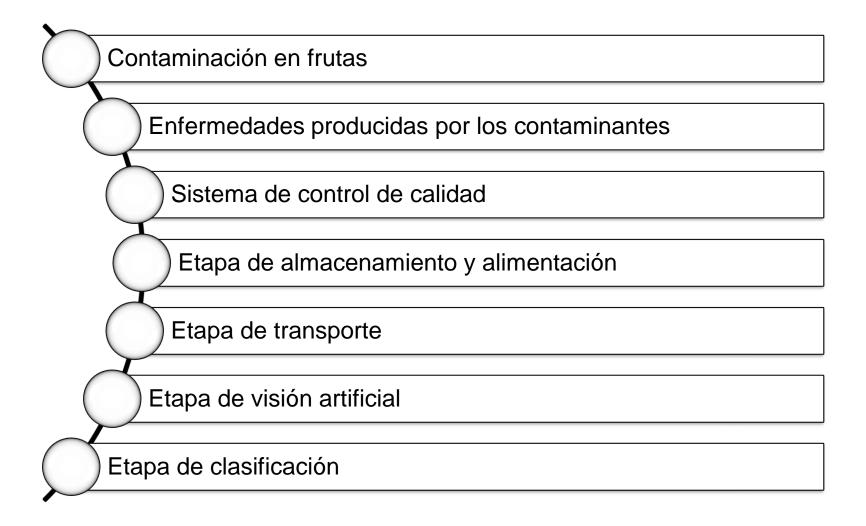


TEMA: ESTUDIO E IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL DE CALIDAD PARA LA DETECCIÓN DE CONTAMINANTES SUPERFICIALES DE DIFERENTES TIPOS DE FRUTAS USANDO VISIÓN ARTIFICIAL

AUTORES:


LUIS MIGUEL MOLINA LLUMITASIG

CARLOS EDUARDO VARGAS CORRALES

DIRECTOR:

ING. SYLVIA NATHALY REA MINANGO

INTRODUCCIÓN

OBJETIVOS

OBJETIVO GENERAL

Implementar un prototipo de sistema de control de calidad para la detección de contaminantes superficiales de diferentes tipos de frutas usando visión artificial.

OBJETIVOS ESPECÍFICOS

- Investigar los diferentes tipos de contaminantes, sistemas de transporte, sistemas de alimentación y sistemas de clasificación.
- Seleccionar los componentes de la etapa de almacenamiento y alimentación, transporte, visión artificial y clasificación del sistema de control de calidad.
- Diseñar las diferentes etapas del sistema de control de calidad
- Implementar un panel de control para monitorear y controlar las variables del sistema.
- Realizar pruebas de funcionamiento para validar la hipótesis y prototipo diseñado

CONTAMINANTES EN LAS FRUTAS

Podredumbre gris

Antracnosis

Deficiencia de calcio

TOMATE

Podredumbre morena

Podredumbre blanda

Bacteriosis

DURAZNOS

SELECCIÓN DE COMPONENTES

ETAPA DE ALMACENAMIENTO Y ALIMENTACIÓN

- Cuidado de la fruta
- Almacenamiento ordenado
- Adaptabilidad al área de trabajo.

ETAPA DE TRANSPORTE

- Velocidad de transporte
- Fácil adaptabilidad
- Facilidad de mantenimiento

SELECCIÓN DE COMPONENTES

ETAPA DE VISIÓN ARTIFICIAL

Cámara web

Cámara térmica

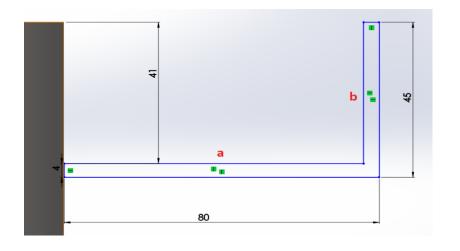
Cámara matricial

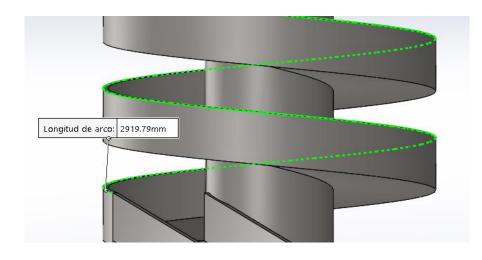
- Buena resolución
- Facilidad de implementación
- Costos
- Independencia de accesorios

