

INGENIERÍA AUTOMOTRIZ

TEMA: DISEÑO Y CONSTRUCCIÓN DE UNA UNIDAD DE CAMBIO DEL FLUIDO PARA CAJAS AUTOMÁTICAS CON CONTROL ELECTRÓNICO

AUTORES: GABRIELA OÑA BYRON PAUCAR

DIRECTOR: ING. JUAN CASTRO CODIRECTOR: ING. JUAN ROCHA

LATACUNGA, AGOSTO DEL 2014

CONTENIDO

- >Planteamiento del proyecto.
- **≻**Objetivos
- Diseño mecánico, hidráulico y electrónico de la unidad.
- > Selección de elementos
- Ensamble de la unidad.
- >Pruebas
- **≻**Conclusiones
- > Recomendaciones

PLANTEAMIENTO DEL PROYECTO

- > Avances e innovaciones tecnológicas.
- ➤ Sistematizar procesos de mantenimiento vehicular.
- > Vehículos con transmisión automática en el país.

Vehículos AT vendidos al año 79554

Representa el 6.99%

113812 automotores nuevos

(Anuario 2013 AEADE s.2, p.43).

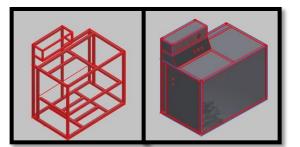
Mejora de calidad y optimización de tiempo en cada cambio de fluido.

OBJETIVOS

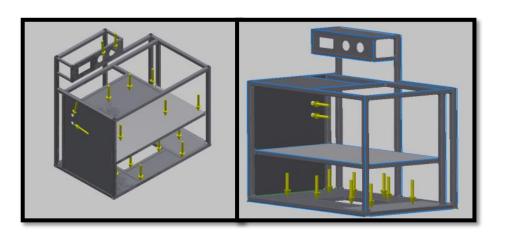
GENERAL.

Diseñar y construir una unidad de cambio del líquido hidráulico de cajas automáticas con control electrónico para optimizar en recambio del lubricante de la caja automática.

ESPECÍFICOS.

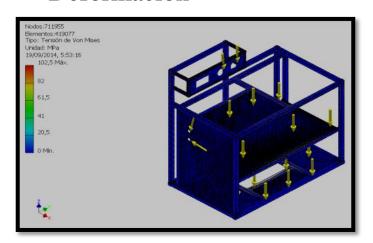

- Realizar el diseño, simulación, construcción y armado del sistema hidráulico y la estructura mecánica de la unidad de cambio de fluido para determinar su funcionamiento, rendimiento y soporte.
- Realizar el diseño e implementación del circuito electrónico de control para controlar el funcionamiento del sistema hidráulico y automatizar el proceso.
- Seleccionar e implementar la interfaz de comunicación hombre-máquina para facilitar el control de los procedimientos.
- Disminuir el tiempo empleado al proceso de cambio de hidráulico para optimizar los procesos de mantenimiento y mejorar la calidad de trabajo en este tipo de mantenimiento para esta gama de vehículos.

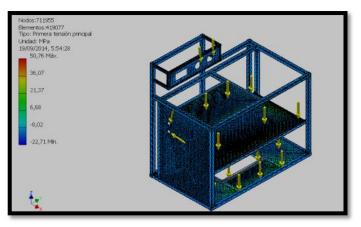
DISEÑO Y SELECCIÓN DE ELEMENTOS

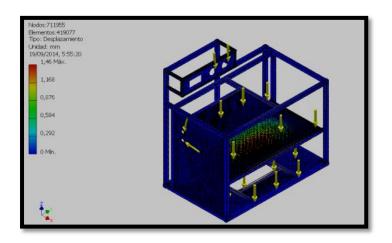

ESTRUCTURA MECÁNICA

Parámetros de diseño

- Área de trabajo.
- Temperatura.
- Componentes.
- Pesos.


Aplicación de cargas diseño.




<u> </u>			
Elementos	Peso en	Peso en	Fuerza en
	lb	Kg	N
Depósito de reserva	60	27.2	266.83
Válvula Check	5	2.2	21.58
Filtro de aceite	4	1.8	17.65
Mangueras	15	6.6	64.74
Acoples	10	4.4	43.16
Ups	5	2.2	21.58
Conjunto motor	80	34.8	341.38
bomba			
Válvula de presión	6	2.6	25.50
Electroválvula	8	3.5	34.33
Manómetro	1.5	0.7	6.86
Caja de herramienta	25	10.8	105.94
Complementos varios	20	8.69	85.30

Estudio de esfuerzos y deformaciones.

