

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA EN SOFTWARE

AUTOR:

QUISHPE GUANOTÁSIG, CÉSAR EDUARDO

DIRECTOR:

PHD ESPINOSA GALLARDO, EDISON GONZALO

Tema del Proyecto

"DESARROLLO DE UNA APLICACIÓN WEB QUE MEJORE LA GESTIÓN DE LOS PRODUCTOS EXPERIMENTALES EN INGENIERÍA DE SOFTWARE APLICANDO EL PARADIGMA DE LÍNEA DE PRODUCTO SOFTWARE EN EL GRUPO DE INVESTIGACIÓN GITBIO".

Resumen

El proyecto se centra en las fases de definición y diseño de un experimento.

Se utilizó el paradigma Línea de Producto Software

La aplicación web se desarrolló en el lenguaje javascript y la plataforma firebase.

Objetivo General

Desarrollar una aplicación web que mejore la gestión de los productos experimentales en ingeniería de software aplicando el paradigma de línea de producto software en el grupo de investigación GITBIO.

Objetivos específicos

•Construir el marco teórico que fundamente la gestión de productos experimentales y el proceso de línea de producto software.

• Diseñar la línea de producto software para el proceso de experimentación.

• Implementar la aplicación web de gestión de productos experimentales.

Validar los resultados obtenidos en la aplicación web, con un caso práctico.

Hipótesis

Hipótesis

Si se desarrolla una aplicación web, entonces se mejora la gestión de los productos experimentales en Ingeniería de Software

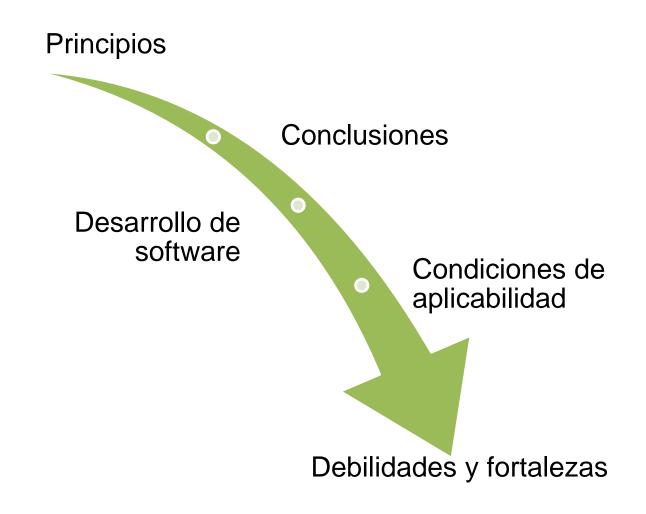
Indicadores

Organización de los productos experimentales.

Instanciación de los productos necesario para realizar una replicación.

