											0111
										. 8	

F UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

KNN

	Clasificador de señales del volcán Cotopaxi								1	26	k- 1	NN, Validación	
Ejecutable Ir	nformativo						Steve Alexa	ander w	iorales Zapata				
Selectores:	Clasificadores:	1	Tino	Exactitud	Drosición	Sonsibilidad	Especificidad	Por					
● MI	Autoencoder		ит	00.0202	00 6552	00 0007		Dei	0.0720	2	3	310	
OSD				98.0282	89.0552	80.0007	98.7730		0.0728	-	Ŭ	010	
OSES	(KININ		LP	95.7746	90.2733	99.0415	90.9091		0.0502	S			
O SFFS	ODT		Otros	97.7465	100.0000	33.3333	97.7208		0.3447	as			
Ingrese el númer	ro de vecinos]	Overal	95.7746	95.8430	95.6570	91.8193		0.0626	Ö			
	8									Lue 3		8	4
Ingrese el valor d	de Q de MI									F			
	12 🌲			No	#Caracte	erisitica Carao	cteristica						
Ingrese el peso d	de las caracteristicas de l	MI		1	72	w_t_p	eak2peak_D2		*				
	0.07			2	37	w_f_n	naxval_D2		-				
	Off		On	3	65	wtr	ms D2		-		90 70/	06.29/	100.0%
Eieo	cutar Train v	Test Ales	torio	4	58	w t F	PEC D2		-		09.7%	50.3%	100.0%
	5 30 f Peake∆hoveRM9Density fun												
	6 24 f pert 4020 per						-		10.3%	3.7%			
				7	1014	pea			-				
				1	1014	Ispect	aiDetrease				1	2	3
												D	radiated Class

86.7%	13.3%
99.0%	1.0%
33.3%	66.7%

89.7%	96.3%	100.0%		
10.3%	3.7%			
1	2	3		
	Pr	edicted Class		

DT

		Cla	asificador	de señales	del volcá	n Cotopa	Xİ Steve Alexa	inder Morales 2
Ejecutable	ntormativo							
Selectores:	Clasifi	cadores:	Tipo	Exactitud	Presición	Sensibilidad	Especificidad	Ber
	O Auto	pencoder	VT	06.6107	78 1250	83 333	08 4520	0.0
OSES		J	I.P.	05 2113	96 5409	98.0831	83 7838	0.0
			Otros	97.4648	80.0000	33 333	97 7143	0.3
Ninguno			Overal	94 6479	04 3883	04.2992 04.520		0.0
ngrese el nume	ro de splits		Overal	34.0413	54.5005	54.550	05.5251	0.0.
	3 🌲							
ngrese el valor (de Q de MI							
	12 🌲			No	#Caracte	erisitica Cara	cteristica	
ngrese el valor (de peso de la	as caracteristicas	s de MI	1	72	w_t_	/_t_peak2peak_D2	
	0.19 🌲			2	37	w_f_	w_f_maxval_D2	
			On	3	65	w_t_	w_t_rms_D2	
Eje	cutar	Train y Test	Aleatorio	4	58	w_t_	PEC_D2	
				5	30	f_Pe	aksAboveRMSDens	sity_fun
				6	24	f_pea	ak_1020_pos	
				7	1814	spec	nectralDecrease	

