

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y LA AGRICULTURA

TESIS PRESENTADA COMO REQUISITO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA EN BIOTECNOLOGÍA

EVALUACIÓN DEL DESARROLLO DE PLANTAS DE AVENA (A vena sativa) Y DE LA MICROBIOTA DEL SUELO TRATADO CON HONGOS MICORRÍCICOS Y AJO (Allium sativum), EN LOS PRIMEROS MESES DE CULTIVO.

AUTOR: NATHALY KATHERINE HERNÁNDEZ ENDARA

DIRECTORA: Dra. María Emilia Medina

SANGOLQUÍ Enero, 2017

INTRODUCCIÓN

PROBLEMA

Agricultura → revolucionando → Fertilizantes, abonos y productos químicos

Uso excesivo: consecuencias negativas a nivel ambiental

Actualidad: alternativas ecológicas

«Enemigos naturales de las plagas» o Biofertilizantes

PROBLEMA

Producción a bajo costo

Protección del medio ambiente

Conservación de la biodiversidad y fertilidad del suelo

Mejora de la resistencia y nutrición de la planta

Acción fertilizante

Relación simbiótica

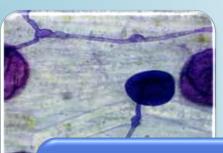
Hongos micorrícicos

Investigaciones limitadas

Elaboración del inóculo

Necesidad de determinar compuestos que mejoren la colonización

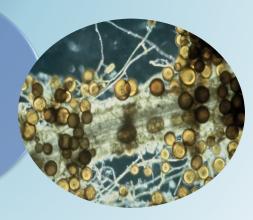
JUSTIFICACIÓN


Interés → HMA

 Interacción con las raíces de las plantas

Obtención de nutrientes del suelo

 Prolongación de hifas radicales


Resistencia a patógenos

Mayor producción

Grado de dependenci a

Propiedade s del suelo

Especificid ad

JUSTIFICACIÓN

Acción fertilizante natural, insecticida y no tóxico para el medio ambiente.

Compuestos
azufrados:
desarrollo de los
hongos
micorrícicos.

Ajo

OBJETIVOS

Objetivo general

Evaluar el desarrollo de plantas de avena (*Avena sativa*) y de la microbiota del suelo tratado con hongos micorrícicos y ajo (*Allium sativum*), en los primeros meses de cultivo.

OBJETIVOS

Objetivos específicos

Analizar la población de esporas de micorrizas en diferentes suelos.

Montar un ensayo de propagación de esporas de hongos micorrícicos (HMA) en plantas huésped de avena.

Obtener un extracto hidroalcohólico de bulbos de ajo (*Allium sativum*)

Evaluar las variables de crecimiento de las plantas y establecer diferencias entre los tratamientos

Cuantificar el número total de esporas de hongos micorrícicos y el porcentaje de micorrización.

Determinar las poblaciones de bacterias y hongos, existentes en cada uno de los tratamientos.

MARCO TEÓRICO

Suelo > ambientes más complejos

procesos biogeoquímicos, mantenimiento de la fertilidad del suelo y plantas.

Microbiota del Suelo

10⁹ células microbianas/g suelo

10⁴ especies diferentes.

Gran variedad de microorganismos (bacterias, actinomicetos, hongos, protozoos, etc.)

MARCO TEÓRICO

BACTERIAS DEL SUELO

Se distribuyen extensamente

 Agregados del suelo, raíces, exudados y concentración de nutrientes. Principales → Rizobacterias Promotoras del Crecimiento Vegetal

• Plant Growth Promoting Rhizobacteria (PGPR)

MARCO TEÓRICO

BACTERIAS SOLUBILIZADORAS DE FÓSFORO

MICROORGANISMOS FIJADORES DE NITRÓGENO

Principalmente son bacterias, algas verdeazules o cianobacterias y actinomicetos

N (atmosférico → amonio (asimilable para las plantas)

MARCO TEÓRICO

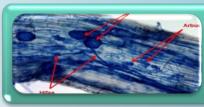
HONGOS DEL SUELO

MARCO TEÓRICO

HONGOS MICORRÍCICOS

1885 Albert Bernhard Frank

• voz griega '*miko*': hongo y '*rhiza*': raíz


Alta ubicuidad → Ecosistemas acuáticos y terrestres Plantas terrestres → relación simbiótica con hongos micorrícicos → 96% Versículo-Arbuscular

HMA

• Phylo: Zigomicetes

• Orden: Glomales

Forman vesículas y arbúsculos

micelio micorrícico → proteína Glomalina

Biofertilizantes, bioprotectores y biorreguladores

MARCO TEÓRICO

BENEFICIOS DE LOS HMA

Mayor superficie de contacto tierra - raíz

Captan nutrientes

Asimilables para la planta.