Área de Investigación

Ingeniería de Software


Ingeniería de Software Experimental

Experimentos, estudios de casos

Replicación de Experimentos

Ingeniería de Software Experimental

Experimentación en IS

Fases

Planteamiento

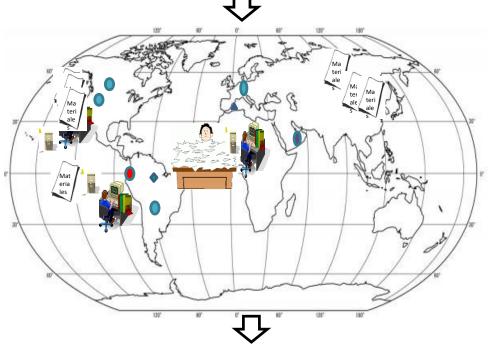
Diseño

Ejecución

Análisis

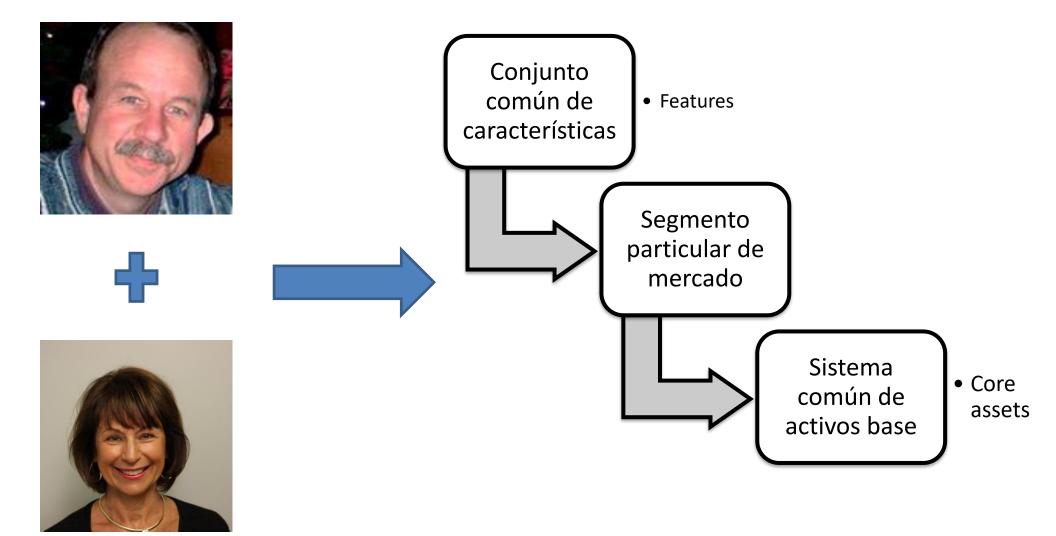
La Replicación en IS

- La Ingeniería de Software Experimental traslada el paradigma experimental a I.S
- La replicación experimental juega un papel fundamental en Ingeniería del Software Empírica (ISE)
- La realización de replicaciones en IS todavía hoy es algo complicada:
 - Se necesita muchos *productos* sobre el experimento para poder llevar a cabo una replicación.
 - No existe mecanismos adecuados para gestionar estos productos.



Problema

Experimentación en IS


- Materiales Dispersos
- Introducen Variantes
- Versiones de Materiales y Replicaciones

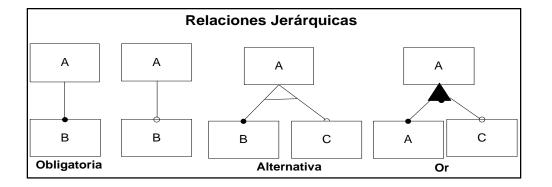
- Conocer el estado de los productos experimentales
- Establecer los materiales experimentales para ejecutar una replicación específica.
- Identificar los materiales comunes y variantes entre replicaciones de un experimento

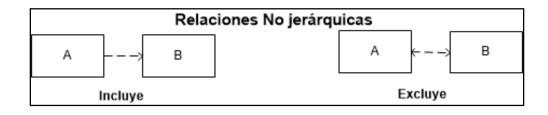
Línea de Producto Software (LPS)

Proceso de Línea de Producto Software

Actividades de	Fases	Técnicas		
la SPL				
	Análisis del Contexto	Técnica de Análisis de Contexto		
Desarrollo de	Modelado del Dominio	Modelo de características		
Core Assets	Modelado de la Arquitectura	FODA		
Desarrollo de	Configuración de producto	-Reglas		
Productos	Composición de producto	Programación		
Gestión de la SPL	-	-Gestión de materiales experimentales		

