

DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE GENERACIÓN FOTOVOLTAICO CONEXIÓN A RED CON ALMACENAMIENTO PARA EL LABORATORIO DE FUENTES ALTERNATIVAS DE ENERGÍA DE LA UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE SEDE LATACUNGA.

TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE:

INGENIERO EN ELECTROMECÁNICA

AUTORES: OLA DAQUILEMA LUIS MIGUEL SALAS CALVA JOSÉ ALEJANDRO

DIRECTOR: ING. JIMÉNEZ,

MARIO 2020

Planteamiento del Problema

El principal reto que enfrenta un sistema de generación fotovoltaico es la gestión de la producción de energía variable debido a las fluctuaciones de la radiación solar, por ello la acumulación de energía en baterías asegura un suministro prácticamente continuo de energía, lo que puede proporcionar un ahorro económico al no consumir energía de la red en horas pico y por otra parte ayuda a la obtención de una red más robusta al inyectar energía a la misma.

Objetivo General

Diseñar e implementar un sistema fotovoltaico de conexión a red con almacenamiento para el laboratorio de Fuentes Alternativas de Energías de la Universidad de las Fuerzas Armadas ESPE sede Latacunga.

Objetivos Específicos

- Diseñar un sistema de generación fotovoltaica de conexión a red con almacenamiento, con un rango de potencia manejable dentro del laboratorio.
- Implementar el sistema de generación fotovoltaico en el laboratorio de fuentes alternativas de energía.
- Implementar una interfaz de comunicación para la extracción de datos del sistema fotovoltaico.
- Cuantificar el ahorro energético a partir de los datos obtenidos del sistema.

Hipótesis

Con el diseño e implementación de un sistema fotovoltaico de conexión a red con almacenamiento se podrá cuantificar el ahorro generado mediante la obtención de datos energéticos en tiempo real del sistema.

Variables de Investigación

Variable Independiente: Diseño e implementación de un sistema fotovoltaico de conexión a red con almacenamiento.

Variable dependiente: Cuantificar el ahorro energético generado por el sistema fotovoltaico mediante la obtención de datos en tiempo real del sistema.

Introducción

Sistemas fotovoltaicos

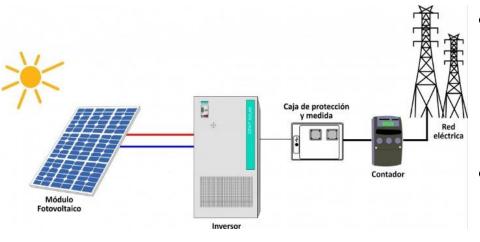
Energía Solar Fotovoltaica

 La energía eléctrica puede ser obtenida transformando la radiación solar por medio de células fotovoltaicas las cuales conforman un panel solar. Este tipo de energía puede ser usada en cualquier lugar, generando energía eléctrica para el autoconsumo

Tipos de Sistemas de Generación Solar Fotovoltaico

Sistema de generación solar fotovoltaico aislado

- Módulo de paneles solares
 - Regulador, controla el estado de carga de las baterías así como el suministro a la instalación.

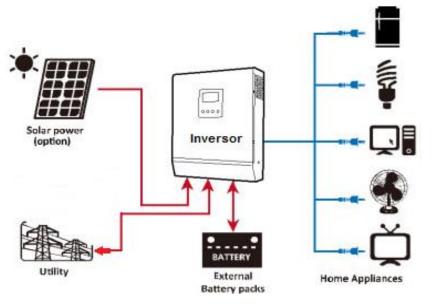


- Baterías.
 - Inversor es el que transforma la corriente continua a corriente alterna para ser consumida por la carga

Tipos de Sistemas de Generación Solar Fotovoltaico

Sistema de generación solar fotovoltaico de conexión a red

Paneles fotovoltaicos


- Inversor, gestiona la energía proveniente de los paneles y de la red eléctrica
- Contador bidireccional que cuantifica la energía que se genera y la que se nos suministra de la red

