

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE EXTENSIÓN LATACUNGA

CARRERA DE INGENIERÍA EN PETROQUÍMICA

TEMA: ESTUDIO PARA LA PRODUCCIÓN DE UN DETERGENTE BIODEGRADABLE PARA USO GENERAL A PARTIR DE ACEITE DE RICINO (*Ricinnus Communis*)

AUTORA: ALVAREZ BAYAS, DAYANA PAMELA

DIRECTOR: RODRÍGUEZ MAECKER, ROMÁN NICOLAY, Ph.D

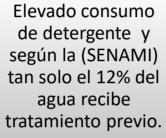
INTRODUCCIÓN

Crece en estado silvestre

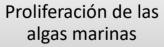
Ricino (Ricinus communis L.)

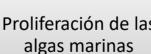
Ecuador, Manabí, cuenta con un cultivo aproximado de 5000 hectáreas.

No comestible


Abundante

Detergente biodegradable





En ocasiones la extensión de la vida marina.

OBJETIVOS

Objetivo General

• Estudiar la producción de detergente biodegradable para uso general a partir de aceite de ricino (ricinnus communis).

E S P E

Objetivos Específicos

Caracterizar y acondicionar el aceite de ricino para su utilización como materia prima en la producción de un detergente biodegradable.

Sintetizar un detergente biodegradable utilizando un método por pasos, con las condiciones experimentales establecidas en el diseño experimental.

Caracterizar el detergente por medio de pruebas físicas y químicas establecidas en la normativa vigente, incluyendo la prueba de biodegradabilidad.

Desarrollar una formulación que permita un uso determinado.

METODOLOGÍA

Caracterización del aceite de ricino.

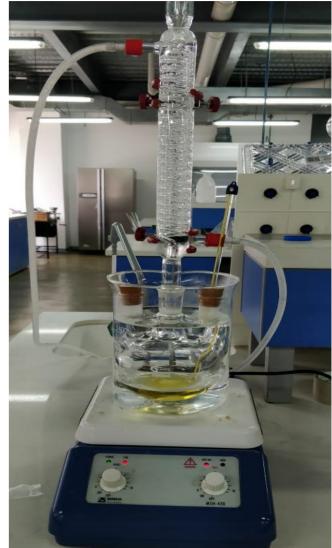
Espectrofotómetro infrarrojo de transformada de Fourier

Índice de saponificación: Según norma NTE INEN-ISO 3657 "Aceites y grasas de origen animal y vegetal. Determinación del índice de saponificación (IDT)",

Producción del detergente biodegradable a partir del aceite de ricino.

Obtención de éster metílico de aceite de ricino

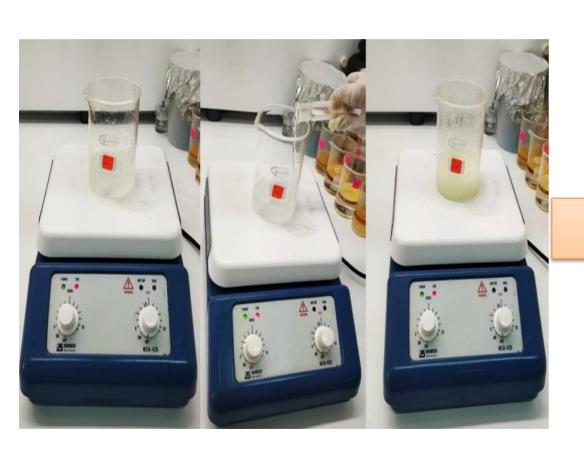
Síntesis del tensoactivo biodegradable

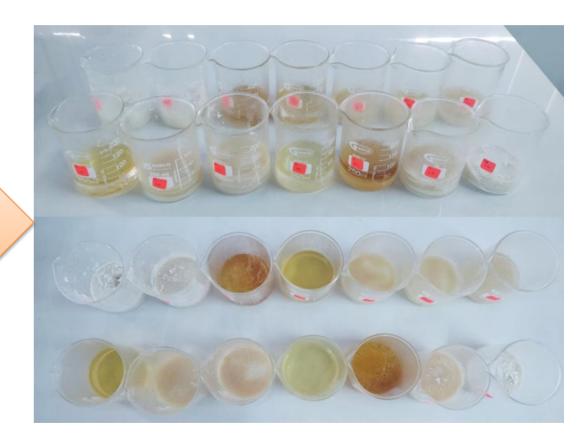

Formulación de detergente biodegradable para uso general

ESPE O

Obtención de éster metílico de aceite de ricino

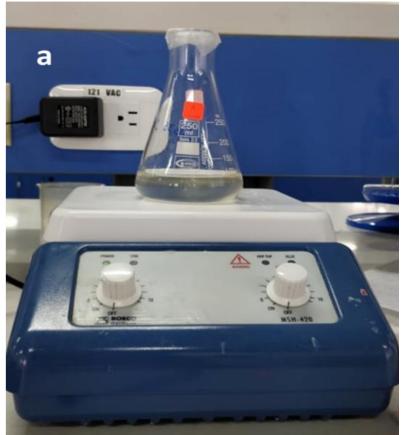
 Reacción transesterificación con metanol en presencia de hidróxido de sodio