- Teoría de Von Mises
- Resistencia a la Tracción
- Deformación

Propiedades Mecánicas					
Esfuerzo Fluencia (MPa)	102.5 MPa				
Esfuerzo Tracción (MPa)	50.76 MPa				
Elongación (min.)%	1.46 mm				
Coeficiente de seguridad (N)	15				

SELECCIÓN DE ELEMENTOS

Perfiles de Acero ASTM A-36

Plancha de tol galvanizado y Negro de 1 mm y 3mm respectivamente

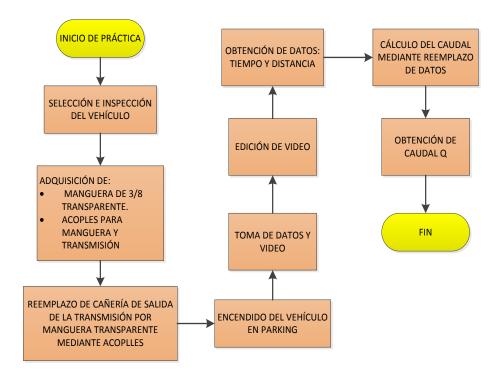
Electrodo # 60-11

- Rápida solidificación y penetración
- Resistencia a la tensión de 73.500 lb/pl²
- Tenas a temperaturas bajo cero.

Pintura	autom	otriz
1 IIIIui a	autum	UUIL

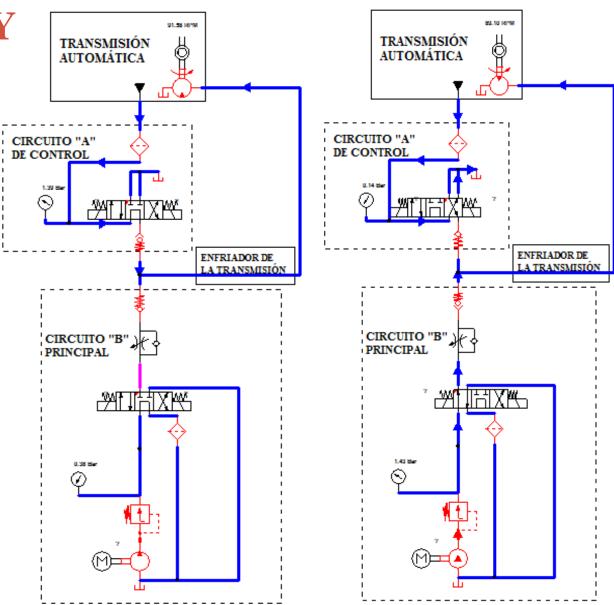
- Proteger de la corrosión
- Mejora la estética de la unidad

Composición Química ASTM A-36					
% (C) Carbono	≤ 0.28				
% (Mn) Manganeso	0.60 - 0.90				
% (Si) Silicio	≤ 0.40				
% (P) Fosforo	≤0.04				
% (S) Azufre	≤ 0.05				
Propiedades Mecánicas					
Esfuerzo Fluencia (MPa) 250					
Esfuerzo Tracción (MPa)	4000				
Elongación (min.)%	21				


SISTEMA HIDRÁULICO

Parámetros de diseño.

· Presión.


Presiones de línea			Criterios de selección.			
(Psi)						
Ford	0 – 15	•	La presión base de referencia es de			
	0 - 25	_	25 Psi;			
Kía	30 - 55	_	Este parámetro se precisa tomando			
Mazda	48 - 68		en cuenta			
Chevrolet	25 – 60	-	que 25 es el valor máximo del rango de presiones			
Renault	61		con base cero y es el mínimo er altas presiones.			
Nissan	60 - 65	_				
Toyota	25 - 57		unus presionesi			
		•	La presión máxima de referencia es			
			de 60 Psi;			
			Este valor es el promedio de las			
			presiones			
			máximas de línea.			

Caudal

Vehículo	Año	Tiempo
Dodge	2007	0,12
Optra	2010	0,13
Suburban	1998	0,14
Tiempo Promedio		0,13

ESTRUCTURA Y
SIMULACIÓN
DEL SISTEMA
HIDRÁULICO

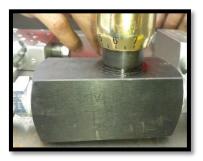
SELECCIÓN DE ELEMENTOS

Conjunto Bomba Hidráulica – Motor

Características	Valores de trabajo			
Presión de la bomba	1.61 Bar (23.4Psi)			
Caudal	2.5Gpm			
Revoluciones de la bomba	1700 Rpm			

Designación	Características
MODEL	F56 1.5S4C Asincrónico
FRAME	56
HZ	60
HP	1.5
DES	L
VOLT	115 / 230
RPM	1750
LBS	45
AMP	13.29 / 6.63
SF AMP	15.17 / 7.55
RATING	40°C AMB-CONT

Válvula reguladora de presión.


- Campo de regulación de 0 a 200 Psi.
- Orificio roscado permite para Q= 2,5
- Regulación giratoria de mando directo.