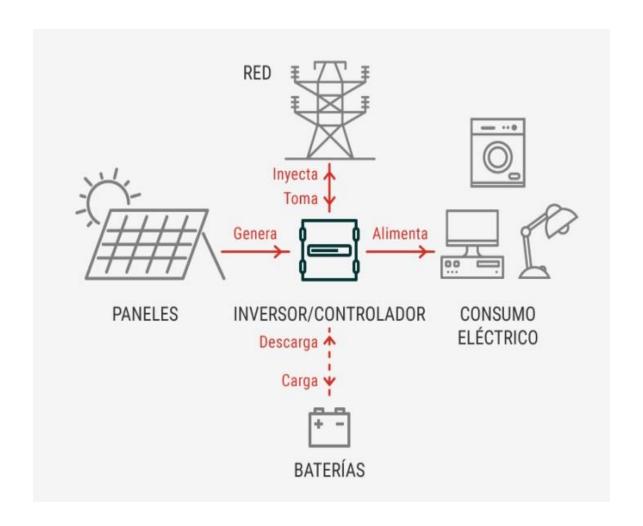
Tipos de Sistemas de Generación Solar Fotovoltaico

Sistema de generación solar fotovoltaico conexión a red con almacenamiento

- Inversor, es el encargado de gestionar los tres tipos de energía que existen en el sistema: solar, red local y de las baterías
- Baterías de acumulación
- Exceso de producción fotovoltaica, la energía será acumulada en las baterías garantizando energía eléctrica continua, además el sistema también es capaz de poder inyectar energía a la red.

Almacenamiento en baterías de acumulación

- Los sistemas fotovoltaicos son discontinuos debido a que dependen de las condiciones climáticas, es aquí donde se le da importancia a las tecnologías de almacenamiento
- Las baterías de acumulación es el equipo más apropiado cuando se trata de acumular energía, acumulan la energía excedente suministrada por los módulos fotovoltaicos para poder ser utilizadas más adelante reduciendo el impacto negativo de las condiciones climáticas, aumentando la disponibilidad y fiabilidad del sistema.



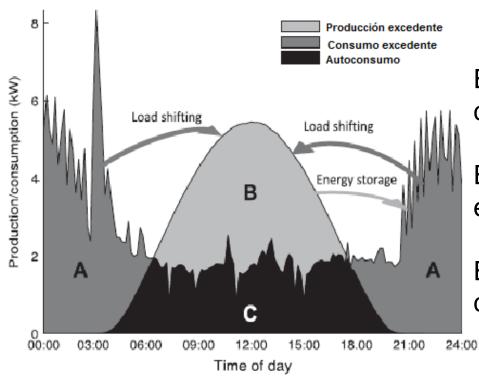
Almacenamiento en baterías de acumulación

- Las baterías han sido la tecnología más madura como sistema de apoyo de las instalaciones fotovoltaicas
- El propósito es equilibrar la carga eléctrica, entre la generación fotovoltaica y la demanda residencial
- Las baterías de plomo-acido son bajos en autodescarga de corriente en comparación con las de níquel-cadmio y níquelhidruro metálico y son relativamente de fácil mantenimiento.
- Acumulación hacen que un sistema sea más rentable, una gran capacidad de almacenamiento es una estrategia para aumentar la relación de autoconsumo

Esquema de funcionamiento SFCRA

VENTAJAS

- Mejora los transitorios, mejora de la capacidad, aumenta la potencia instantánea
- Una vivienda o edificio que cuente con este tipo de sistema de generación de energía puede reducir el consumo de la misma entregada por la red, lo cual influye directamente en la reducción del costo en la planilla.
- Puede aportar energía a la red en horas pico, alivianando la carga en la red
- Reduce la emisión de CO₂, debido a que puede reemplazar a otros sistemas de generación como lo son los térmicos.
- Si se requiere un sistema de gran capacidad los componentes son los mismos y se basan en el mismo comportamiento
- Supera el problema de intermitencia en su generación con el almacenamiento de energía en baterías de acumulación.


Selección del lugar de instalación

- Se necesita suficiente espacio en el techo, piso o poste para poner los paneles.
- Se deben evitar las sombras.
- la inclinación para aprovechar niveles óptimos es de 5° y 10° como máximo.
- La estructura del techo o del poste/marco de soporte debe resistir el peso de los paneles y ser suficientemente fuerte para soportar la fuerza del viento.
- Los paneles deben ser montados de tal manera que sean accesibles para limpieza y servicio. Esto también se aplica a la unidad de control, inversor y el banco de baterías.
- Mantener las baterías a una temperatura moderada (10-35 grados Centígrados) para incrementar la vida de los componentes.