Mejoran

Sistema de defensa,

Morfología radicular (vascular)

Estructura del suelo.

Técnica biotecnológica

AJO (Allium sativum)

Monocotiledónea

Orden Liliflora

Familia *Liliácea*

Subfamilia Allioidea

Género Allium

*E*specie *sativum L*.

Perenne y bulbosa

MARCO TEÓRICO

Insecticida natural

 plagas vegetales: ácaros, babosas, áfidos, pulgones,

Mecanismo de acción: causa trastornos digestivos

No genera resitencia

Ingredientes activos: Alicina y compuestos azufrados

MATERIALES Y MÉTODOS

Diseño experimental

Metodología

DISEÑO EXPERIMENTAL

COMPOSICIÓN	CONCENTRACIÓN DEL EXTRACTO DE AJO (%)			
COMPOSICION	0	0.1	0.5	
Sustrato (Inóculo micorrícico + Tierra negra estéril + Turba)	T1	Т2	Т3	
Sustrato (Inóculo micorrícico + Tierra negra estéril + Turba) + Semillas de Avena	T4	T5	Т6	
Sustrato (Inóculo micorrícico estéril + Tierra negra estéril + Turba) + Semillas de Avena	Т7	Т8	Т9	
Sustrato (Inóculo micorrícico estéril + Tierra negra estéril + Turba)	T10	T11	T12	

METODOLOGÍA

Elección del inóculo micorrícico

METODOLOGÍA

METODOLOGÍA

MANTENIEMIENTO Y CONTROL DEL

ENSAYO

90 días

Primer mes

Solución nutritiva formulada por E. J. Hewitt Tiempo restante

agua destilada

METODOLOGÍA

EXTRACTO HIDROALCOHÓLICO DEL AJO

RESULTADOS Y DISCUSIÓNES

3.9

9.5

12.2

12.6

11.8

13.5

15.1

11

10.9

11.7

CIÓN DEL INÓCHI O MICODDÍCICO

Santa Teresa

Cotogchoa

IASA (Hacienda

El Prado)

Ecuaquímica

1

2

3

4

ELECCION DEL INOCULO MICORRICICO						
# Muestreo	Sector	Cultivo	# esporas / 100 g suelo	# esporas / g suelo		
		Maíz	460	4.6		