Válvula antirretorno.

Designación	Características
RVM	Modelo
10	Conexión 3/8"
7	Ajuste del Resorte (7-30-60 Psi)
N	Rosca
Longitud	69.0 mm / 2.71 plg
X	27 mm / 1.06 plg
Diámetro del Puerto	3/8"
Peso	0.4 Kg / 0.88 lbs
Material	Acero al Carbono, Zincado Bicromado

Manómetros

- Rango de presión de 0 200 Psi
- Con glicerina.

Depósito hidráulico

- Capacidad de 5,2 Galones
- Desairador

Válvula de control de flujo.

Denominación	Características			
DN	12 mm	0.47 plg		
Puerto G	½ NPT	3/4-16		
Ajuste de resorte estándar	7 Psi			
Rango de temperatura	-10°C hasta 10	00°C		
Presión Operacional	Hasta 5000) Psi		
Rosca	NPT o SA	E		
Peso	0.80 Kg			

Electroválvulas direccionales

Denominación	Características
FTZ-DG4V-3-8C-MU-A	Código
Presión Nominal	P, A & B 315 Bar (4567 psi)
Presión	T 100 Bar (1450 psi)
# Vías	4 Vías
# Posición	3 Posiciones
# solenoides	2 Solenoides
Voltaje de trabajo	110 V
Posición	Tipo Tándem

Filtro de succión de aceite

- Apto para aceites minerales
- De fácil succión de aceite
- Material filtrante de 60, 125° 250 micrones
- Malla de acero inoxidable
- Temperatura de trabajo 120 °C
- Válvula de derivación, presión de apertura 0,2 bar

Filtro de aceite

- Material filtrante es de 3 micrones
- Presión de trabajo llega a 6.9 bar 106 Psi
- Temperatura de trabajo llega hasta

120°C

Visor de nivel

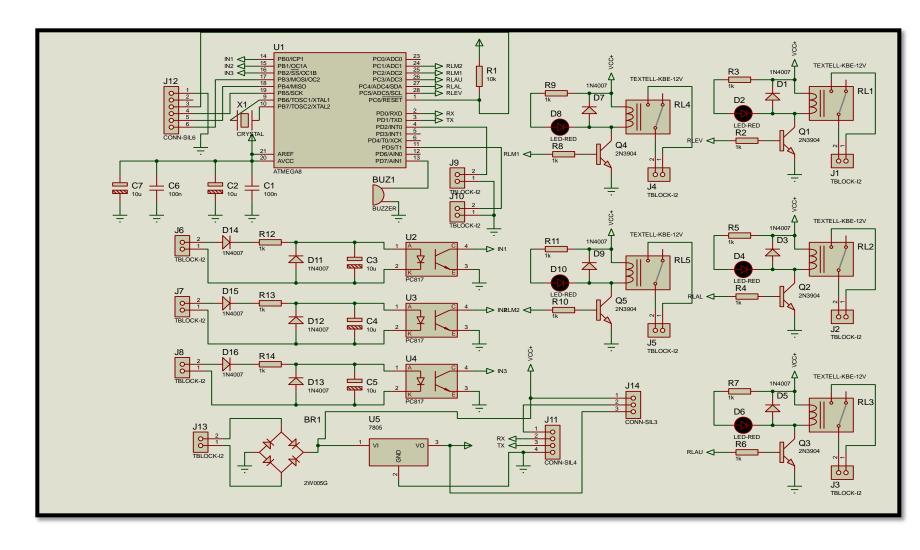
- Rango de temperatura -30°C hasta 80°C
- Presión de tanque: max. 1 bar
- Conectores, tubo visor .