Técnica de Análisis de Contexto


Fase	Experiment	О			UPM 2003	UPV 2005	US 2005	ORT 2005
	Característica Valor de la característica			┨				
	Todo experimento debe tener al menos un <i>objetivo</i> $(\forall x)(\exists Y)[Experimento(X) \rightarrow Objetivo(X)]$				Objetivo(.	Y,X)]	-1	1
		General Estudiar la efectividad y eficiencia de distintas técnicas de testing de código		X	X	X	X	
	Objetivo	Experimento II	01	Examine whether the code evaluation techniques (functional, structural and code review) behave similarly irrespective of the fault type that they detect, i.e., whether a given technique is more effective at detecting given fault types.	x	х	x	
			02	Examine the visibility of the failures, i.e., the extent to which the different subjects running the same tests cases detect all the same failures.	×	×	x x	
			О3	Examine whether the position of the faults in a program is in any way related to the identification of this fault during the application of the reading technique.	x		×	
	Todo experimentodebe tener al menos una hipótesis nula y una alternativa $(\forall x)(\exists Y)(EZ)[HipótesisNula(Y,X) \land HipótesisAlternativa(Z,X) \rightarrow Experimento(X)]$							
	Hipotésis			The effectiveness of an evaluation technique is independent of the fault type	X	X	X	X
(IENTO	HEII21			The effectiveness of a evaluation technique depends on the fault type				
PLANTEAMIENTO		HEII201		The visibility of the failures generated by the faults has no impact on the effectiveness with which these failures are perceived when running the test cases for the dynamic testing techniques	ı	х	x	
Anális	sis						•	



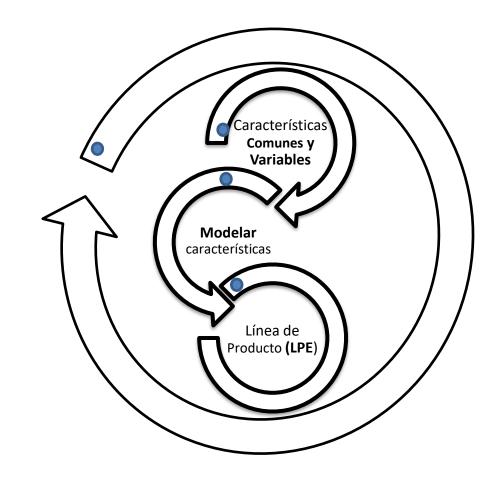
Técnica de Modelado

Para modelar las características de la Línea de Producto Software se utiliza FODA

 FODA proporciona la simbología para modelar las relaciones jerárquicas y no jerárquicas entre características.

Herramientas de modelado

© pure-systems GmbH


El Proceso de Experimentación Visto como una Línea de Producto

Identificar las características comunes y variables

- Comunes (Reutilización)
- Variables (identifica a una replicación dentro de la línea de producto).

Modelar las características de la línea de producto

Línea de Producto Experimentación

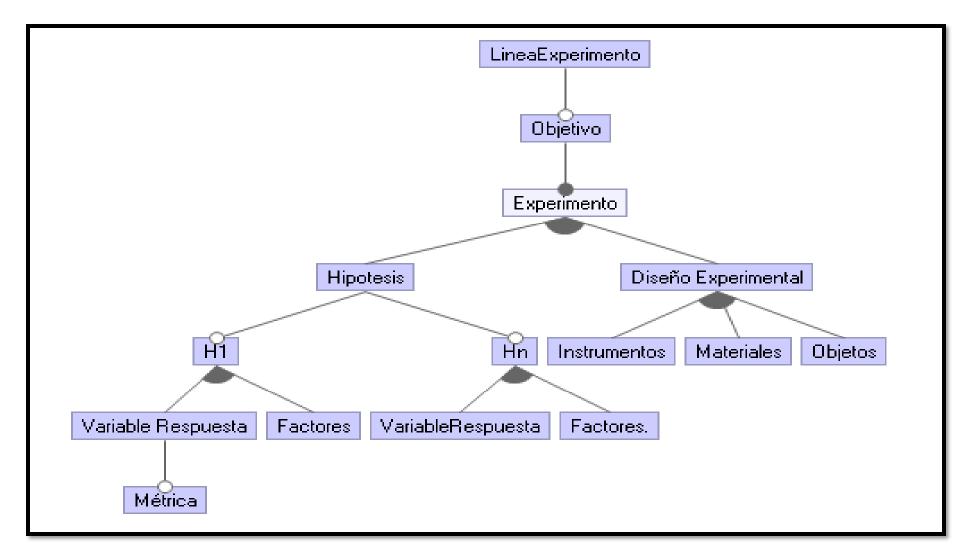
Desarrollo de la propuesta: Análisis de Contexto