ETAPA DE CLASIFICACIÓN

- Fuerza de empuje
- Facilidad de implementación
- Independencia de funcionamiento
- Costos

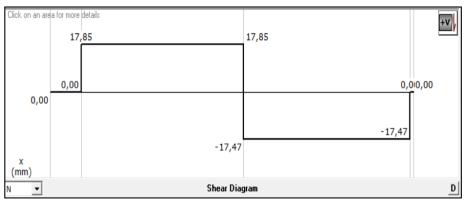
Actuador neumático

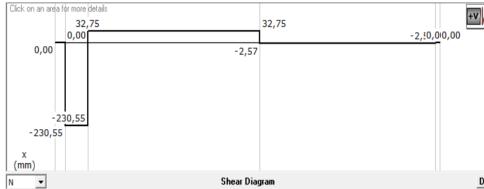

Actuador eléctrico / Actuador de giro

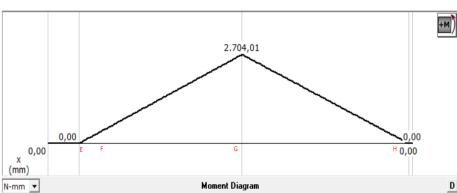


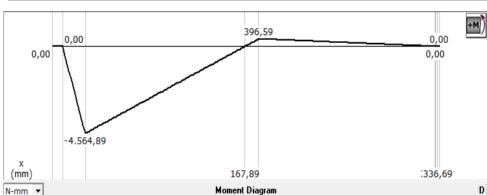
Actuador eléctrico / Actuador lineal

DISEÑO DE LA ETAPA DE ALIMENTACIÓN


- Capacidad de frutas
- Material
- Tamaño promedio de la fruta



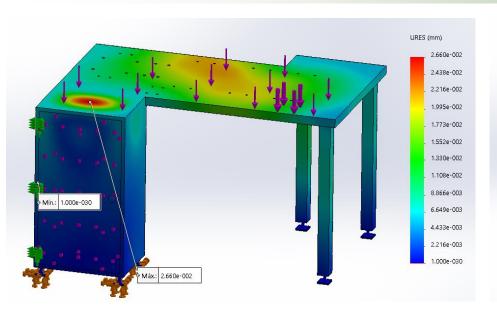

DISEÑO DE LA ETAPA DE TRANSPORTE

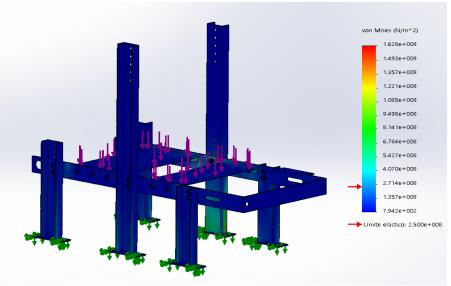

ANÁLISIS ESTÁTICO

ANÁLISIS DINÁMICO

 $W_{FRUTAS} = 35.316 N$

 $\gamma_{Calculado} < \gamma_{Recomendado}$


 $0.00263 \ mm < 0.85 \ mm$


 $n_{Calculado} > n_{Recomendado}$

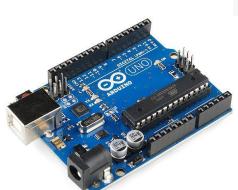
2.89 > 2

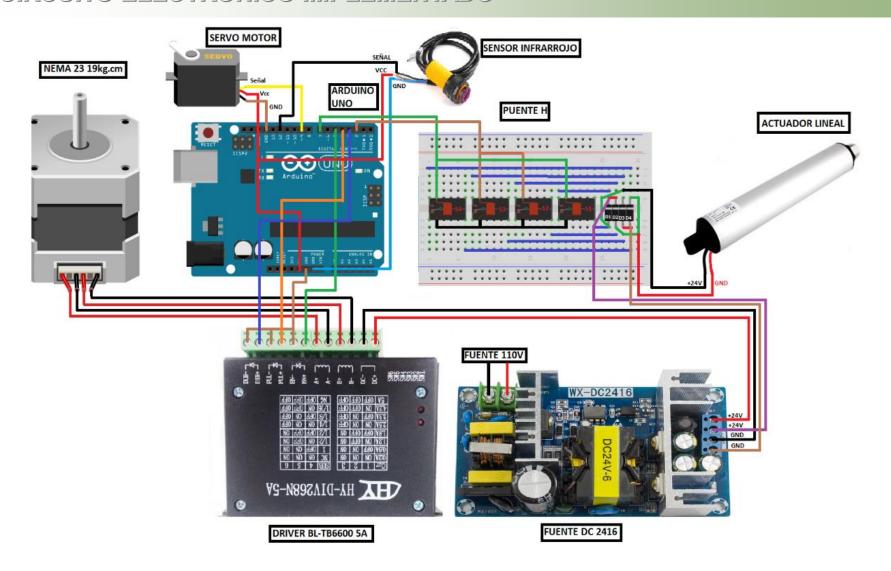
DISEÑO CAE

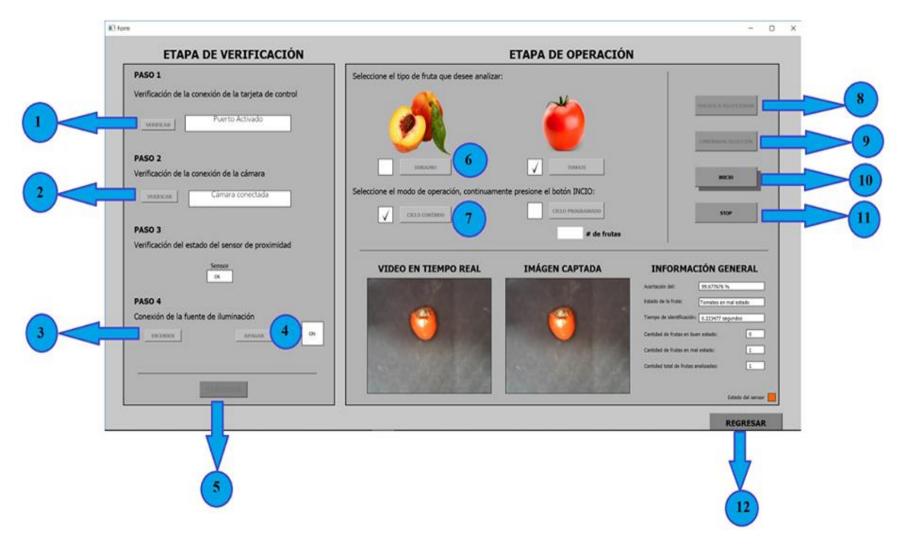
- Esfuerzo de Von Mises máximo = 11.53MPa
- Límite elástico = 351MPa
- Deformación máxima 0.00266 mm

Deformación máxima 2 mm

SELECCIÓN DE LOS COMPONENTES ELECTRÓNICOS