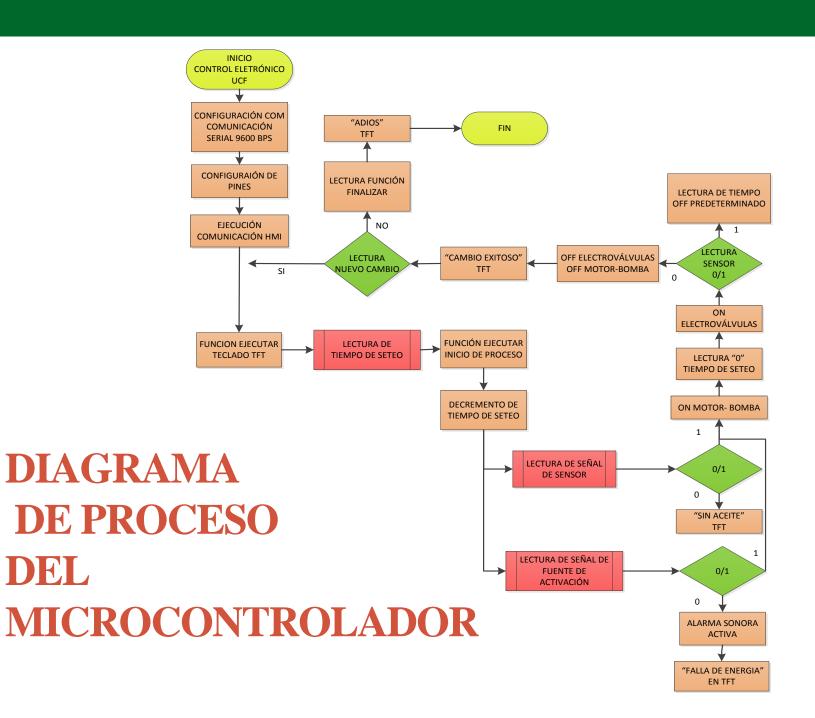
Mangueras hidráulicas

- Diámetro 1/4" y 3/8".
- Temperatura de trabajo 80°C.
- Apto para uso en aceite mineral.
- Presión de trabajo de 20 Psi a 100 Psi.
- La distancia de uso, dependerá de la ubicación de los elementos hidráulicos a unir.

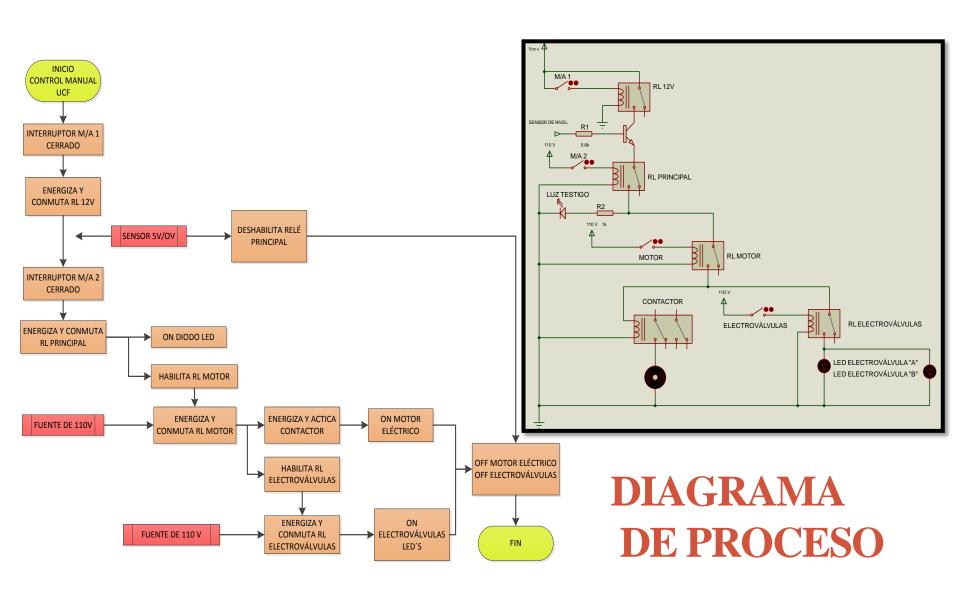
Adaptadores y **Acoples permanentes**

- Temperatura de trabajo.
- Presión de trabajo.
- Tipo de rosca
- Disposición.



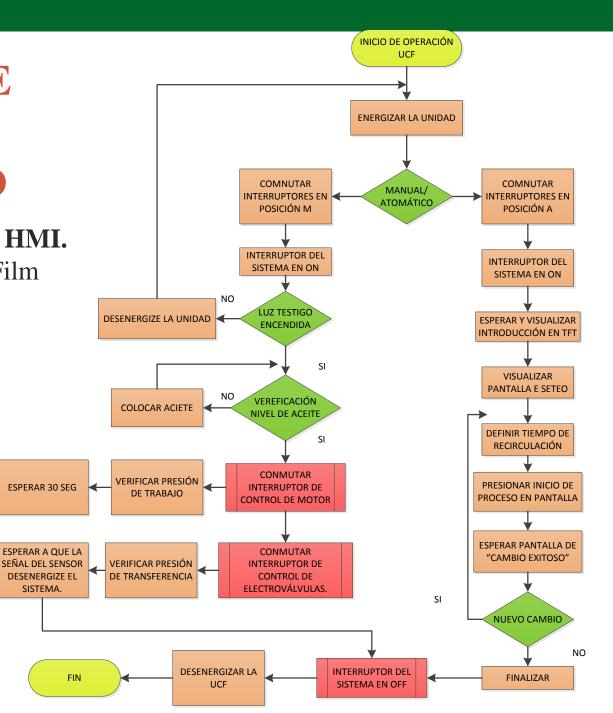


Llave de paso


- De bola
- Diámetro de 3/8

CONTROL ELECTRÓNICO

CIRCUITO DE OPERACIÓN MANUAL


DIAGRAMA DE OPERACIÓN DE LA UNIDAD

Interfaz de comunicación HMI.