AUTOCONSUMO

El autoconsumo consiste en generar nuestra propia energía eléctrica para consumo propio.

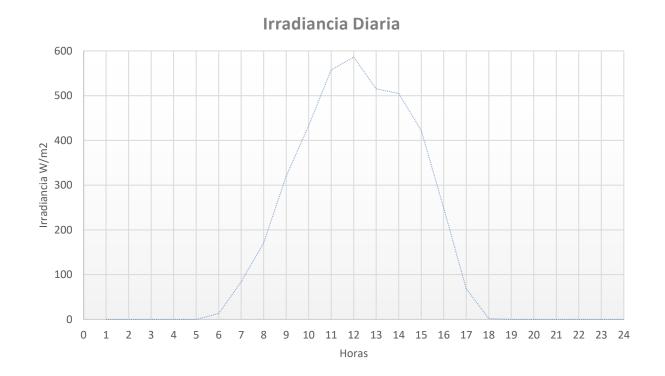
El área A representa la demanda de la carga.

El área **B** la generación total de electricidad.

El área superpuesta **C** se lo conoce como autoconsumo absoluto

$$AUTOCONSUMO = \frac{C}{B+C}$$

Análisis de la Investigación


- Verificar que el sitio cuenta con 3,83 kWh/m²/día de insolación promedio.
- Se acude a la Norma Ecuatoriana de la Construcción en donde se establecen las especificaciones y características técnicas para la formulación, diseño, ejecución y tareas relativas al funcionamiento y sostenibilidad de los sistemas fotovoltaicos
- El dimensionamiento se verá determinado por la facturación promedio de consumo de energía de un residente tipo B, que está en la escala de 251-350 (kWh/mes/cliente) según los estratos de consumo de la Empresa Eléctrica Quito S.A
- Enfatiza la importancia de la acumulación de energía, "muchos estudios se han centrado en la optimización de la capacidad de almacenamiento ya sea como estrategia de operación"

Mediciones de radiación solar

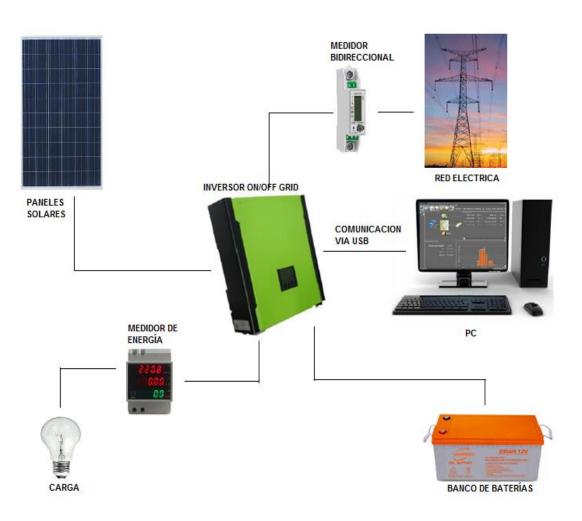
Hora	Irradiancia Promedio	
	W/m2	
1:00:00	0	
2:00:00	0	
3:00:00	0	
4:00:00	0	
5:00:00	0	
6:00:00	13,231	
7:00:00	83,732	
8:00:00	171,459	
9:00:00	320,5125	
10:00:00	432,6625	
11:00:00	557,8245	
12:00:00	586,091	
13:00:00	515,1225	
14:00:00	504,8565	
15:00:00	422,284	
16:00:00	248,745	
17:00:00	68,366	
18:00:00	1,812	
19:00:00	0	
20:00:00	0	
21:00:00	0	
22:00:00	0	
23:00:00	0	
0:00:00	0	

Mediciones realizadas del 14/05/2019 al 18/06/2019

Irradiación promedio de 3,92 kWh/m^2d ía

Demanda de Consumo de Energía

Estratos de Consumo:


Categoría de Estrato de Consumo	Escalas(kW/mes/cliente)
E	0-100
D	101-150
С	151-250
В	251-350
Α	351-500
A1	501-900

Dimensionar la capacidad del sistema: 310 kWh/mes

Diseño de la propuesta

Arquitectura del proyecto:

Medición de la radiación solar y demanda de consumo de energía promedio

Selección de equipos

Comunicación al ordenador

Obtención de las variables eléctricas

Resultado final

Potencia Instalada

Capacidad Instalada =
$$\frac{\sum_{i=mes\ 1}^{mes\ 12} Emensual_i(kWh)}{Factor_{planta\ de\ diseño}*8760\ (h)}$$

$$Factor_{planta\ de\ diseño} = \frac{4.7\ h}{24\ h}$$

Capacidad Instalada =
$$\frac{3720 \text{ kWh/año}}{0.2 * 8760 \text{ (h)}}$$

Capacidad Instalada = 2,12 kW

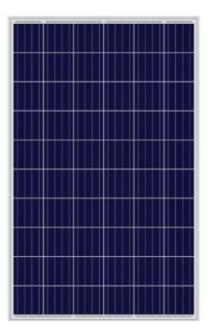
Selección del Inversor

 $P_{inv} = 1,2$ Capacidad Instalada

$$P_{inv} = 1,2(2,12 \ kW)$$

$$P_{inv} = 2,54 \ kW$$

MARCAS	<u>Infini Solar</u>
GRID-TIED OPERATION	
PV INPUT	
VOLTAJE DC NOMINAL / MAXIMO VOLTAJE DC	360 VDC / 500 VDC
VOLTAJE DE PUESTA EN MARCHA / VOLTAJE INICIAL DE ALIMENTACION	116 VDC / 150 VDC
RANGO DE VOLTAJE MPP	250 VDC ~ 450 VDC
CORRIENTE MAXIMA DE ENTRADA	18 A
GRID OUTPUT (AC)	
VOLTAJE NOMINAL DE SALIDA	208/220/230/240 VAC
CORRIENTE NOMINAL DE SALIDA	13 A
FACTOR DE POTENCIA	>0.99
OFF GRID OPERATION	
AC INPUT	
VOLTAJE AC DE PUESTA EN MARCHA	120 – 140 VAC
RANGO DE VOLTAJE DE ENTRADA	170 ~ 280 VAC
CORRIENTE AC MAXIMA DE ENTRADA	
COMUNICACION	USB O RS232
SLOT INTELIGENTE OPCIONALES	SNMP,MODBUS,AS- 400



Selección del panel Solar

Marcas	SUNMART
Pmp	270 W
Vmp	31,47 V
lmp	8,58 A
Voc	37,81 V
Isc	9,11 A
TONC	47 ° C
Eficiencia	16,59%
CCT- I _{sc}	0.05
CCT-Voc	0.35 %
CCT- P _{Máx}	0.45 % °C

Paneles en serie

$$8 \times 37,81 \text{ V} = 302,48 \text{ VDC}$$

Vmax del panel

Ta máx.	25 °C
Ta min	5°C
I máx.	1200 W/m2
I min	100 W/m2

$$Tp = Ta + \frac{TONC - 20}{800} I$$

Tp min =
$$5 + \frac{47 - 20}{800}$$
 100 = **8**, **37** °**C**

Tp max =
$$25 + \frac{47 - 20}{800}$$
 $1200 = 65, 5$ °C

$$\frac{\delta \text{ Voc}}{\delta \text{ T}} = \frac{\delta \text{ Vmp}}{\delta \text{ T}} = 37,81 \text{ V} * \frac{0.35\%}{^{\circ}\text{C}} * \frac{1}{100\%} = 0.1323 \frac{\text{V}}{^{\circ}\text{C}}$$

$$\Delta T = 25^{\circ}C - 8,37^{\circ}C = 16,63^{\circ}C$$

$$\Delta V = \Delta T * \frac{\delta Voc}{\delta T} = 16,63 \,^{\circ}C * 0.1323 \, \frac{V}{^{\circ}C} = 2,16 \, V$$

Vmax panel =
$$Voc + \Delta V = 37,81 + 2,16 = 39,97 V$$

Vmin del panel

$$\Delta T = 65.5^{\circ}C - 25^{\circ}C = 40.5^{\circ}C$$

$$\Delta V = \Delta T * \frac{\delta Voc}{\delta T} = 40.5 \,^{\circ}C * 0.1323 \, \frac{V}{^{\circ}C} = 5,35 \, V$$