1. Registro Características Fase de Definición

- El objetivo puede ser de tipo general y específico, se debe registrar el objetivo general y además al menos un objetivo específico del experimento.
- La hipótesis. Se debe registrar al menos una hipótesis nula y una alternativa del experimento original.
- Se debe registrar al menos una variable respuesta del experimento original.
- Se debe registrar al menos una métrica que se relaciones con la variable respuesta del experimento.
- Se debe registrar al menos un factor del experimento.

2. Registro de Características de la Fase de Diseño

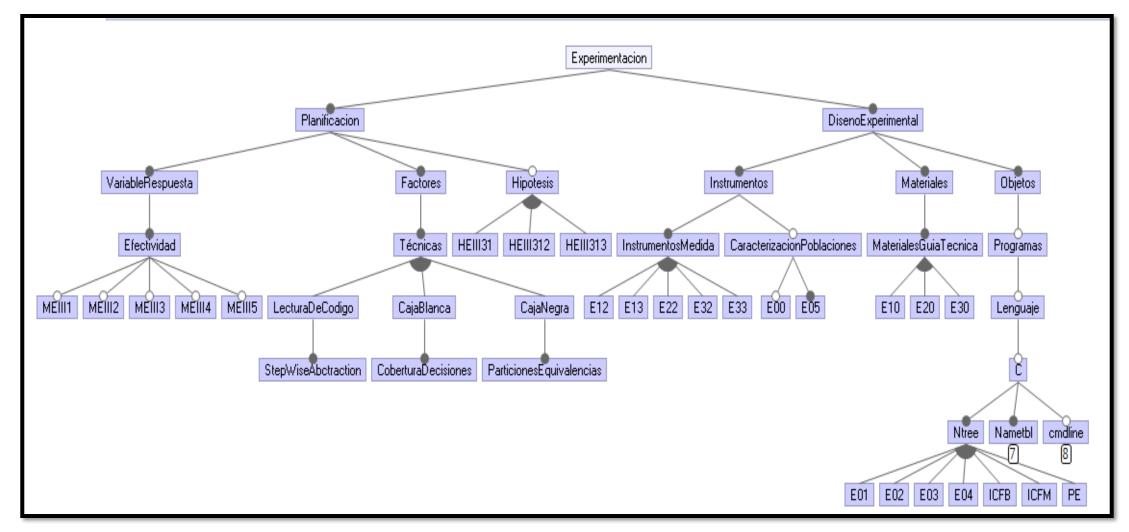
- Se debe registrar la información de los instrumentos experimentales que se utilizan la ejecución del experimento.
- Se debe registrar la información de los materiales experimentales que utilizan en la ejecución del experimento original.
- Se debe registrar la información de los objetos experimentales que se utilizan en la ejecución del experimento original


Desarrollo de la propuesta: Matriz Experimentación

Línea de Producto para Experimentación				
Fase de Definición				
	Característica	Valor de la Característica		
Todo experimento debe tener al menos un objetivo.	Objetivo	Objetivo 1 Objetivo n		
Todo experimento debe tener al menos una hipótesis nula y una alternativa.	Hipótesis	Hipótesis 1 Hipótesis 2 Hipótesis n		
Todo Experimento debe tener al menos una variable respuesta	Variable Respuesta	Variable Respuesta 1 Variable Respuesta 2 Variable Respuesta n		
Toda variable respuesta debe tener al menos una métrica.	Métrica	Métrica 1 Métrica 2 Métrica n		
Todo experimento debe tener al menos un factor	Factores	Factor 1 Factor 2 Factor n		