Pantalla Táctil TFT (Thin Film Transistor)

SISTEMA.

ENSAMBLE Y PRUEBAS DE LA UNIDAD DE CAMBIO DE FLUIDO

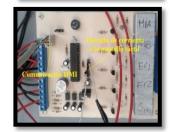
EMSAMBLE ESTRUCTURA MECÁNICA

DIAGRAMA DE FLUJO DE PROCESO								
Ubicación: Taller mecánico industrial y de pintura.					Resumen			
Actividad: Construcción y acabados de estructura metálica				Actividad		Actual	Propuesto	
Fecha: Enero 2014				Operación		0	0.0	92.5
Operador: Autores Analista: Directo	r y Cod	lirector de	proyecto	Trans	porte	\Rightarrow	0.0	25
Marque el método y el tipo apropiados				Demora		Ď	0.0	97
Método: Actual Equipo: Suelda.				Inspección			0.0	1
Tipo: Técnico Material: A-36		Propues	to:Si	Alma	cenaje	$\overline{\wedge}$	0.0	0.0
Comentarios:				Tiem	ро	horas	0.0	190.5
El presente proceso tiene como objetivo con	nstruir y	y dar los a	cabados	Dista	ncia	metros	0.0	25
estéticos y visuales a la estructura metálica o	de sopo	rte de la u	nidad.	Costo	S			
DESCRIPCIÓN DE LA ACTIVIDAD		S	ÍMBOLO			TIEMPO	DISTANCIA	MÉTODO
						(h)		
Selección de elementos.	Φ	\Rightarrow	\Box		\triangle	24		
Corte del tubo cuadrado ASTM A36.	Φ	\Rightarrow	D		Δ	4		
Verificación de medidas según el diseño.	\circ				Δ	0.5		
Punteado y suelda de estructura base.	0	\Box	\Box		Δ	8		
Corte del tol negro y galvanizado.	Φ	\Rightarrow	\Box		Δ	4		
Sujeción y suelda de las cubiertas de tol.	Φ	\Box	D		Δ	8		
Corte de perforaciones para instrumentos.	Φ	\Rightarrow	\Box		Δ	4		
Suelda de llantas.	Φ	\Rightarrow	\Box		Δ	1		
Empernado de seguros y ganchos.	Φ	\Rightarrow			Δ	2		
Traslado a sección de pintura.	\circ	\Rightarrow			Δ		25	
Lijado y pulido de la estructura.	Ø	\Box	\Box		Δ	4		
Aplicación de masilla gruesa.	0	Û			Δ	1		
Periodo de secado	\circ				Δ	0.5		
Lijado con papel lija gruesa.	Φ	\Rightarrow	\Box		Δ	1		
Aplicación de masilla fina.	0	ĵ	D		Δ	1.5		
Periodo de secado	\circ	\Rightarrow			Δ	0.25		
Lijado con papel lija fina	3	$\qquad \qquad $			Δ	1		
Verificación de imperfecciones.	\circ		\bigcirc		\triangle	0.5		
Selección de tipo y color de pintura.	0		\Box		\triangle	24		
Limpieza de las superficies.	Ф	$\stackrel{\textstyle \bigcirc}{\square}$	\Box		\triangle	1		
Aplicación wash primer	Φ	\Rightarrow	\Box		\triangle	1		
Periodo de secado.	0		\bigcirc		\triangle	0.25		
Aplicación de fondo para pintura.	0	\bigoplus	\Box		Δ	1		
Periodo de secado.	0	ightharpoons	D		Δ	24		
Aplicación de pintura de color	O	\bigcap	\Box		Δ	1		
Periodo de secado.	0				Δ	24		
Aplicación de laca automotriz	O	\bigoplus	\Box		Δ	1		
Periodo de secado.	\circ	\Rightarrow			\triangle	48		