Maíz

Papa

Cebolla

Cebolla

Apio

Papa

Papa

Quinua

Papa

Papa

390

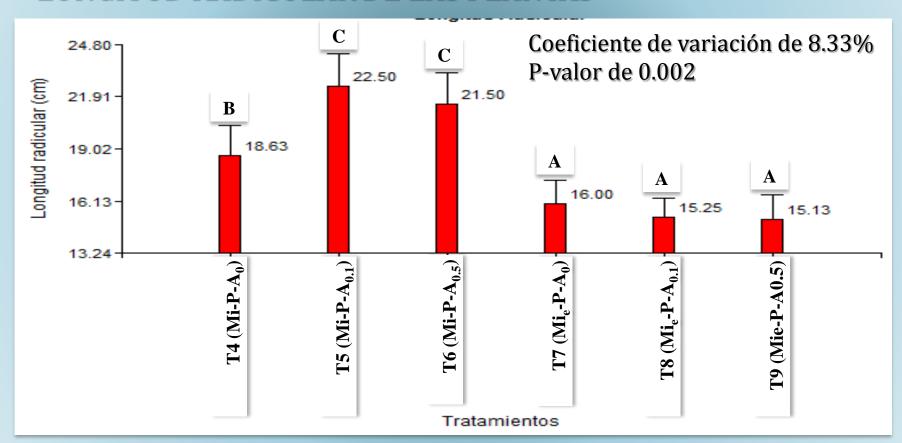
950

1220

1260

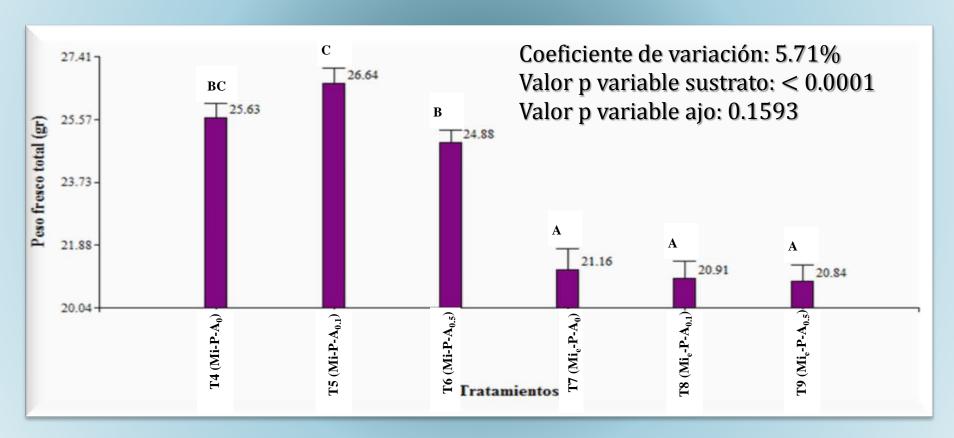
1180

1350

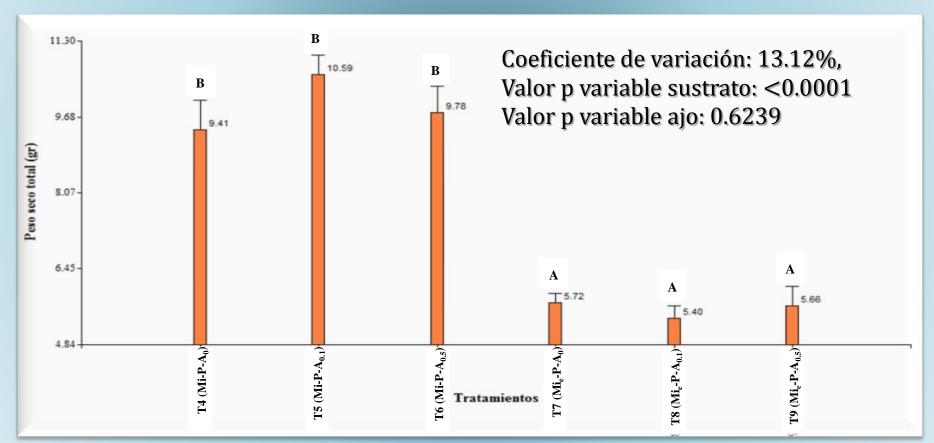

1510

1100

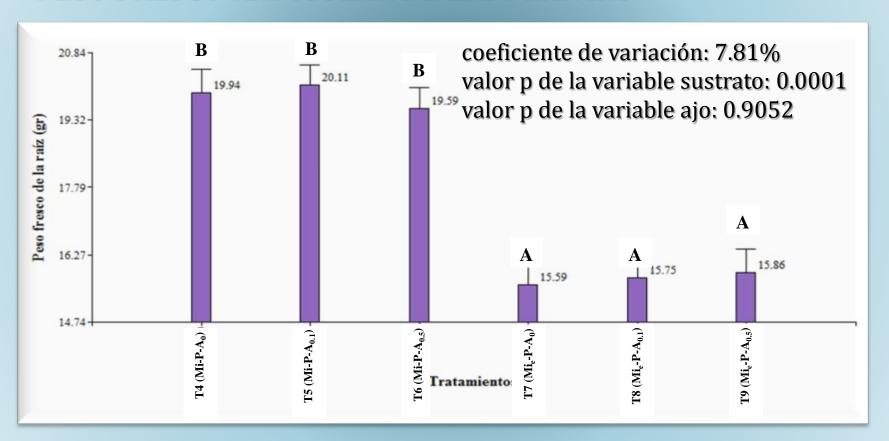
1090


1170

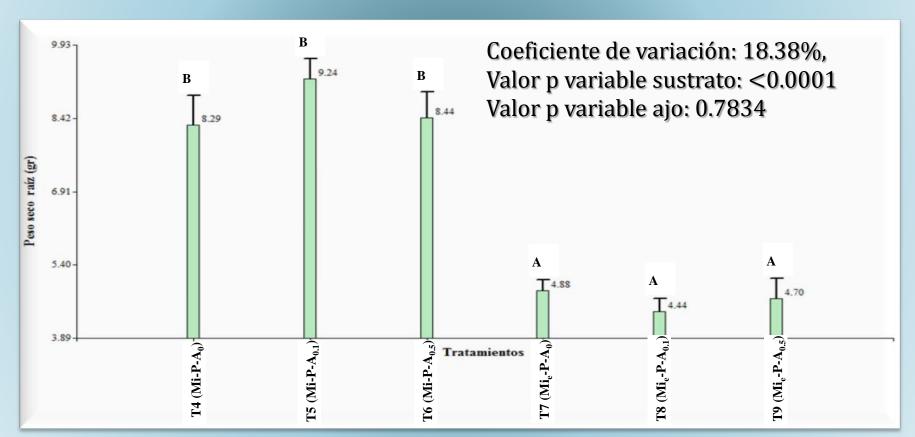
LONGITUD RADICULAR DE LAS PLANTAS


Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones, para evaluar el desarrollo de la longitud radicular de plantas de avena (Avena sativa).

PESO FRESCO TOTAL DE LAS PLANTAS


Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones, para evaluar el desarrollo del peso fresco total de plantas de avena (Avena sativa).

PESO SECO TOTAL DE LAS PLANTAS


Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones, para evaluar el desarrollo del peso seco total de plantas de avena (Avena sativa).

PESO FRESCO RADICULAR DE LAS PLANTAS

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones, para evaluar el desarrollo del peso fresco radicular de plantas de avena (Avena sativa).

PESO SECO RADICULAR DE LAS PLANTAS

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones, para evaluar el desarrollo del peso seco radicular de plantas de avena (Avena sativa).