		Matriz de confusión D							
1	25	5							
2 ഗ	5	307	1						
True Clas ω	2	6	4						

83.3%	16.7%
98.1%	1.9%
33.3%	66.7%

78.1%	96.5%	80.0%
21.9%	3.5%	20.0%
1	2	3 adiatad Olaaa
1	2 Pr	3 edicted Clas

ÀRBOL DE DECISIÓN

CARACTERISTICAS

Resultados

			Núme	Caracterís ro	stica Carao	Característica	
				número)		
				1 72 D2 Peak-to-peak in time-dom		n time-domai	n
		,	2	37	D2 Max. peak in fr	eqdomain	
			3	24	Freq. of max. peal	k in 10–20 Hz	Band
			4	30	Density of peaks a	above RMS	
Número	Característica número	Característica	Número ⁽	Característica número	Característica		
1	72	D2 Peak-to-peak in time-domain	16	1821	Spectral Decrease	•	
2	37	D2 Max. peak in freqdomain	17	1825	Spectral Decrease		
3	65	D2 RMS in time-domain	18	1822	Spectral Decrease		
4	58	Percentage of energy for D2	19	1481	Spectral Skewness		
5	30	Density of peaks above RMS	20	1495	Spectral Skewness		
6	24	Freq. of max. peak in 10–20 Hz Band	21	2814	Spectral Centroid		
7	1814	Spectral Decrease	22	1482	Spectral Skewness		KNN
8	1812	Spectral Decrease	23	1484	Spectral Skewness	•	
9	1813	Spectral Decrease	24	2805	Spectral Centroid		
10	1483	Spectral Skewness	25	1493	Spectral Skewness		
11	1824	Spectral Decrease	26	1826	Spectral Decrease		
12	1815	Spectral Decrease	27	2808	Spectral Centroid		
13	1816	Spectral Decrease	28	2815	Spectral Centroid		
14	2807	Spectral Centroid	29	1811	Spectral Decrease		
15	1490	Spectral Skewness	30	1494	Spectral Skewnes		

DT

Número	Característica	Coroctorístico			
	número	Característica			
1	72	D2 Peak-to-peak in time-domain			
2	37	D2 Max. peak in freqdomain			
3	65	D2 RMS in time-domain			
4	58	Percentage of energy for D2			
5	30	Density of peaks above RMS			
6	24	Freq. of max. peak in 10–20 Hz Band			
7	1814	Spectral Decrease			
8	1812	Spectral Decrease			
9	1813	Spectral Decrease			
10	1483	Spectral Skewness			

MEJORES CARACTERÍSTICAS

- D2 Peak-to-peak in time-domain
- D2 Max. peak in freq.-domain
- D2 RMS in time-domain
- Percentage of energy for D2
- Density of peaks above RMS
- Freq. of max. peak in 10–20 Hz Band
- Spectral Decrease

RESULTADOS TRABAJO PREVIO

Clasificador	Exactitud%	Precisión%	Especificidad%	Sensibilidad%	Ber
Autoencoder	92.06	88.09	94.05	88.09	0.089
KNN	97.35	96.03	98.02	96.03	0.03
DT	92.06	88.09	94.05	88.09	0.089

RESULTADOS TRABAJO ACTUAL

Clasificador	Exactitud%	Precisión%	Especificidad%	Sensibilidad%	Ber
Autoencoder	94.64	94.49	76.77	93.44	0.14
KNN	95.77	95.84	91.81	95.65	0.06
DT	94.64	94.38	85.52	94.53	0.09

 \geq

02. Materiales y Métodos

04. Conclusiones y Recomendaciones

Conclusiones

- Se concluye que se tiene una mejora del clasificador mediante la selección de características de las señales de micro sismos del volcán Cotopaxi, con esto al reducir las características logrando redes menos complejas.
- El mejor resultado de este clasificador es obtenido con el clasificador KNN y el selector MI, el cual tiene un porcentaje de clasificación de 95.77%, con una precisión del 95.84%, Especificidad de 91.81%, Sensibilidad de 95.65% y un Ber de 0.06.

Conclusiones

- Las características que presentan mejores resultados para las señales de microsismos del volcán Cotopaxi, en las cuales se tiene como mejores seis lineales y una psicoacústica, las cuales son: D2 Peak-to-peak in time-domain, D2 Max. peak in freq.-domain, D2 RMS in time-domain, Percentage of energy for D2, Density of peaks above RMS, Freq. of max. peak in 10–20 Hz Band y Spectral Decrease; siendo estas las que se muestran en los selectores.
- Se implementó un sistema utilizando el software MATLAB[®] en el cual se engloban todas las fases del proyecto, el cual permite el análisis de características y la evaluación del clasificador visualizando los resultados de una manera detallada y gráfica.

Recomendaciones

- En la etapa de preprocesamiento, se recomienda automatizarla para que de esa manera solo incluir la base de datos con las señales y evitar la manipulación de las mismas.
- Se sugiere que investigaciones futuras profundicen en la clasificación, considerando la inclusión de las cinco clases totales presentes en la base de datos. Este enfoque permitiría una clasificación integral y precisa de todas las señales, ampliando así la comprensión y la efectividad del clasificador.
- Se recomienda incluir un análisis más profundo de los selectores SFS y SFFS, los cuales pueden permitir una selección de diferentes características.

DEPARTAMENTO DE ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES

Carrera de Ingeniería en Electrónica y Telecomunicaciones

Mejora del desempeño de un clasificador mediante la selección de características de las señales de microsismos del volcán Cotopaxi

Autor: Morales Zapata Steve Alexander

Director: Ing. Bernal Oñate, Carlos Paúl