Vmin panel =
$$Voc - \Delta V = 37,81 - 5,35 = 32,46 \text{ V}$$

Paneles en serie máximos

$$Nps \le \frac{Vmax inversor}{Vmax panel}$$

Nps
$$\leq \frac{450 \text{ V}}{39,97 \text{ V}}$$

 $Nps \leq 11 \ paneles$

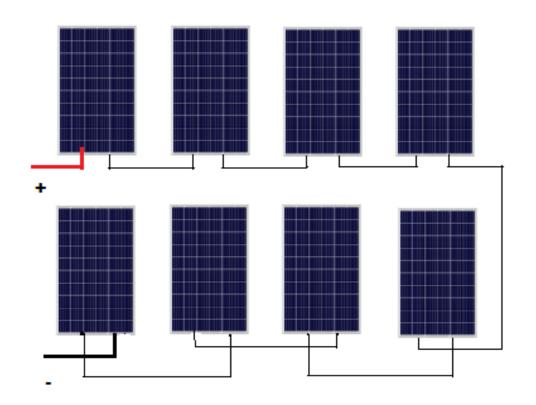
Paneles en serie mínimos

$$Nps \ge \frac{Vmin inversor}{Vmin panel}$$

Nps
$$\geq \frac{250 \text{ V}}{32,46 \text{ V}}$$

Nps
$$\geq 7,7$$

Nps \geq 8 paneles


Número de hileras

$$Nhp \le \frac{I \max admisible inversor}{Isc}$$

Nhp
$$\leq \frac{18 \text{ A}}{9.11 \text{ A}} = 1.98$$

 $Nhp \leq 1,98$

 $Nhp \leq 1 \text{ hilera}$

Dimensionamiento de las Baterías

$$C_{b} = \frac{E_{D}}{V_{N} * n_{b} * n_{I}}$$

$$E_D = \frac{310 \text{ kW/mes}}{30 \text{ dias/mes}} = 10.33 \text{ kW/día}$$

$$E_D = 10.33 \frac{\text{kW}}{\text{día}} (60\%) = 6.2 \text{ kW/día}$$

$$C_b = \frac{6200 \frac{W}{dia}}{(0.7)(0.93)(48 \, Vdc)}$$

$$C_b = 198.41 \, Ah$$

Velocidad de descarga de las Baterías

$$t = \frac{E_D}{P_I} = \frac{6200 \text{ W/día}}{1200 \text{ W}} = 5,16$$

$$C_b = C_5 = 198.41 \, Ah$$

$$\frac{C_{10} - C_5}{(10 - 5,16)} = \frac{0,25 \ C_{10}}{90}$$

$$\frac{C_{10} - 198,71}{4,84} = \frac{0,25 \ C_{10}}{90}$$

$$90 C_{10} - 17883,9 = 1,21 C_{10}$$

$$C_{10} = \frac{17883,9}{88,79}$$

$$C_{10} = 201,4 \text{ Ah}$$

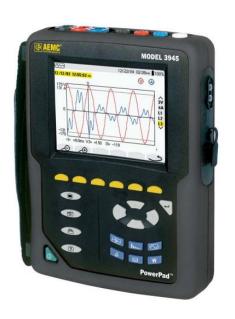
Número de Baterías en Serie

Número de baterías en serie =
$$\frac{V \text{ nominal del sistema}}{V \text{ nominal bateria}}$$

Número de baterías en serie =
$$\frac{48 \text{ V}}{12 \text{ V}}$$

Número de baterías en serie = 4 baterías

Marcas	FMJ12-200
Capacidad (25%)	10HR(20A)
	200AH
Peso	58.8 kg
Dimensiones	L=520mm
	A=240mm
	H= 245mm
Vida Util	8-10 años
Voltaje	12 V