Síntesis del tensoactivo biodegradable Diseño experimental para la síntesis tensoactivo de aceite de ricino


VARIABLES INDEPENDIENTES					
Temperatura(Hidróxido de Ácido					
	A)	Sodio(B)	Sulfúrico(C)		
Baja (-1)	30	5	5		
Media (0)	40	7.5	8,75		
Alta (1)	50	10	12,5		

Bloque	Temperatura de reacción (ºC)	Hidróxido de sodio [M]	Ácido sulfúrico (ml)
1	50	5	8,75
2	40	7.5	8,75
3	40	7.5	8,75
4	30	5	8,75
5	30	7.5	12,5
6	40	7.5	8,75
7	40	10	12,5
8	30	10	8,75
9	50	10	8,75
10	40	10	5
11	50	7.5	12,5
12	40	5	12,5
13	50	7.5	5
14	30	7.5	5
15	40	5	5

Formulación de detergente biodegradable para uso general


Componentes	Detergente A	Detergente B	Detergente C
Tensoactivo natural	5%	10%	15%
Carboximetilcelulosa	0,75%	0,75%	0,75%
TEA	0,20%	0,20%	0,20%
Ácido cítrico	0,2%	0,4%	0,6%
Perfume	0,1%	0,1%	0,1%
Agua	Hasta 100%	Hasta 100%	Hasta 100%

Análisis químico

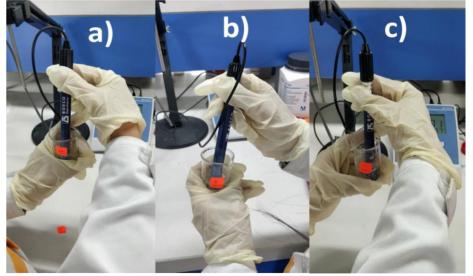
Espectroscopia infrarroja con transformada de Fourier (FTIR)

Éster metílico obtenido a partir del aceite de ricino

Tensoactivo

Pruebas Físico-químicas

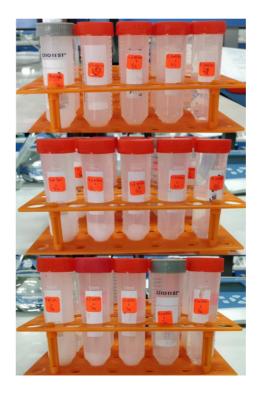
рН


NTE INEN-ISO 4316

"Determinación del ph de soluciones acuosas, método potenciométrico"

Tensoactivo

Detergentes formulados A, B, C.

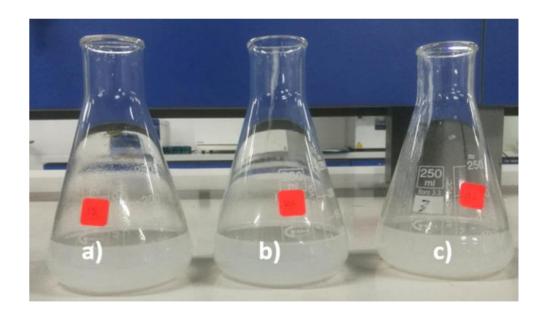


Estabilidad en agua dura

Tensoactivo

NTE INEN-ISO 1063

"Determinación de la estabilidad en agua dura"



Determinación de alcalinidad libre

Detergentes formulados A, B, C.

NTE INEN 821

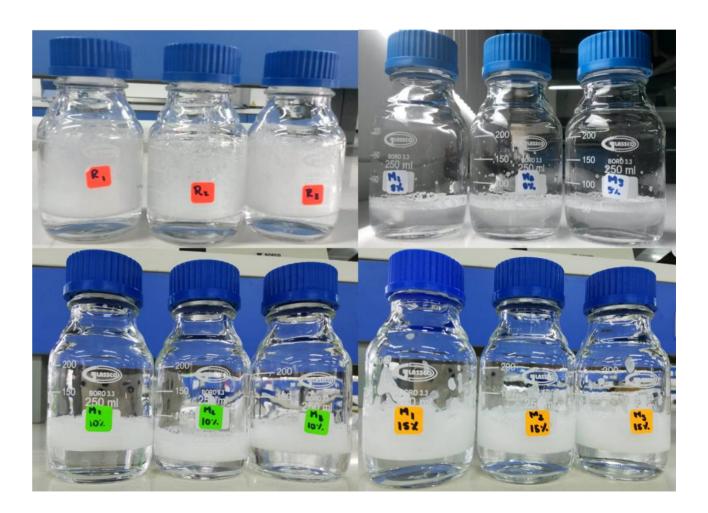
"Determinación de alcalinidades libre y total."

Determinación de la materia insoluble en agua

Detergentes formulados A, B, C.