ARMADO SISTEMA HIDRÁULICO

DI LOD					DD 0	CE CO						
DIAGR	AMA	A DE F	LUJC	DE PROCESO								
Ubicación: Taller mecánico.						Re	sumen					
Actividad: Armado e implementación del si	stema l	idráulico.			Activi	idad	Actual	Propuesto				
Fecha: Enero 2014				Opera	ación	0	0.0	207				
Operador: Autores Analista: Directo	r y Coo	lirector de	proyecto	Trans	porte	\Rightarrow	0.0	0.0				
Marque el método y el tipo apropiados	Demo	ora	\Box	0.0	0.0							
Método: Actual Equipo: De ajuste	·.			Inspe	cción		0.0	0.5				
Tipo: Técnico Material: Hidráulico		Propues	to:Si	Almacenaje		\triangle	0.0	0.0				
Comentarios:				Tiempo		horas	0.0	207.5				
El presente proceso tiene como objetivo arr	Dista	ncia	metros	0.0	0.0							
e implementarlo a la estructura de soporte de	Costo	os										
DESCRIPCIÓN DE LA ACTIVIDAD		S	ÍMBOLO			TIEMPO	DISTANCIA	MÉTODO				
						(h)	(m)					
Selección de elementos.	\bigcirc	\Rightarrow	\Box		\triangle	120						
Preparación de elementos.	Ó	\Rightarrow	Ď		Δ	48						
Preparación de depósitos de reserva A y B	Ф	\Rightarrow	Ď		\triangle	24						
Instalación del sensor de nivel.	\bigcirc	\Rightarrow	D	П	\triangle	2						
Ajuste de adaptador en codo 90° NPT	Ф	\Rightarrow	D		Δ	0.5						
Sujeción de filtro B en línea de bypass.	Ф	\Rightarrow	\overline{D}	П	Δ	0.5						
Instalación del conjunto motor – bomba.	Ф	\Rightarrow	\overline{D}		\wedge	0.5						
Ajuste de adaptadores H y M NPT.	\bigcirc	\Rightarrow	Ď	$\overline{\Box}$	$\overline{\wedge}$	0.5						
Ajuste de manguera de 3/8" – Bomba.		\Rightarrow	\overline{D}		$\overline{\wedge}$	0.5						
Instalación de válvula de alivio Unión T.	Φ	\Rightarrow	Ď	$\overline{\Box}$	\wedge	0.5						
Sujeción de indicador de presión B.	\bigcirc	\Rightarrow	\Box		\wedge	0.5						
Ajuste adaptadores M 3/8"- subplaca.	$\overline{\mathbf{b}}$	\Rightarrow	\Box	$\overline{\Box}$	\triangle	0.5						
Instalación de electroválvula B-subplaca.	Φ	\Rightarrow	D		\triangle	0.5						
Sujeción de adaptadores H y M - codo 90	0	\Rightarrow	Ď	П	$\overline{\wedge}$	0.5						
Colocación de manguera.	\Diamond	\Rightarrow	\Box	П	$\overline{\wedge}$	0.5						
Instalación de válvula reguladora caudal.	\Diamond	\Rightarrow		П	$\overline{\wedge}$	0.5						
Instalación de válvula antirretorno B	0	\Rightarrow	Ď		$\overline{\wedge}$	0.5						
Ajuste de manguera, adaptadores unión C	0	\Rightarrow	\Box		\triangle	0.5						
Instalación de válvula antirretorno A.	\Diamond	\Rightarrow	\Box		\wedge	0.5						
Ajuste de adaptadores M 3/8" NPT.	\Diamond	\Rightarrow	D		\triangle	0.5						
Sujeción de manguera unión – subplaca.	\bigcirc	\Rightarrow	\Box		\triangle	0.5						
Instalación de electroválvula A-subplaca.	$\overline{0}$	\Rightarrow	\Box		$\overline{\wedge}$	0.5						
Ajuste adaptador M salida subplaca.	Ď	\Rightarrow	Ď	$\overline{\Box}$	$\overline{\wedge}$	0.5						
Sujeción de indicador de presión A.	Ф	\Rightarrow	\overline{D}		$\overline{\wedge}$	0.5						
Colocación de adaptadores NPT 3/8".				$\overline{\Box}$	$\overline{\wedge}$	0.5						
Instalación de filtro A.	6	\Rightarrow		一	$\overline{\wedge}$	0.5						
Instalación de acople rápido circuito A.		\Rightarrow	$\tilde{\Box}$		$\overline{\wedge}$	1						
Instalación de acople rápido circuito B.	d	\Rightarrow	$\overline{\Box}$		$\overline{\wedge}$	1						
Sujeción de manquera de suministro.		<u> </u>	\Box	H	\wedge	0.5						
Verificación de diagrama de diseño					\wedge	0.25						
Verificación de ajuste y disposición.	\sim			青	$\overline{\wedge}$	0.25						
	\cup				\sim							