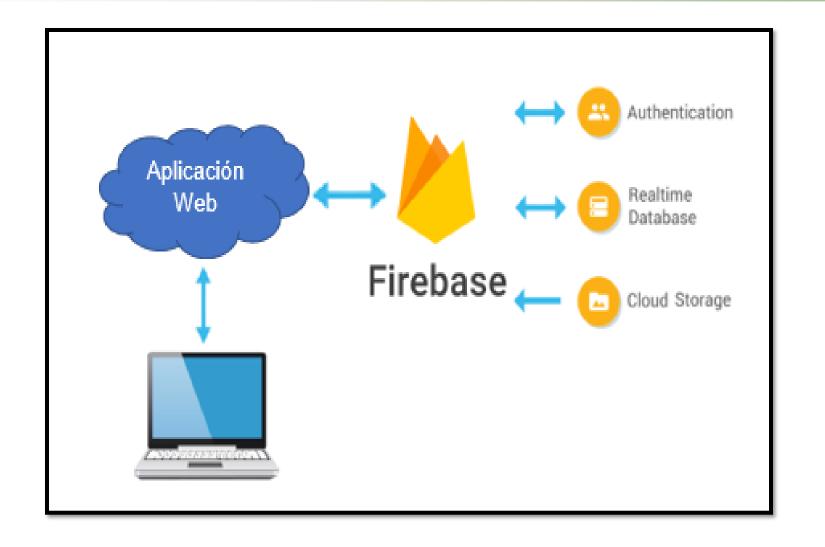
	Fase de diseño	
Todo experimento debe disponer de todos los instrumentos experimentales.	Instrumentos	Instrumento 1 Instrumento 2 Instrumento n
Todo experimento debe disponer de todo el material experimental.	Materiales	Material 1 Material 2 Material n
Todo experimento debe disponer de todos los objetos experimentales.	Objetos	Objeto 1 Objeto 2 Objeto n