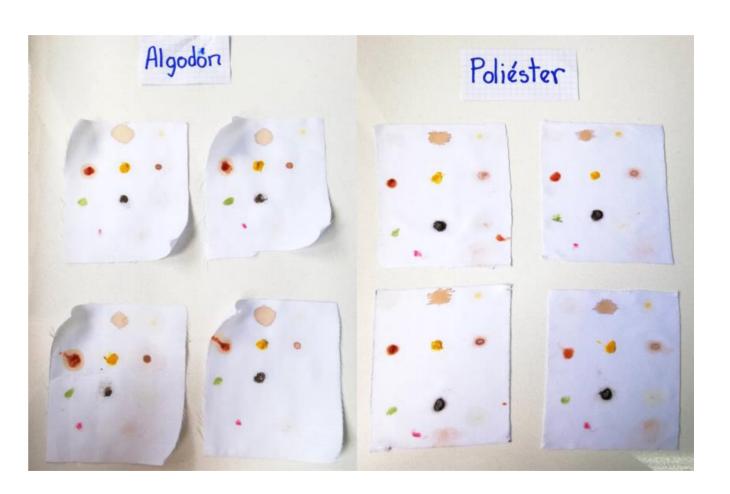
NTE INEN 816

"Determinación de la materia insoluble en agua"



Pruebas de espuma

Detergentes formulados A, B, C.



Prueba de desempeño

Detergentes formulados A, B, C.

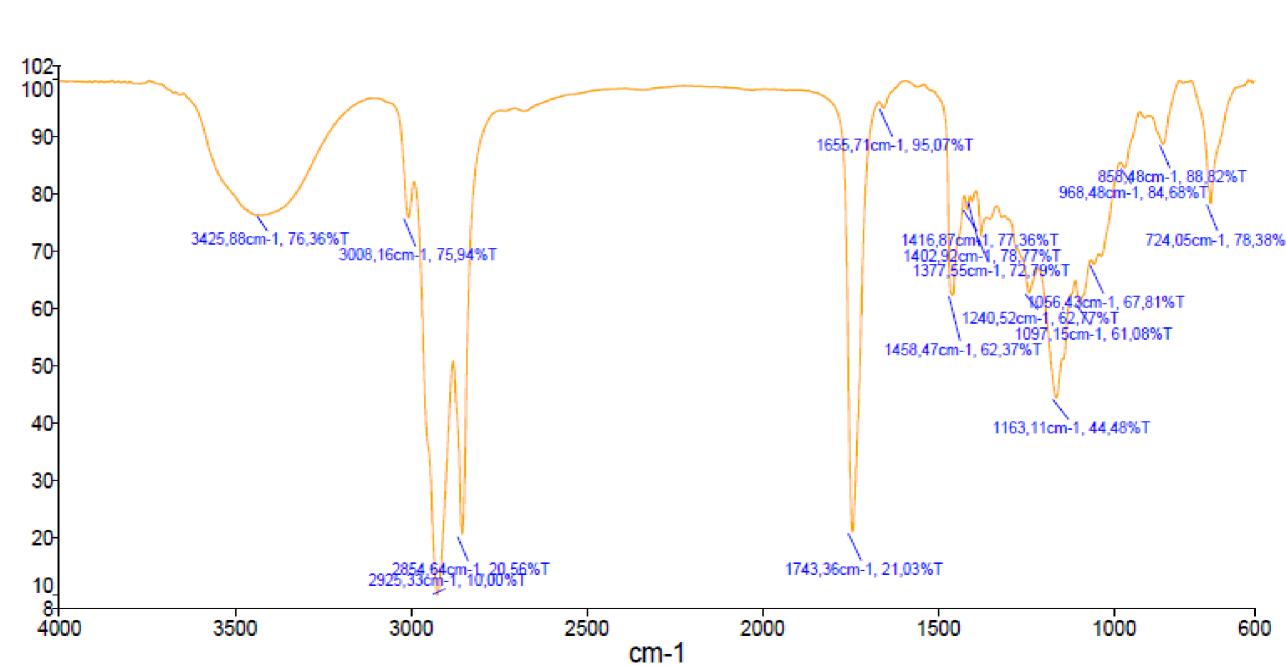
Biodegradabilidad

EcuaChemLab Cia. Ltda ASTM D2667, (1995) y ASTM D2330, (2002)

Detergente formulado C.