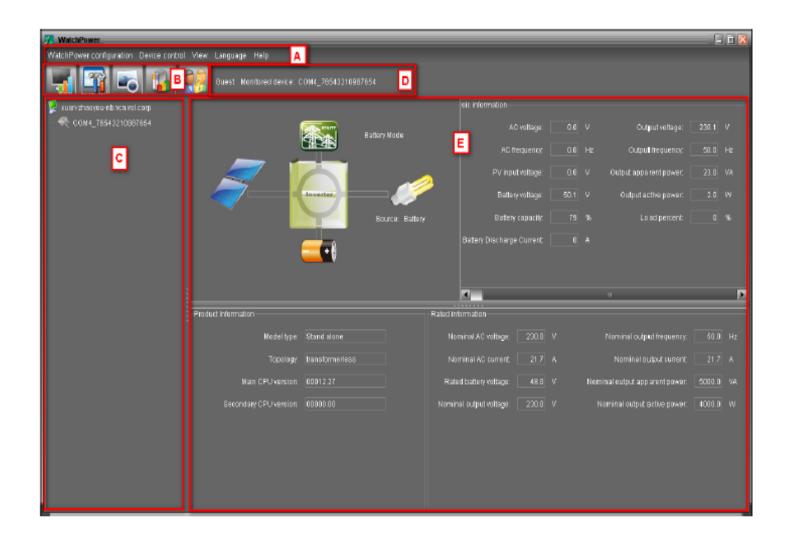
Selección del Contador de Energía

Analizador de Calidad de Energía Eléctrica Modelo 3945

MODELO	3945		
ELECTRICAS			
Frecuencia de Muestreo	256 muestras por cicio		
Almacenamiento de datos	4MB partidos para formas de onda, transientes, alarmas y registro		
Voltaje (TRMS)	Fase-a-Fase: 830V Fase-a-Neutro: 480V		: 480V
Corriente (TRMS)	Tenaza MN: 0 a 6A/120A 0 0 a 240A		
MEDICION	RANGO	RESOLUCION	EXACTITUD
Voltajes RMS Mono-Fásicos	6 a 480V	0.1V	±0.5% ± 2cts
Voltajes RMS Fase-a-Fase	10 a 830V	0.1V	±0.5% ± 2cts
Voltajes de Pico Mono-Fásicos	6 a 680V	1V	±(1% + 5cts)
Voltajes de Pico Fase-a-Fase	10 a 1360V	1V	±(1% + 5cts)
Frequencia (Hz)	40 a 69Hz	0.01Hz	±0.01HZ
Componente de Voltaje CC	6 a 650V	0.1V	±1% ± 2cts
Sensores de Corriente (Arms)			
Tenaza M Tenaza SR Sensor AmpFlex*	0 a 240A 0 a 1200A 10 a 6500A	0.1A 0.1A; 1A ≥ 1000A 0.1A; 1A ≥ 1000A	±(0.5% + 2cts) ±(0.5% + 2cts) ±(0.5% + 1A)
Potencia Activa (Real) (kW)	0 a 9999kW	4 digitos (10,000ct)	±1% ±1ct @ PF ≥0.8
Potencia Reactiva (kVAR)	0 a 9999kVAR	4 digitos (10,000ct)	±1% ±1ct @ PF ≤0.8
Potencia Aparente (kVA)	0 a 9999kVA	4 digitos (10,000ct)	±1% ± 1ct
Factor de Potencia (PF y DPF)	-1.000 a 1.000	0.001	±(1.5% + 0.01)
Energía Activa (kWh)	0 a 9999MWh	4 digitos (10,000ct)	±1% ±1ct @ PF ≥0.8
Energía Reactiva (kVARh)	0 a 9999MVARh	4 digitos (10,000ct)	±1% ±1ct @ PF ≤0.8
Energía Aparente (kVAh)	0 a 9999MVAh	4 digitos (10,000ct)	±1% ± 1ct
Desbalance (V & A)	0 a 100%	0.1%	±1% ± 1ct
Angula de Fase (V-A, A-A, V-V)	-179° a +180°	1°	±2° ± 1ct
Armónicos (1º to 50º) F = 40 a 69Hz (V ≥ 50V, A > Inom/100)	0 a 999%	0.1%	±1% + 5cts
Distorsión Armónica Total (V y A)	0 a 999%	0.1%	±1% + 5cts
Factor-K (Akt)	1 a 99.99	0.01	±5% ± 1ct
Parpadeo (Pst)	0.00 a 9.99		_
Allmentación	Juego de baterías recargables NIMH de 9.6V Alimentación CA: 110/230VcA ±20% (50/60Hz)		
Vida de la Batería	6 hrs con pantalia encendida; ≤96 hrs con pantalia apagada (en modo registro)		

Selección del medidor de Energía

MARCAS	YAPTHES
Rango de voltaje	AC 80-300V
Rango de corriente	CA 0-100A
Precisión	1%, ± 2 dígitos
Rango de potencia activa	0-30000W
Peso	118 g
Dimensiones	7x7x7 cm



Criterio de la Selección del Software Solar Power

- Adquisición automática y en tiempo real de datos de dispositivos y almacenamiento seguro de registros de datos
- Representación gráfica de los datos del dispositivo para la lectura rápida y fácil
- Advertencia, notificaciones o alarmas de fallo a través de mensajería móvil, mensaje de la bandeja y el correo electrónico.
- Fácil diagnóstico de estadísticas de eventos
- Soporta actualización en línea y actualización manual

Solar Power

PRUEBAS

Las pruebas realizadas corresponden a la verificación de la comunicación del sistema fotovoltaico con el ordenador para la exportación de datos, y además comprobar el estado de funcionamiento en pantalla del software Solar Power y del inversor.