Modelo de Dominio

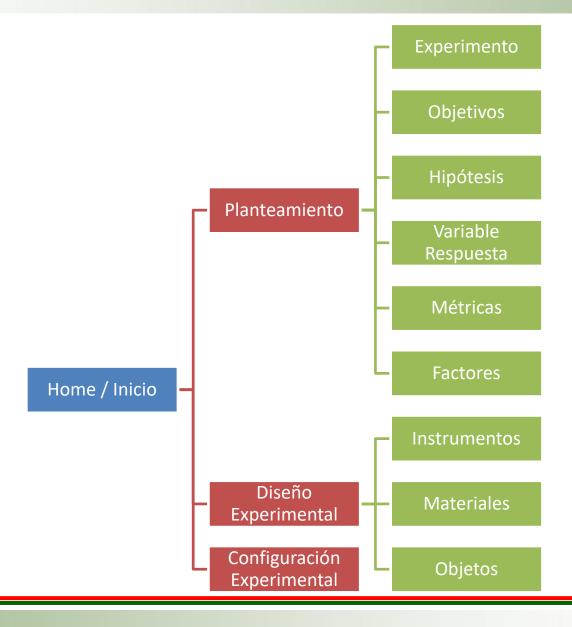


Matriz Técnicas de Evaluación de Código

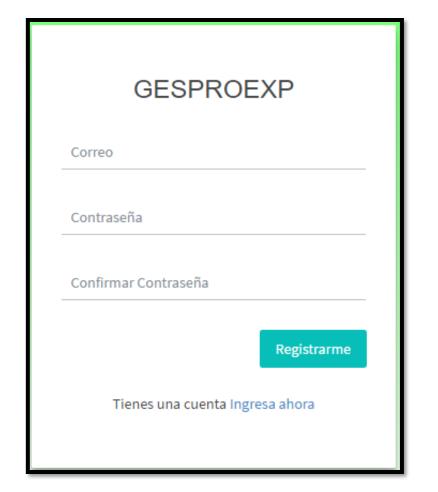
Técnicas de Evaluación de código					
Fase de Definición					
Característica	Código	Descripción			
Objetivo General	01	Estudiar la efectividad y eficiencia de distintas técnicas de evaluación de código de código			
Objetivo Específico	O2	Estudiar la efectividad y de clase de equivalencia, cobertura de sentencias y lectura de código			
Hipótesis 1	HEIII31	Hay diferencia en la efectividad entre las técnicas de partición de clases de equivalencia y cobertura de sentencias			
Hipótesis 2	HEIII312	Hay diferencia en la efectividad entre las técnicas de partición de clases de equivalencia y lectura de código			
Hipótesis 3	HEIII313	Hay diferencia en la efectividad entre las técnicas de cobertura de decición y lectura de código			
Variable Respuesta	-	Efectividad			
Métrica 1	MEIII1	Porcentaje de sujetos que generaron casos de prueba que detectaron fallas mediante técnica de evaluación dinámicas			
Métrica 2	MEIII2	Porcentaje de sujetos que detectaron falla mediante técnicas estáticas			
Métrica 3	MEIII3	Tiempo de generación de los casos de prueba			
Métrica 4	MEIII4	Tiempo de ejecución de los casos de prueba			
Métrica 5	MEIII5	Tiempo para detectar los fallos			
Factor 1	Lectura de código	Step_Wise Abstraction			
Factor 2	Caja Blanca	Cobertura de Decisiones			
Factor 3	Caja Negra	Particiones de equivalencia			