RESULTADOS Y DISCUSIONES

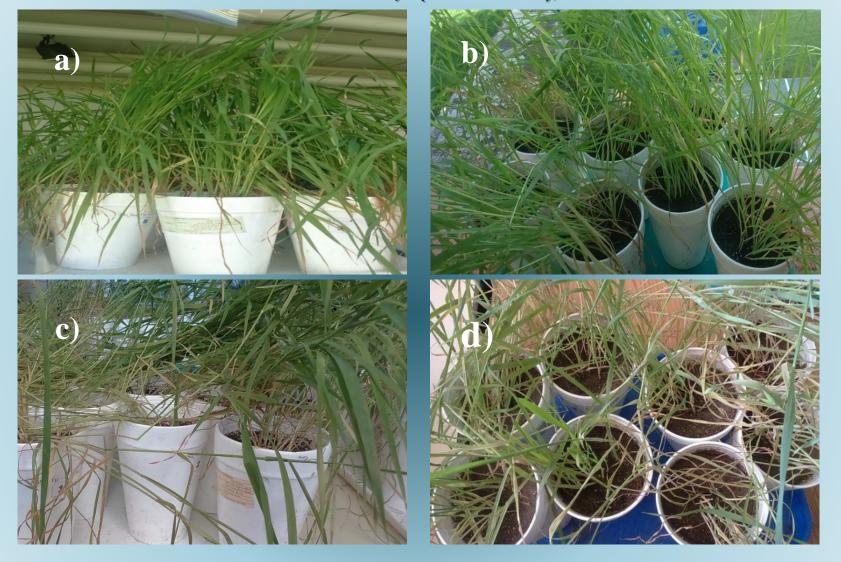
IMÁGENES DEL LEVANTAMIENTO DEL ENSAYO DE LOS TRATAMIENTOS CON PLANTAS

TRATAMIENTO 4

TRATAMIENTO 5

TRATAMIENTO 6

TRATAMIENTO 7



TRATAMIENTO 8

TRATAMIENTO 9

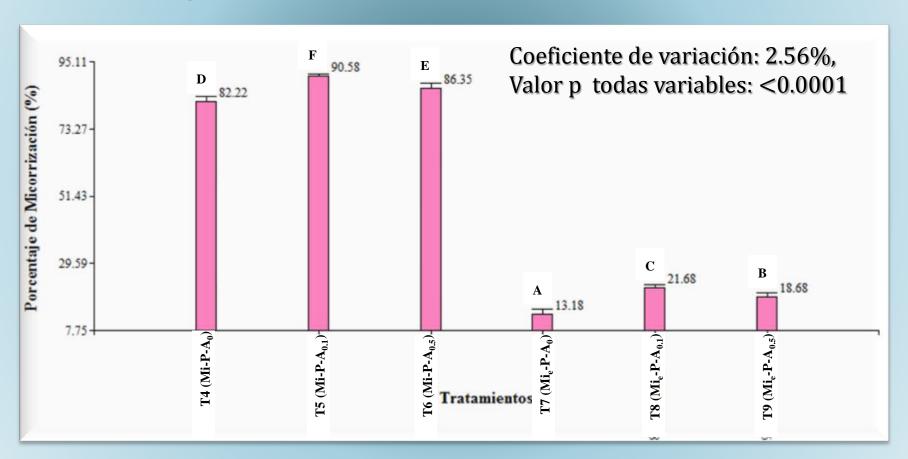
a) y b) Tratamiento 5 (MiSueTu -P - A0.1), sustrato con micorrizas y 0.1% del extracto de ajo.
c) y d) Tratamiento 8 (MieSueTu - P - A0.1), sustrato sin micorrizas y 0.1% del extracto de ajo.
Figura 2.5: Comparación del crecimiento de las plantas de avena (Avena sativa).

RESULTADOS Y DISCUSIONES

VARIABLES DE CRECIMIENTO

Han, et al., (2013)

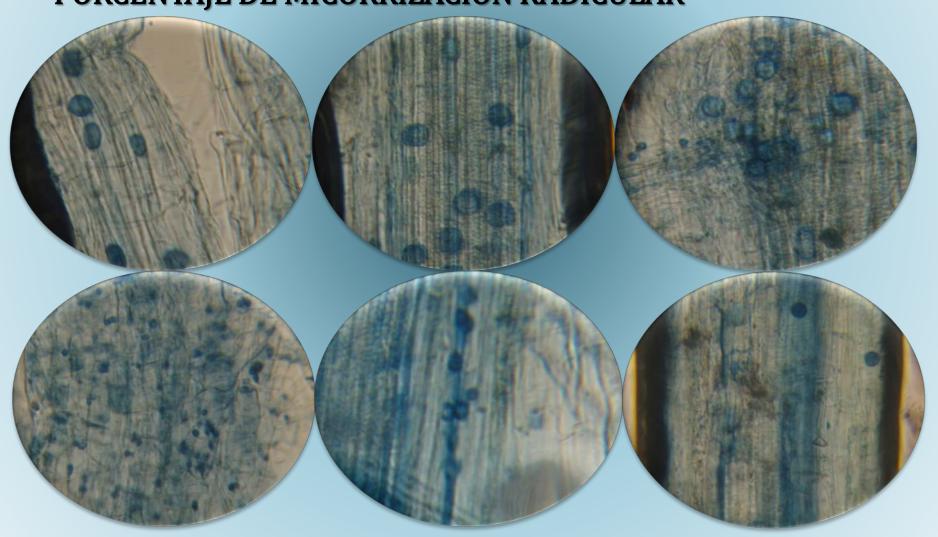
 Compuestos activos del ajo (bajas concentraciones) → efecto alelopático positivo para el crecimiento vegetal


Espín, et al., (2010)

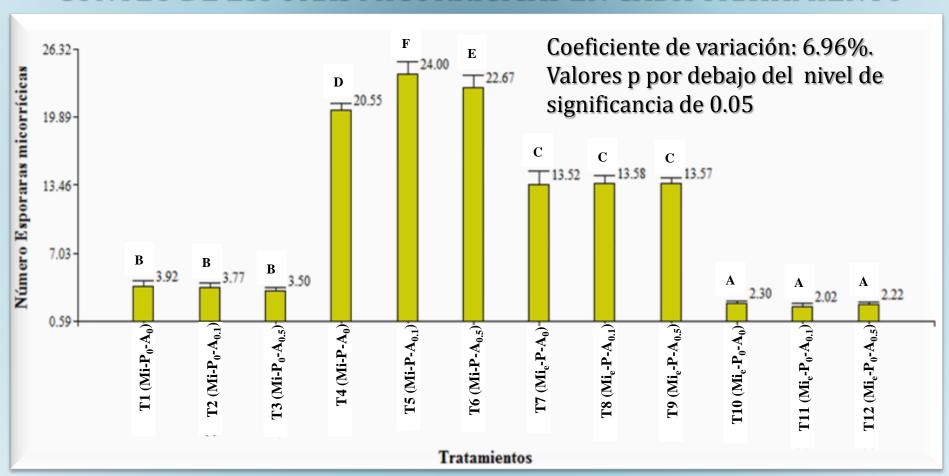
 Plantas de tomate de árbol (Solanum betaceum) inoculadas con cepas de HMA → mejor desarrollo de las variables de crecimiento vegetal