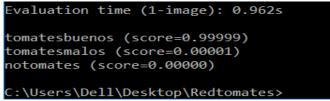






CIRCUITO ELECTRÓNICO IMPLEMENTADO

PANEL DE CONTROL



PRUEBAS Y RESULTADOS

ENTRENAMIENTO DE LA RED NEURONAL

N° de pasos de	Porcentaje de acierto	Tiempo de análisis	
entrenamiento			
100	98%	1.385 seg	
500	100%	0.657 seg	
1000	100%	0.261 seg	
4000	100%	0.098 seg	

N° de pasos de	Porcentaje de acierto	Tiempo de análisis
entrenamiento		
100	95%	2.312 seg
500	98%	1.52 seg
1000	100%	0.431 seg
4000	100%	0.192 seg

Evaluation time (1-image): 1.266s

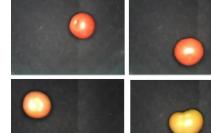
duraznosbuenos (score=0.99974)

duraznosmalos (score=0.00025)

noduraznos (score=0.00000)

C:\Users\Dell\Desktop\Redduraznos>

Podredumbre gris



Podredumbre blanda

Bacteriosis

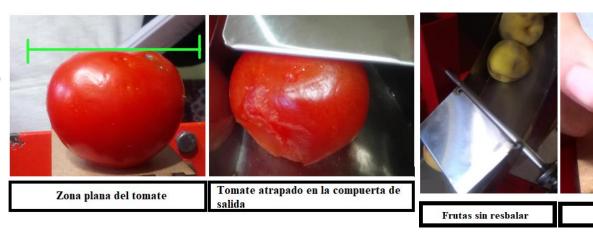
DURAZNOS

Antracnosis

Podredumbre Blanda

Deficiencia de calcio

PRUEBA DE ILUMINACIÓN PARA EL RECONOCIMIENTO DE IMÁGENES


PRUEBA CLASIFICACIÓN DE LA RED NEURONAL EN FRUTAS

Fruta	%	Muestras correctas	Muestras incorrectas	Ejemplo
Tomate en buen estado	98.9924%	29	1	
Tomate en mal estado	97.0608%	23	7	
Durazno en buen estado	94.7422%	19	1	
Durazno en mal estado	94.2647%	15	5	