T_i (días)	Muestra	V_m	Dilución	$C_{ensayyo}$
	Widestra	(ml)	Directori	(mg/l)
	Blanco	100	5	0,15
0	Estándar	100	5	1,285
U	Muestra 1	100	5	1,284
	Muestra 2	100	5	1,278
	Blanco	100	5	0,00
O	Estándar	100	5	0,002
8	Muestra 1	100	5	0,010
	Muestra 2	100	5	0,009

ANÁLISIS DE RESULTADOS



Aceite de ricino

Espectroscopia de infrarrojo con transformada de Fourier

Nº Pico	Región (cm ⁻¹)	Intensidad	Grupo funcional	Referencia
1	3425,88	М	Grupo hidroxi, enlace de H, O-H	3570–3200
2	3008,16	D	-C=C-H (st)	3150-3000
3	2925,33	F	CH ₂ (st, as)	2935–2915
4	2854,64	F	CH_2 (st,sy)	2865–2845
5	1743,36	F	-C=O (st)	1750–1725
6	1655,71	D	C=C (st)	1680–1620
7	1458,47	М	CH ₃ (δ,as)	1470-1430
8	1377,55	D	CH_3 (δ ,sy)	1380–1370
9	1163,11	F	C-O (st,as)	1260-1150
10	1097,15	D	Alcohol secundario -C-O- (st)	~1100
11	858,48	М	C-O	890-800
13	724,05	М	$-(CH_2)_n$ -, (Υ)	770-720

M

ESPE

Índice de Saponificación del aceite de ricino

Réplica	Índice de saponificación
	mg KOH / g de aceite
Ensayo	188,9073
1	186,8223
2	187,9074
$(\bar{x})\pm s$	187,8790±1,0427

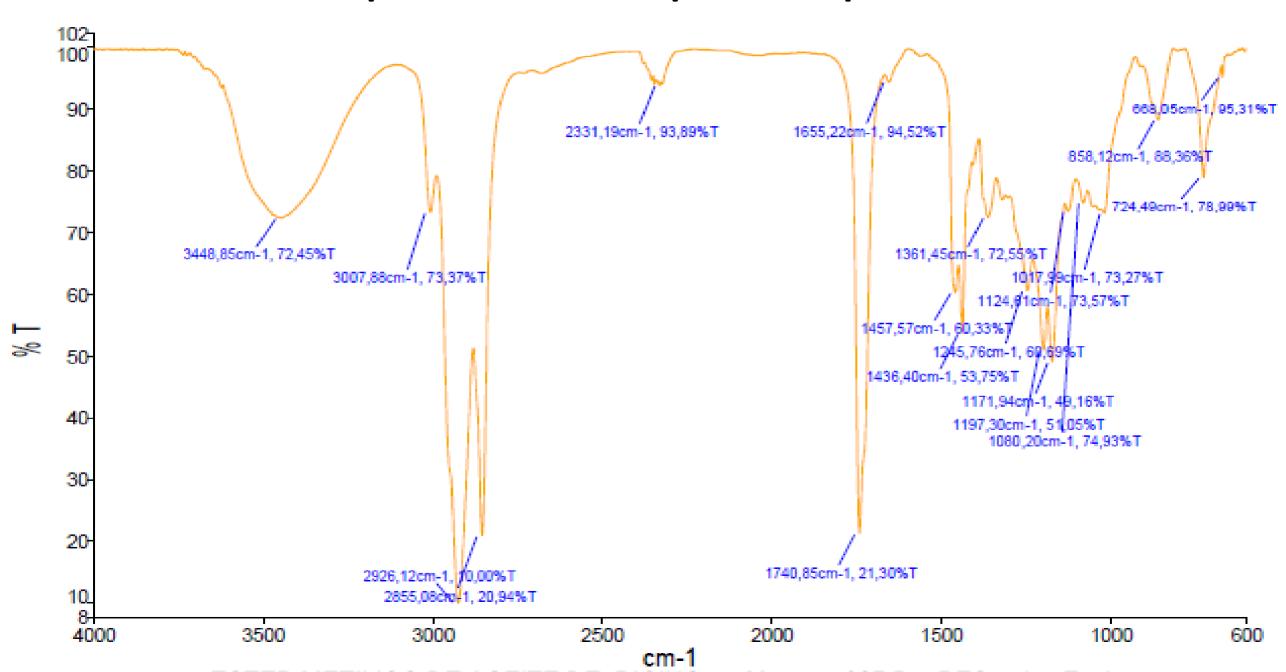
Entra en el rango de 176 - 188 mg KOH / g de aceite reportado por Ogunniyi, (2006), Ajayi & Momoh, (2018) y Onukwli & Igbokwe, (2008).

Éster metílico de aceite de ricino

Estadística

Intervalo de confianza (μ)

Rendimiento


Réplic	Aceite de ricino	Éster metílico (ml)	Rendimiento
а	(ml)		(%)
1	105,02	95,03	90,49
2	104,67	94,2	90,00
3	104,79	94,39	90,07
4	104,81	94,32	89,99
5	104,88	94,59	90,18

95%

Media $\overline{(x)}$	90,15
Desviación estándar (s)	0,206

El valor obtenido de rendimiento es relativamente alto ya que se encuentra dentro de lo reportado por Dias et al., (2013) y (Meneghetti et al., 2006).