Asimismo el registro de datos del analizador AEMC 3945 y del la datalogging TES 132 (Medidor Solar)

Sincronización de todos los equipos con el inversor

Registro de datos del Software Solar Power

A	В	C	D	E	F	G	Н	I	J	
1 Modo dispositivo	Hora	Tensión de la red	Potencia de entrada PV	Frecuencia de la red	Tensión de entrada PV	Potencia de carga	Nivel de carga	Tensión de la batería	Capacidad de la batería	
2 Grid-tie with backup	2019-12-06 18:05:51	218.2	Ó	59.9	104.7	527.0	17	49.8	63	
3 Grid-tie with backup	2019-12-06 18:05:29	218.4	1	60.0	104.8	512.0	17	49.8	63	
4 Grid-tie with backup	2019-12-06 18:04:57	219.2	1	59.9	107.1	515.0	17	49.8	63	
5 Grid-tie with backup	2019-12-06 18:04:25	218.4	Ó	60.0	107.6	504.0	17	49.8	63	
6 Grid-tie with backup	2019-12-06 18:03:53	218.9	2	60.0	107.9	521.0	17	49.8	63	
7 Grid-tie with backup	2019-12-06 18:03:21	218.4	1	59.9	109.6	494.0	16	49.8	63	
8 Grid-tie with backup	2019-12-06 18:02:59	219.4	O	59.9	109.5	516.0	17	49.8	64	
9 Grid-tie with backup	2019-12-06 18:02:27	218.8	1	60.0	110.9	516.0	17	49.9	64	
10 Grid-tie with backup	2019-12-06 18:01:55	218.8	2	59.9	112.7	367.0	12	50.3	66	
11 Grid-tie with backup	2019-12-06 18:01:23	218.9	1	60.0	114.8	38.0	2	50.9	68	
12 Grid-tie with backup	2019-12-06 18:00:51	218.8	2	59.9	116.0	40.0	2	50.9	68	
13 Grid-tie with backup	2019-12-06 18:00:29	219.3	2	59.9	116.9	36.0	3	50.9	68	
14 Grid-tie with backup	2019-12-06 17:59:56	219.4	2	60.0	117.8	37.0	2	50.9	68	
15 Grid-tie with backup	2019-12-06 17:59:25	218.8	3	59.9	119.7	28.0	2	50.9	68	
16 Grid-tie with backup	2019-12-06 17:58:53	218.6	4	59.9	119.3	56.0	3	50.9	68	
17 Grid-tie with backup	2019-12-06 17:58:21	218.9	3	59.9	119.9	45.0	2	50.8	67	
18 Grid-tie with backup	2019-12-06 17:57:59	218.9	3	59.9	120.1	38.0	2	50.8	67	
19 Grid-tie with backup	2019-12-06 17:57:27	218.9	4	60.0	119.9	20.0	2	50.8	67	
20 Grid-tie with backup	2019-12-06 17:56:55	218.9	3	59.9	120.0	41.0	2	50.7	66	
21 Grid-tie with backup	2019-12-06 17:56:23	218.0	4	59.8	120.0	41.0	2	50.5	64	
22 Grid-tie with backup	2019-12-06 17:55:51	217.7	5	59.9	120.0	526.0	17	49.8	63	
23 Grid-tie with backup	2019-12-06 17:55:30	218.0	5	60.0	120.0	512.0	17	49.8	63	
24 Grid-tie with backup	2019-12-06 17:45:38	217.7	12	60.0	120.0	511.0	17	49.9	64	
25 Grid-tie with backup	2019-12-06 17:45:06	217.9	13	60.0	120.0	503.0	16	49.9	64	
26 Grid-tie with backup	2019-12-06 17:44:34	218.2	13	60.1	120.0	524.0	17	49.9	64	
27 Grid-tie with backup	2019-12-06 17:44:02	217.5	15	59.9	120.0	527.0	17	49.9	64	
28 Grid-tie with backup	2019-12-06 17:43:30	217.7	16	59.9	120.0	502.0	17	49.9	63	
29 Grid-tie with backup	2019-12-06 17:43:09	217.7	16	60.0	120.0	510.0	17	49.9	64	
30 Grid-tie with backup	2019-12-06 17:42:37	217.5	17	59.9	120.0	509.0	17	49.9	64	
31 Grid-tie with backup	2019-12-06 17:42:05	217.8	16	59.9	120.0	506.0	17	49.9	64	
32 Grid-tie with backup	2019-12-06 17:41:33	217.5	17	60.0	120.0	502.0	16	49.9	63	
33 Grid-tie with backup	2019-12-06 17:41:01	217.6	18	59.9	119.9	523.0	17 Activar \	149,9 dows	63	
34 Grid-tie with backup	2019-12-06 17:40:20	217.4	18	60.0	120.0	511.0	[17	49.9	64	₩
→ Histo	ory Data (+)				:	4	Ir a Config	uración de PC para i	activar Windows.	1