Villegas & Cifuentes, (2004)

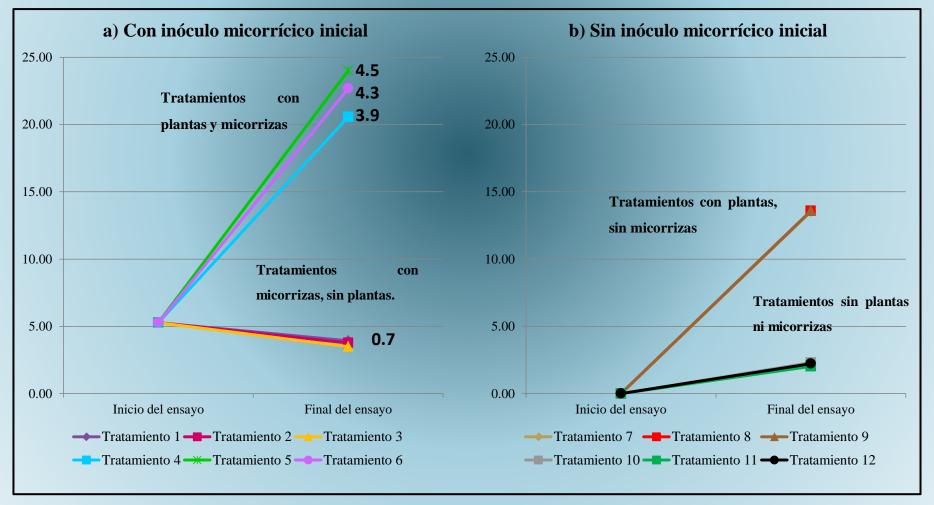
 Inoculación de hongos micorrícicos en plantas → mejora la biomasa foliar y aérea debido a que facilitan la asimilación de nutrientes.


PORCENTAJE DE MICORRIZACIÓN RADICULAR

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones en el porcentaje de micorrización radicular de plantas de avena (Avena sativa).


RESULTADOS Y DISCUSIONES

PORCENTAJE DE MICORRIZACIÓN RADICULAR


CONTEO DE ESPORAS MICORRICICAS EN CADA TRATAMIENTO

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones en la variación del número de esporas micorrícicas

RESULTADOS Y DISCUSIONES

INCREMENTO EN EL NÚMERO DE ESPORAS MICORRÍCICAS DURANTE LOS 90 DÍAS DEL ENSAYO

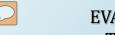
RESULTADOS Y DISCUSIONES

Baroja, *et al*., 2010

- Ensayo con hongos micorrícicos
- HMA germinados mayor infectividad
- mayor porcentaje de colonización de raíces

Gahan & Schemalenberger , 2014 Influencia de los compuestos azufrados en el desarrollo de la relación bacteria – micorriza – planta