Caracterización por análisis de espectroscopia vibracional FT-IR

Región	Grupo funcional	Aceite de ricino	RAME
1425-1447	CH ₃ (as)	-	1436,40
1188-1200	O-CH ₃ (st)	-	1197,3
1370-1400	O-CH ₂	1377,55	-
1075-1111	O-CH ₂ -C (st,as)	1056,43	-

Producción del Tensoactivo a partir del éster metílico de aceite de ricino

$$\begin{array}{c} \text{a)NaOH} \\ \text{b)H}_2\text{SO}_4 \\ \text{OSO}_3\text{Na} \end{array}$$

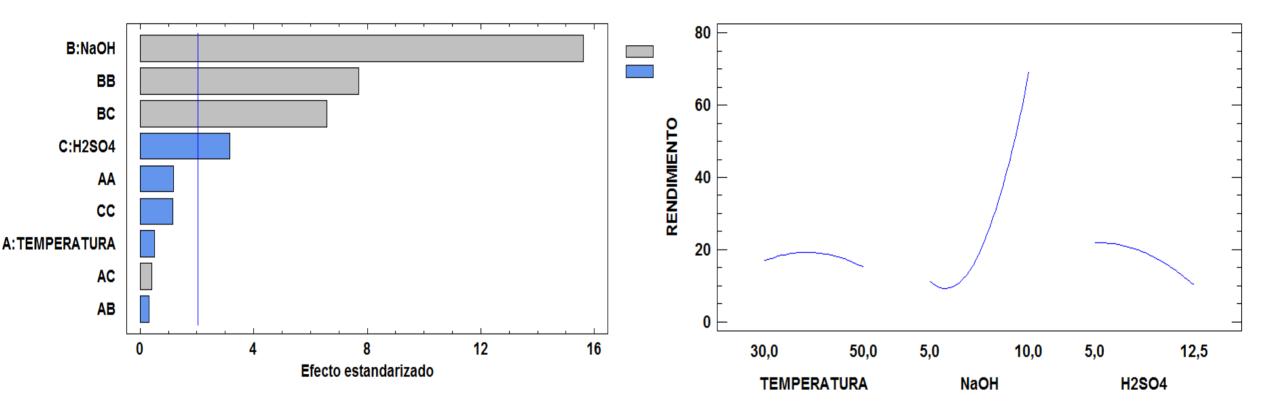
Rendimiento (%)

	ESI
$(\bar{x})\pm s$	
0	PETR

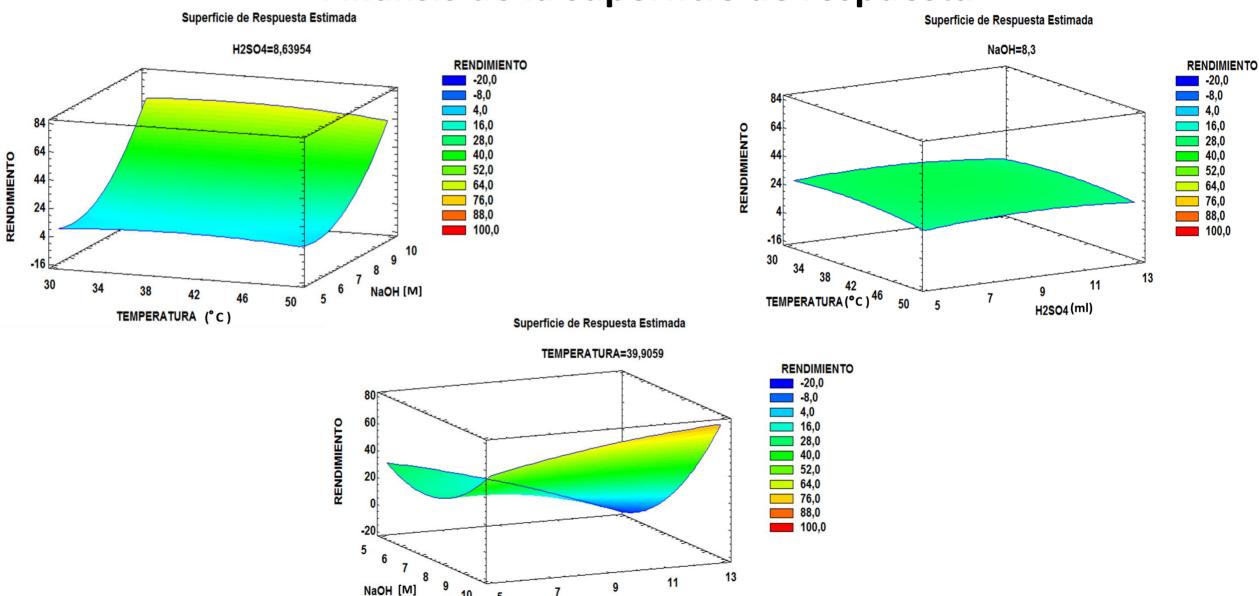
Diseño experimental de metodología de respuesta del tipo de Box-Behnken.