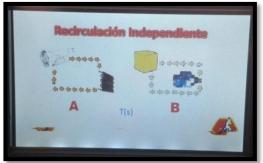
IMPLEMENTACIÓN CONTROL ELECTRÓNICO



53.65					DD 0	CT.C.			
DIAGR	AMA	A DE F	(LUJ) DE	PRO	CESO			
Ubicación: Taller mecánico.	Ubicación: Taller mecánico.								
Actividad: Armado e implementación del ci	rcuito d		Activi	dad	Actual	Propuesto			
Fecha: Enero 2014		Opera	ıción	0	0.0	235			
Operador: Autores Analista: Directo	or y Cod	Transporte		\Rightarrow	0.0	0.0			
Marque el método y el tipo apropiados	Demo	ora	D	0.0	0.0				
Método: Actual Equipo: Eléctrico	Inspe	cción		0.0	1.5				
Tipo: Técnico Material: Electrón	nico	Alma	cenaje	$\overline{\wedge}$	0.0	0.0			
Comentarios:		Tiem	00	horas	0.0	236.5			
El presente proceso tiene como objetivo arr	nar el c	ircuito de	control	Dista	ncia	metros	0.0	0.0	
e implementarlo al funcionamiento de la un	idad.			Costo	s				
DESCRIPCIÓN DE LA ACTIVIDAD		S	ÍMBOLO			TIEMPO	DISTANCIA	MÉTODO	
						(h)	(m)		
Selección de elementos.	\bigcirc	\Rightarrow	\Box		Δ	48			
Preparación de elementos.		\Rightarrow	Ď		\wedge	48			
Conexión del motor eléctrico a 110V.	0	\Rightarrow	\overline{D}		$\overline{\wedge}$	1			
Conexión de la electroválvulas en paralelo	0	\Rightarrow	D	П	\triangle	0.5			
Conexión de las electroválvulas a 110V.		\Rightarrow	D		Δ	0.5			
Conexión de la fuente de 110V de la UCF	0	\Rightarrow	D		Δ	0.5			
Conexión del contactor a 110V.	\bigcirc	\Rightarrow	D		Δ	0.5			
Armado de placa de control.	\bigcirc	\Rightarrow	D		Δ	48			
Conexión de sensor	0	\Rightarrow	D		$\overline{\wedge}$	0.5			
Implementación HMI.	\bigcirc	\Rightarrow	D	П	$\overline{\wedge}$	48			
Cableado en borneras.	\bigcirc	\Rightarrow	D		\wedge	1			
Conexión de UPS.	\bigcirc	\Rightarrow	D		\triangle	0.5			
Conexión de mandos manuales.		\Rightarrow	D		Δ	24			
Conexión de placa de control a 12V.	\bigcirc	\Rightarrow	D		\triangle	4			
Conexión de HMI a placa de control.	\Diamond	\Rightarrow	D		\triangle	1			
Conexión e salidas de relés 12V a 110V.	\bigcirc	\Box			\triangle	4			
Conexión de alarma sonora.	\bigcirc	\Rightarrow	Ď		\triangle	1			
Verificación de diagramas de control.		\Rightarrow	D		Δ	0.5			
Verificación de continuidad de cableado.		\Rightarrow	D		Δ	0.5			
Verificación de conexión a borneras.	0	\Rightarrow	D		\triangle	0.5			
Colocación de protección aislante.	0	\Longrightarrow	D		Δ	4			

PRUEBAS

- DE CORTE DE ENERGÍA
- DE FUNCIONAMIENTO DE LA UCF.



Parámetros comparativos	,	Vehículos de prueba		Parámetros Promedio
	Suburban 1996	Suburban 1998	Bleazer 2010	
Kilometraje	141.728 km	74.226 km	80.345 km	
Uso	Militar	Militar	Familiar	
Recorrido	Continuo	Continuo	Parcial	
Capacidad	Galón tres cuartos	Galón tres cuartos	Un galón	
Presión	45 Psi	45 Psi	55 Psi	48 Psi
Caudal	2.5 GPM	2.5 GPM	2.5 GPM	2.5GPM
Tiempo	15 min	15 min	20 min	17 min
de cambio				
Resultado de	Efectivo	Efectivo	Efectivo	Efectivo
cambio				
Aspecto del fluido	muy oscuro	oscuro	opaco	oscuro
antes del cambio	con partículas			
Aspecto del fluido	Rojizo opaco	Rojizo opaco	Rojizo opaco	Rojizo
posterior al cambio				opaco
Nivel de fluido	correcto	correcto	correcto	correcto
posterior al cambio				

ANÁLISIS DE MUESTRAS DE ACEITE

Suburban 96 Suburban 98

	Resultados de	Resultados de aceite.									
	Suburban 96	Suburban 98	Blazer 2010								
Código ISO 4406:99	15/14/11	15/14/11	16/15/12	15/14/11							
Aspecto	Rojizo opaco	Rojizo opaco	Rojizo opaco	Rojizo opaco							
Part> 4u en 1ml	160 - 320	160 - 320	320 - 640	160 - 320							
Part> 6u en 1 ml Part> 14u en 1ml	80 - 160 $10 - 20$	80 - 160 $10 - 20$	160 - 320 $20 - 40$	80 - 160 $10 - 20$							

Cuadro de interpretación

Código ISO		12/9		14/11	 16/13	 18/15	 20/17	 22/19	 2421	 26/23
Fluidos Hidráulicos	Muy limpio			Limpio			Sucio			
Cajas de cambios				Muy limpio		Limpio				Sucio
Motores			Muy limpio			Limpio		Sucio		
Turbinas		Muy Iimpio			Limpio	Sucio				

Resultado Limpio Limpio Limpio Limpio

El código 15/14/11 denota la presencia de baja cantidad de partículas contaminantes en un rango de: 160 a 320 partículas de tamaño mayor a 4 micras por cada mililitro de aceite, de 80 a 160 de tamaño mayor a 6 micras por mililitro de aceite y 10 a 20 de tamaño mayor a 14 micras por mililitro de aceite; rangos por los al compararlos con los valores definidos en el cuadro de interpretación se concluye que la muestra de aceite se encuentra limpia y apta para uso en aplicaciones hidráulicas.