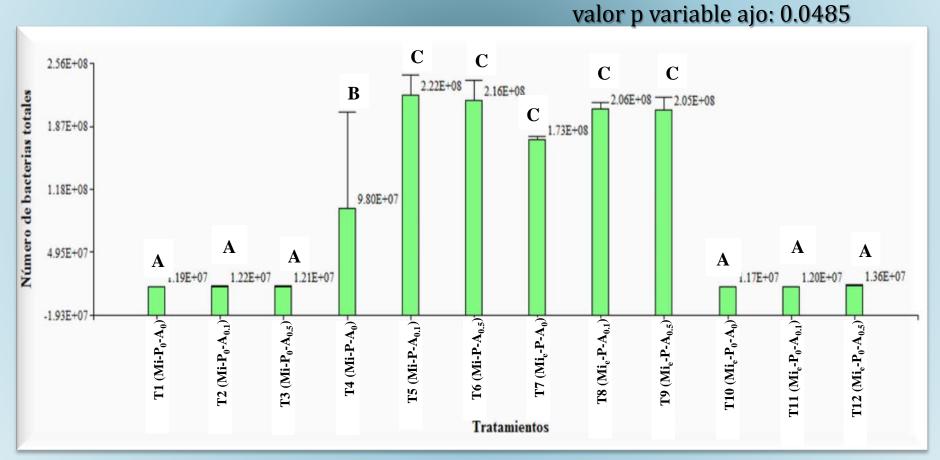
Wipf, et al., 2014


 Importancia del azufre en la colonización micorrícica y viceversa

RESULTADOS Y DISCUSIONES

La aplicación de ajo

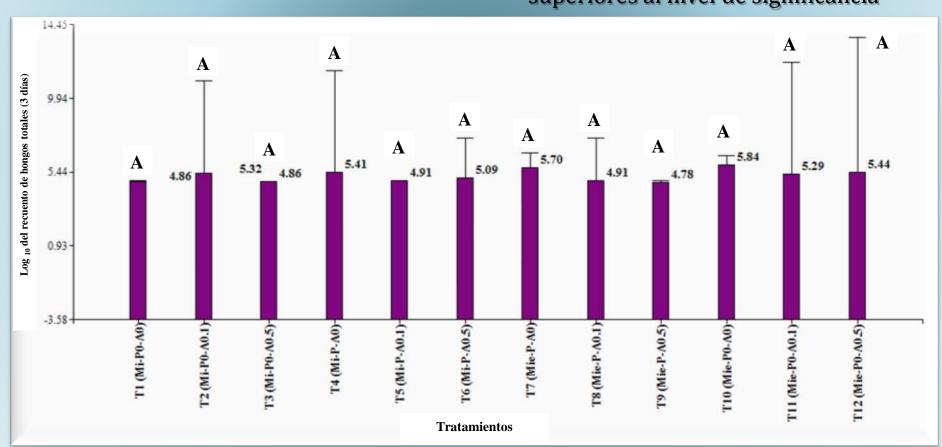
Mejora respuestas de longitud radical, biomasa aérea y total, población micorrícica y porcentaje de micorrización


Plantas micorrizadas

RESULTADOS Y DISCUSIONES

RECUENTO GENERAL DE BACTERIAS

coeficiente de variación: 32.02%. valor p variable planta: < 0.0001

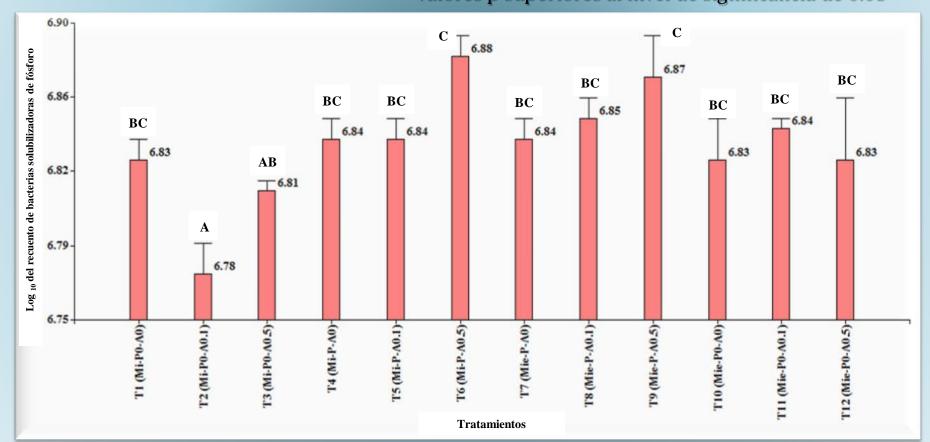

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones en el recuento general de bacterias