Tratamiento	nenamiento (70)	
	$(\bar{x})\pm s$	
1	0	
2	18,98 <u>+</u> 0,0053	
3	18,87 <u>±</u> 0,0040	
4	0	
5	0	
6	19,75 <u>+</u> 0,0028	
7	76,42 <u>±</u> 0,0012	
8	75,71 <u>±</u> 0,0066	
9	72,50±0,0053	
10	39,67 <u>±</u> 0,0041	
11	0	
12	0	
13	23,49±0,0057	
14	27,90 <u>±</u> 0,0084	
15	32,35±0,0074	

Análisis estadístico


Fuente	Suma de cuadrados	GI	Cuadrado medio	Razón-F	Valor-P
A:TEMPERATURA	21,7932	1	21,7932	0,26	0,6114
B:NaOH	20174,1	1	20174,1	243,54	0,0000
C:H2SO4	827,905	1	827,905	9,99	0,0034
AA	113,369	1	113,369	1,37	0,2504
АВ	7,71203	1	7,71203	0,09	0,7622
AC	14,6302	1	14,6302	0,18	0,6770
ВВ	4914,82	1	4914,82	59,33	0,0000
ВС	3582,14	1	3582,14	43,24	0,0000
СС	109,214	1	109,214	1,32	0,2591
Bloques	0,346613	2	0,173307	0,00	0,9979
Error total	2733,62	33	82,837		
Total (corr.)	32754,4	44			

R-cuadrada= 91,6542%
R-cuadrada (ajustada por g.l.)=
88.8722%
Error estándar del est.= 9,10148
Error absoluto medio= 6,24181
Estadístico Durbin-Watson=2,78728
(P=0,9917)
Autocorrelación residual de Lag 1= -0,434407



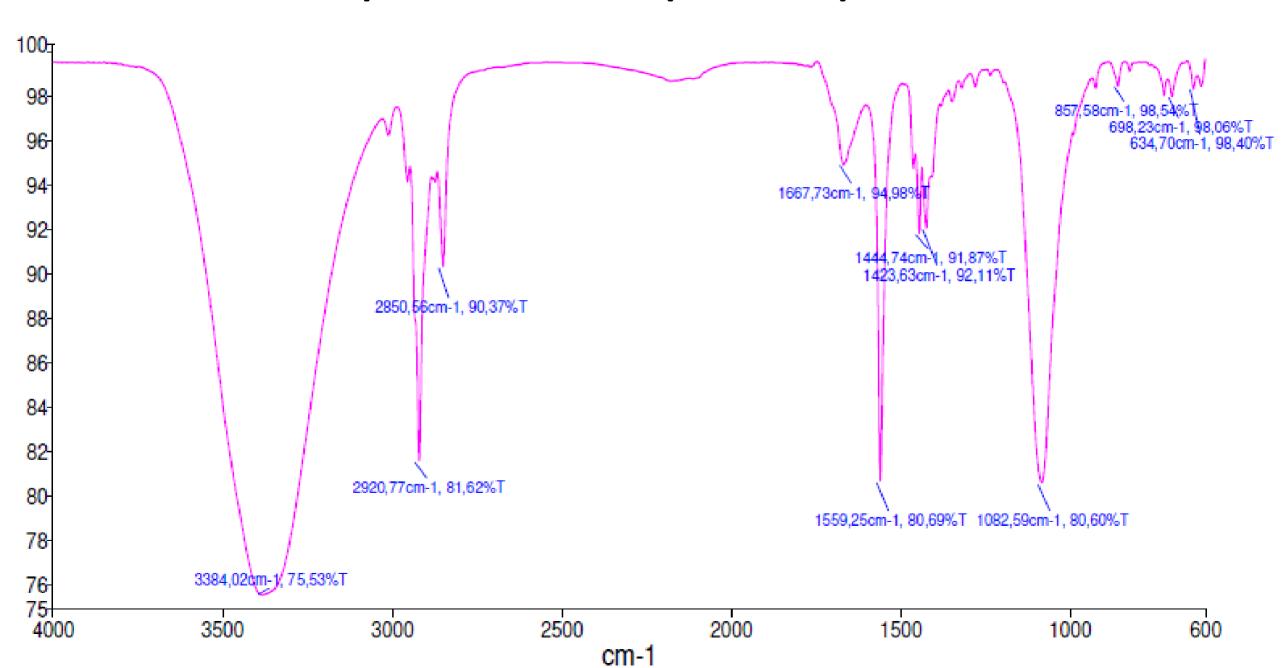
Análisis de los efectos estandarizados

Análisis de la superficie de respuesta

H2SO4 (ml)

Optimización de las condiciones para la producción del tensoactivo

El punto óptimo para la maximización del rendimiento del tensoactivo:


Temperatura a 38,96 °C

NaOH de 10M

H₂SO₄ de 12,4999 ml

Para obtener un rendimiento óptimo de 77,5409.