CONCLUSIONES

Determinamos que el uso de normas técnicas el diseño para estructural, hidráulico y electrónico contienen consideraciones generales de estudio requeridas para identificar y seleccionar acertadamente los elementos que conforman la unidad de cambio de fluido.

• Mediante el software de modelado y simulación Inventor Studio determinamos que la carga total que soporta la unidad es 1400N y haciendo referencia a las propiedades mecánicas del material de la UCF, el acero ASTM A-36 al aplicar la teoría de Von Mises resiste un esfuerzo de 102.5Mpa siendo el 41% de su resistencia original; aplicando la teoría de la resistencia a la tracción su esfuerzo máximo es de 50.76Mpa, este el 1.5 % de su resistencia original; finalmente al estirar el metal se deforma 1.4mm siendo el 23 % de su característica original; por estructura metálica cumple características técnicas para soportar pesos y cargas de trabajo de la unidad con un factor de diseño N= 15.

A través de entrevistas técnicas jefes de taller concesionarios automotrices establecimos que las presiones de diseño son 25Psi como presión base de referencia y 60 Psi como presión máxima de referencia tomando en cuenta 25 Psi es el valor máximo del rango de presiones con base cero y es el mínimo en altas presiones y 60 Psi es el valor promedio de las presiones máximas de línea.

• Por medio de procesos experimentales en los vehículos Dodge, Optra y Suburban determinamos que el caudal requerido para el funcionamiento de la unidad es 2.5 Gpm; parámetro con el cual se seleccionó un conjunto Motor eléctrico – Bomba con un rango de trabajo de 1.9 a 2.6 Gpm. La bomba de engranajes CB D2F20 5.1 nos permiten trabajar con fluidos minerales de viscosidad baja o aceites finos enviando un caudal constante a pesar que exista variaciones leves de presión siendo apto para trabajar con fluido hidráulico Dexron II, III y Mercon V que utilizan las transmisiones automáticas.

Determinamos que para unir las líneas hidráulicas de los elementos que conforman la unidad de cambio de fluido lo más idóneo es utilizar adaptadores y acoples NPT por ser aptos para trabajar a una presión de 100 Psi, una temperatura de 80°C y tener adecuado un dimensionamiento y tipo de rosca.

Comprobamos que al implementar el control electrónico comunicación HMI mejora técnicamente el trabajo de la unidad siendo más rápido, seguro y fácil de manipular para el usuario; optimizando el tiempo requerido para el proceso de cambio en un 50%, ya que el tiempo promedio empleado en su ejecución es de 20 Además. min. el sistema implementado permite brindar seguridad laboral en caso de existir corte repentino de energía eléctrica sea en la unidad o en el taller, este sistema es el responsable de alertar al operador para evitar accidentes de trabajo.

RECOMENDACIONES

- Colocar la UCF en un sitio de trabajo ventilado y de fácil acceso a un elevador .
 Asegurarse que la toma de corriente tenga 110V sin que exista cortos o picos de corriente.
 - Previo a la operación la UCF se deberá tener en consideración el sentido del flujo de refrigeración de la transmisión, para lograr acoplar la transmisión y la unidad con éxito, caso contrario existe peligro de sobrepresión tanto en la transmisión como en la unidad pudiendo dañar internamente la caja automática.
 - Asegurarse de colocar 2,5 galones de fluido hidráulico en el depósito "B" como base de funcionamiento. Así también revisar que la llave de drenaje ubicada en la toma de salida del depósito "B" se encuentra abierta y permita que el fluido circule hacia la bomba.

- Realizar una limpieza por filtración cada seis meses, la unidad de cambio de fluido puede ser utilizada como medio de filtración de fluido hidráulico.
 - Reemplazar el filtro de aceite cuando el indicador de impurezas se encuentre en zona roja ya que muestra que el filtro ya cumplió su vida útil, siendo recomendable revisar periódicamente el indicador.
 - Al ser una unidad que trabaja por recirculación se puede utilizar en sistemas hidráulicos que cumplan un principio de funcionamiento similar al de la caja automática para brindar un cambio de fluido o mantenimiento por medio del sistema de filtración.