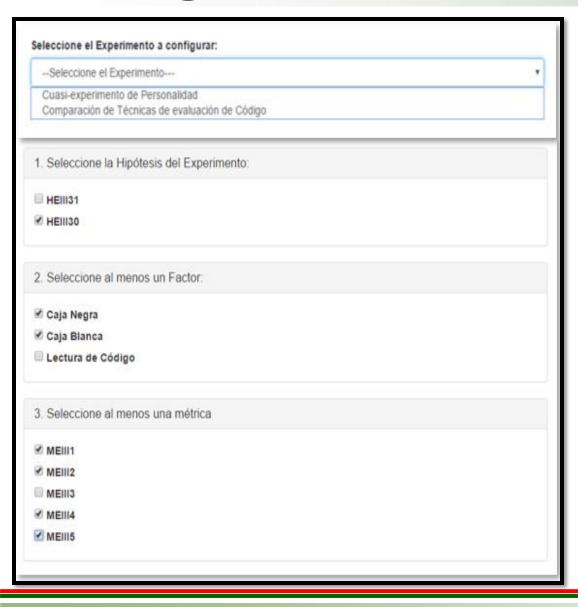


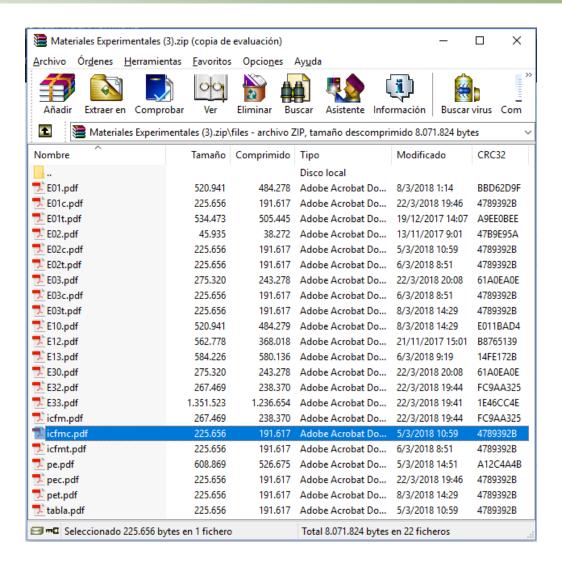
Modelo Técnicas de Evaluación de Código



Arquitectura


Estructura de la Aplicación


Gestión de usuarios



Configuración de un experimento

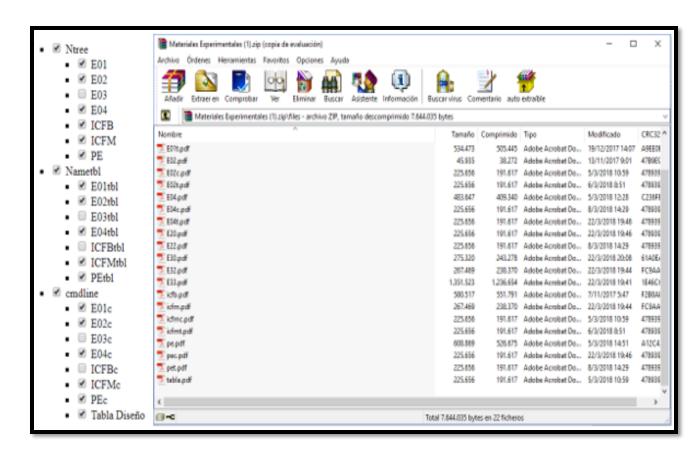
Limitaciones

La aplicación web "GESPROEX" se centra en la gestión de productos experimentales de las fases de definición y diseño de un experimento.

La aplicación web solo se ejecutará en Navegadores Web de ordenares PC.

El servicio Storage tiene una capacidad máxima de 5 Gb de almacenamiento para guardar los productos experimentales.

La base de datos Realtime permite hasta 100 conexiones simultáneas mediante la aplicación web y la capacidad para almacenar datos de la línea de producto experimental es de 1 Gb.



Pruebas de Instanciación

Experimento: Técnicas de Evaluación de Código

Hipótesis: HEIII31

	Criterio	Cumple
Productos Experimentales	E22 E32 E33 E20 E30 E01ntree E02ntree E04ntree ICFBntree ICFMntree PEntree E01nametbl E02nametbl E04nametbl ICFMnametbl PEnametbl PEnametbl E01cmdline E02cmdline E04cmdline ICFMcmdline ICFMcmdline PEcmdline Tabla de Diseño	Si Si Si Si Si Si Si Si Si Si Si Si Si S

Resultados

Organización de los productos experimentales.

- Productos almacenados en firebase.
- Sencilla de gestionar mediante la aplicación.

Instanciación de los productos experimentales

- Productos reutilizados acorde a las necesidades.
- Cumple con los parámetros establecidos por el experimentador.

Conclusiones

La construcción del marco teórico permitió establecer los procesos y técnicas para desarrollar una LPS.

No existe una herramienta que permita integrar el proceso de ingeniería de dominio e ingeniería de aplicación en LPS.

La comparación de herramientas para modelar una LPS permitió la selección de FeatureIDE, ya que no se necesita de licencia para su uso, y permite la integración con otras herramientas como: S.P.L.O.T.

Aplicando el método FODA y la herramienta FeatureIDE, fue posible generar el modelo de dominio a partir de la matriz de Técnicas de Evaluación de código se realizó la instanciación de productos experimentales en base a la hipótesis del experimento.

Conclusiones

Al aplicar las pruebas de instanciación se pudo comprobar que los productos experimentales descargados en el módulo de configuración de experimentos de la aplicación web son iguales a los productos utilizados en la ejecución del experimento Técnicas de Evaluación de Código.

Se desarrolló la aplicación web que permite mejorar la gestión de los productos experimentales aplicando el paradigma LPS.

Recomendaciones

Es recomendable utilizar el paradigma LPS cuando se requiere generar nuevos producto software a partir de la reutilización de elementos comunes.

Para realizar el diseño de la LPS se recomienda el uso de fuentes primarias y tener buena comunicación con las personas que se encuentran inmiscuida en el proyecto.

Se recomienda configurar el acceso multiorigen (CORS) para que no exista errores al momento de descargar los productos experimentales.

Recomendaciones

Se recomienda utilizar herramientas libres como FeatureIDE para modelar LPS, ya que disponen de ejemplos, documentación y foros en los cuales guiarse y solventar cualquier duda.

En el proceso de desarrollo es recomendable utilizar un software de control de versiones como Git, para llevar el control de los cambios realizados al código de la aplicación.