Caracterización por análisis de espectroscopia vibracional FT-IR

Nº Pico	Región (cm ⁻¹)	Intensidad	Grupo funcional	Referencia
1	1559,25	F	C=C-S (st)	≈ 1590
2	1082,59	F	S=O (st)	1225-980
3	857,58	D	S-O (st)	870-690

Pruebas físico químicas

Tensoactivo de aceite de ricino

pН

	//~\
E S P	E CM
	/ / \(\)
PETR	00011110

Tensoactivo

1011000001110	$(\bar{x})\pm s$
1	2,51 <u>±</u> 0,0361
2	10,78 <u>±</u> 0,0208
3	11,53 <u>+</u> 0,0252
4	2,67±0,0265
5	3,75±0,0361
6	11,54 <u>±</u> 0,0153
7	11,84 <u>±</u> 0,0404
8	12,70 <u>±</u> 0,0100
9	12,67 <u>±</u> 0,0153
10	12,84 <u>+</u> 0,0529
11	3,71 <u>±</u> 0,0252
12	1,10±0,0500
13	11,88 <u>±</u> 0,0153
14	12,28±0,0200
15	10,46+0,0404

El valor de pH para el tensoactivo optimo fue de 11,84 como se observa en la tabla, pudiendo comparase este valor con trabajos realizados por E.Ndubuisi, J. Ugbeh, C. Iwuorah, (2015)

Estabilidad en agua dura

Suma de valores unitarios	Estabilidad media
46	"tres"

Suma de valores parciales	Estabilidad parcial
20	433
13 13	155

Detergente de uso doméstico biodegradable

pН

Detergente	Ph
Detergente	$(\bar{x})\pm s$
Α	8,01333 <u>+</u> 0,0057735
В	8,01667 <u>+</u> 0,0057735
С	8,02333 <u>+</u> 0,0057735

Norma NTE INEN 847, (2015) establece un límite máximo de pH de 11, por lo tanto las formulaciones A,B y C se encuentran dentro del rango establecido.

Alcalinidad libre

Dotorgonto	AL (%)
Detergente	(\bar{x})
Α	0
В	0
С	0

NTE INEN 847, (2015) establece un límite máximo de AL de 0,5%, por tanto, los valores obtenidos para los detergentes A,B y C que fueron de 0% se encuentran dentro del rango establecido.

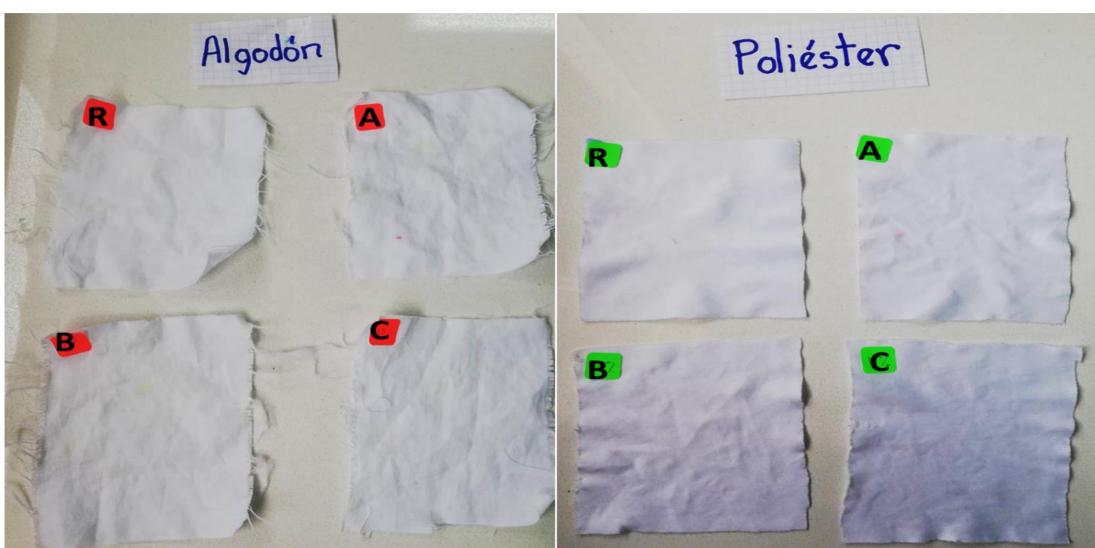
	IA (%)
Detergente	(\bar{x})
Α	0
В	0
С	0

Los valores obtenidos de materia insoluble en agua para los detergentes A, B y C, los cuales se encuentran dentro del rango que establece la norma NTE INEN 847, (2015) con un límite máximo de 1,5%.

Espuma

Detergente	$h(cm)_{2 min}$	$h(cm)_{5 min}$	$h(cm)_{10\;min}$	$h(cm)_{30 \ min}$	$h(cm)_{60 min}$		
Detergente	$(\bar{x})\pm s$	$(\bar{x})\pm s$	$(\bar{x})\pm s$	$(\bar{x})\pm s$	$(\bar{x})\pm s$		
Referencia	$10,00 \pm 0$	6,37 ± 0,2309	4,77 ± 0,4041	3,17 ± 0,2887	2,67 ± 0,2887		
A	1,87 ± 0,1155	$1,00 \pm 0$	$0,83 \pm 0,0577$	0,37 ± 0,0577	0.10 ± 0		
В	2,77 ± 0,1155	2,03 ± 0,0577	1,73 ± 0,0577	1,17 ± 0,0577	$1,00 \pm 0$		
С	5,00 ± 0	4,17 ± 0,2887	4,07 ± 0,1155	2,37 ± 0,1155	1,93 ± 0,0577		