PRUEBA DE ALIMENTACIÓN Y CLASIFICACIÓN

EFECTIVIDAD 60%

EFECTIVIDAD 100%

Fruta deformada

VALIDACIÓN DE LA HIPÓTESIS

Método estadístico T-Student

$$\mu_0 > 95\%$$

$$T > t_{\alpha}$$

La red en tomates tiene una confiabilidad mayor al 95 %

$$\mu_0 > 90\%$$

$$T > t_{\alpha}$$

La red en duraznos tiene una confiabilidad mayor al 90 %

Método estadístico chi - cuadrado

$$X_{Calculado}^2 = 0.2366$$

$$X_{Tabla}^2 = 3.84$$

$$X_{Calculado}^2 < X_{Tabla}^2$$

La eficiencia del sistema de control de calidad no depende de la fruta que se esté analizando.

CONCLUSIONES

- El sistema de almacenamiento y alimentación consta de una tolva tipo espiral, la cual alimenta frutas en un rango de 6 a 8 cm de diámetro, el volumen total de la tolva es de 9098 cm³ lo que representa una cantidad aproximada de 45 frutas dentro de la tolva, además se cuenta con una cubierta de acrílico que ayuda a la protección de las frutas de cualquier contaminante externo
- El sistema de transporte consta de un eje motriz con un factor de seguridad es de 2.89 el cual es mayor al recomendado de 2 para cargas estáticas, consta de una banda lisa con una superficie de trabajo de 28 cm de ancho por 60 cm de largo accionada por un motor a pasos Nema 19 y con una transmisión de 1:3.
- Las estructuras de soporte para el sistema fueron validadas mediante un software CAE, para la mesa soporte se obtuvo una tensión de Von Mises de 11.53 MPa, se obtuvo la deformación máxima de 0.00266 mm, en la estructura soporte de la banda transportadora se obtuvo una tensión de Von Mises de 271.4 Mpa y una deformación máxima de 0.2 mm.

CONCLUSIONES

- El sistema de visión artificial consta de una cámara web Genius FaceCam1000x, el sistema de iluminación ayuda a eliminar las sombras generadas en las frutas, generando un mayor grado de aceptabilidad y 0.2 segundos menos en el tiempo de análisis de la red neuronal.
- La red neuronal utilizada fue TensorFlow, para la red de tomates y duraznos se usaron 3 clases, en la red de tomates se utilizó un *dataset* de 560 imágenes, obteniendo una aceptabilidad en la red superior al 97%, mientras que en la red de duraznos se utilizó un *dataset* de 400 imágenes, obteniendo una aceptabilidad en la red superior al 94%.
- El procesamiento de imágenes y la creación de la interfaz gráfica fue realizada en OpenCV con la ayuda del entorno de desarrollo Qt Creator, los botones están programados para realizar acciones específicas y así evitar fallos en el monitoreo y utilización del panel de control, la comunicación se la realizó mediante el controlador Arduino Uno, permitiendo un control serial eficiente en todo el sistema.

CONCLUSIONES

- El sistema de clasificación está formado por un actuador lineal con accionamiento eléctrico con 150 mm de carrera y una velocidad de 230 mm/s, el porcentaje de eficacia del sistema es del 100% debido a que no existe errores en los mecanismos al momento de clasificar las frutas en buen o mal estado.
- El sistema de alimentación satisface la necesidad del 65% de la producción debido a la irregularidad en la forma, textura, y estado de las frutas, obteniendo un 60% de eficacia en la alimentación de tomates y un 50% en la alimentación de duraznos.
- El sistema de control de calidad tiene un grado de aceptabilidad en la red neuronal para tomates superior al 95%, mientras que en la aceptabilidad en la red neuronal para duraznos superior al 90%, se utilizaron 100 muestras, los porcentajes dependen de la cantidad de *dataset* con los que se entrenaron a la red. Además, se validó la independencia del funcionamiento de la red con el tipo de fruta, mediante el método estadístico del chi-cuadrado.

iGracias!