RESULTADOS Y DISCUSIONES

RECUENTO GENERAL DE HONGOS

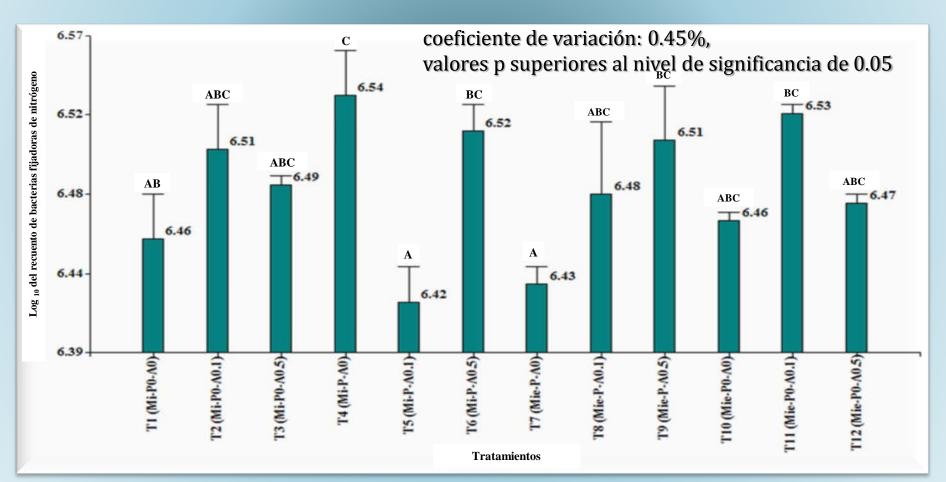
valores p de todas las variables fueron superiores al nivel de significancia

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones en el recuento general de hongos



RESULTADOS Y DISCUSIONES

IDENTIFICACIÓN Y RECUENTO DE BACTERIAS SOLUBILIZADORAS DE


FÓSFORO

coeficiente de variación: 0.30%, valores p superiores al nivel de significancia de 0.05

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones en la identificación y recuento de bacterias solubilizadoras de fósforo

IDENTIFICACIÓN Y RECUENTO DE BACTERIAS FIJADORAS DE NITRÓGENO

Efecto de la interacción de los hongos micorrícicos y el extracto de ajo, en diferentes concentraciones en la identificación y recuento de bacterias fijadoras de nitrógeno

RESULTADOS Y DISCUSIONES

ANÁLISIS MICROBIOLÓGICO

Barea, *et al.*, (2001) y Azcon, *et al.*, (2001)

 La presencia de hongos micorrícicos puede influenciar la colonización de microorganismos propios o inoculados de la rizósfera.

González, *et al.*, 2012

 Bacterias de rizobios y una cepa de hongos micorrícicos establecen una relación sinérgica y mutualista que beneficia el crecimiento vegetal

Terry & Leyva, 2005

 Coinoculación de bacterias PGPR y HM generan un efecto sinérgico en el desarrollo de la planta y en las poblaciones de ambos microorganismos.

Giampoli, *et al.,* 2014

 Desventaja de usar el vapor como agente esterilizante puesto que no se alcanza una esterilidad total se genera un suelo susceptible a la recolonización microbiana

CONCLUSIONES

Extracto hidroalcohólico de ajo (Allium sativum) mejora el crecimiento de las plantas, aumenta la población de hongos micorrícicos e incrementa el porcentaje de micorrización radicular de HMA.

Extracto hidroalcohólico de ajo (*Allium sativum*), (0.1%) → efecto positivo en la longitud radicular (28%), peso fresco aéreo (12%), peso fresco total (20%), peso seco aéreo (35%) y peso seco total (46%).

El extracto hidroalcohólico de ajo (*Allium sativum*) (0.5%) → efecto positivo en la longitud radicular y del peso seco aéreo. Efecto negativo → peso fresco aéreo y peso fresco total.

CONCLUSIONES

Recuento microbiológico general del suelo (bacterias y hongos) no se ve afectado por las poblaciones micorrícicas o las adiciones de ajo.

El recuento bacteriano muestra un aumento del número total de bacterias, cuando hay presencia de planta (huésped).

La planta de avena (*Avena* sativa) es una buena especie propagadora de HMA (incremento de hasta 4.5 veces la población inicial).

RECOMENDACIONES

Administrar concentraciones de 0.1%, 0.5% y 1%.

Analizar el contenido de los nutrientes en el suelo y en la planta, tanto al inicio como al final de ensayo

Realizar un ensayo similar a éste, variando la especie vegetal reconocida como planta propagadora de micorrizas

Repetir el mismo ensayo, aplicando un método de esterilización diferente y controlar condiciones de humedad, temperatura y contaminación ambiental

Gracias