Desempeño



Desempeño

Determents					Algo	odón									Poli	éster				
Detergente	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
Referencia	E	E	E	E	В	E	E	E	МВ	МВ	E	E	E	E	МВ	E	E	E	МВ	МВ
Α	E	МВ	E	В	R	В	МВ	E	R	R	E	МВ	E	МВ	R	В	МВ	E	R	В
В	E	МВ	E	МВ	R	МВ	МВ	E	В	В	E	МВ	E	МВ	В	МВ	МВ	E	В	В
С	E	E	E	E	В	E	E	E	В	МВ	E	E	E	E	МВ	E	E	E	МВ	МВ

PARÁMETRO	RESULTADO	UNIDAD	MÉTODO DE ANÁLISIS
Biodegradabilidad	99,30	%	ASTM D2667.D2330

El valor obtenido cumple con el rango establecido por la NTE INEN 847, (2015) cumpliendo así con los requisitos para el uso doméstico de este detergente.

- De acuerdo a la caracterización de la materia prima realizada mediante la técnica FTIR, se identificaron las bandas principales correspondientes a los grupos funcionales y enlaces propios del aceite de ricino puro, también fue posible determinar la ausencia de agua en el aceite por lo que era idóneo para su posterior transformación catalítica en un éster metílico de aceite de ricino sin la necesidad de un pre-tratamiento.
- Se determinaron las condiciones óptimas para la producción del tensoactivo de aceite de ricino, por medio del diseño experimental Box-Behnken, estas fueron a la temperatura de 38,96°C, con una concentración de NaOH 10 M y 12,5 ml de ácido sulfúrico es posible obtener un rendimiento del 77,5409%.

- En base al análisis estadístico se determinó el efecto de las variables independientes que influyen en el rendimiento de tensoactivo a partir del éster metílico del aceite de ricino, quedando evidenciado en el diagrama de Pareto que el efecto de la concentración de hidróxido de sodio es el más influyente. Además se evidenció que el efecto del ácido sulfúrico es inversamente proporcional al rendimiento y que la temperatura no tiene un efecto relevante en la producción del tensoactivo.
- Mediante el análisis FTIR del tensoactivo obtenido a partir del éster metílico del aceite de ricino se identificó la banda principal correspondiente al grupo funcional $\mathrm{SO_3H}$ el cual es propio de los ésteres metílicos sulfonados. La molécula del producto sulfonado es de carácter polar mientras que la cadena de la materia prima mantiene su carácter apolar, haciendo que el tensoactivo resultante sea compatible con compuestos polares y apolares, es decir es una molécula hidrofílica hidrofóbica. Esta característica lo hace un tensoactivo aniónico perfecto para la formulación de detergentes de uso doméstico.

- Las pruebas establecidas por el Instituto Ecuatoriano de Normalización, INEN, permitieron concluir que, de los detergentes biodegradables formulados, el detergente C es el que cumple con todas las condiciones para ser un detergente líquido de uso doméstico. Los valores de pH (8,03), alcalinidad libre (0%), materia insoluble en agua (0%) y biodegradabilidad (99,30%) se encontraron dentro de los límites establecidos por la norma NTE INEN 847, (2015).
- Las pruebas de espuma y desempeño que fueron realizadas en comparación con un detergente comercial denotaron que el detergente formulado C, era mucho mejor que los comerciales en cuanto a la espuma ya que estos la producen excesivamente provocando problemas al medio ambiente mientras que el detergente C produce la mitad de espuma. En cuanto a las pruebas de desempeño quedo comprobado que el detergente C es tan eficaz en cuanto a su capacidad de limpieza como el de referencia ya que elimino las manchas de las telas satisfactoriamente.

RECOMENDACIONES

- El aceite de ricino es una materia prima potencial en la industria petroquímica, debido a su estructura lineal la cual proporciona a los microorganismos la facilidad para degradarlo o digerirlo, por lo tanto se recomienda realizar más estudios que permitan determinar nuevas rutas de reacción para la obtención de nuevos productos.
- Se propone evaluar la toxicidad de los distintos aditivos utilizados en la formulación de detergentes y la influencia que tienen en el proceso de biodegradación.
- Realizar un estudio de factibilidad económica en la obtención de productos petroquímicos como tensoactivos a partir de aceite de ricino a nivel industrial en Ecuador.
- Se recomienda la implementación de políticas de estado que tengan como objetivo el control y regulación de tensoactivos como contaminantes de medios acuosos, y que impulsen a la industria mediante el desarrollo de nuevas tecnologías para la producción de los mismos, aprovechando recursos propios del país como lo es el ricino, que no se utilizan adecuadamente, para de esta manera impulsar la economía de los sectores más vulnerables.

GRACIAS