Registros de datos del Analizador AEMC 3945

F5	6 • i × v	f _X 1,39																					٧
	A	В	С	D	E	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	
1	Modelo 3945	Serie	210422		_		_					_				· ·			_			•	
	Tendencia	ABCD																					
	Dia de empiece		Dia de finalización	Hora de finalización																			
	6/12/19	9:01:00	6/12/19	18:50:15																			
5	Tipo de conexión: Monofásic																						
6																							
7	Fecha	Hora	Frecuencia	V1 RMS	V1 THD	V1 CF	Pst1	Plt1	A1 RMS	A1 THD	A1 CF	KF1	W1	Wh1	var1	varh1	VA1	VAh1	PF1	DPF1	Tan1		
8			Hz	V	%			1	Ą	%			W	Wh	var	varh	VA	VAh					
9																							
	6/12/19	9:01:00	59,95		1,3	1,4	-,-		1,2		2,6		-148,9			-0,3		-1		-0,62			
	6/12/19	9:01:05	59,95		1,3	1,4			1,2		2,37		-150			-0,6		-		-0,62			
	6/12/19	9:01:10	59,96		1,3	1,4	-		1,2		2,36		-151,5			-0,9		1,1	-0,57	-0,63			
	6/12/19	9:01:15	59,97		1,3	1,4	-		1,2		2,5		-153	-			264,9						
	6/12/19	9:01:20	59,98		1,3	1,4		_	1,2		2,35		-155,3	-7		-1,5		1,84					
	6/12/19	9:01:25	60		1,3	1,4			1,3	30,2	2,33		-156,7	-1,27					-	_	1,2		
	6/12/19	9:01:30	60,03		1,3	1,39			1,3	28	2,48		-158,8	-,,		-2,11			-				
	6/12/19	9:01:35	60,04		1,3	1,4			1,3	27,3	2,46		-160,2	- 1,1 1									
	6/12/19	9:01:40	60,02		1,3		0,5 -		1,3	29,1	2,55	-	-161,2					-					
	6/12/19	9:01:45	60,02		1,3		0,5 -		1,3	29,7		54,2	-162,2			-		-	-	-	-		
	6/12/19	9:01:50	60,01		1,3		0,5 -		1,3	28,4		43,2				-			-				
	6/12/19	9:01:55	60,02		1,3		0,5		1,3	28,1	2,19		-166,2	-,		-1		4,46		-0,66			
	6/12/19	9:02:00	60,01		1,3		0,5 -		1,3	28,5	2,24		-168							-0,67			
	6/12/19	9:02:05	60,02		1,3	1,4			1,3	28,1	2,11		-168,4			-4,2			-				
	6/12/19	9:02:10	60,02		1,2	1,39			1,3	27,9	2,23		-172,1	-3,33			275,6				- /		
	6/12/19	9:02:15	60,03		1,2	1,39	-1-	_	1,3	29	2,61	1 -	-173,5	-1		-4,8		-1	-,	-1	- 1		
	6/12/19	9:02:20	60,03		1,2	1,39			1,3	29,1	2,16		-175	-1		-5,1			-				
	6/12/19	9:02:25	60,02		1,3	1,39			1,3	28,4	2,29		-176,4			-5,4		6,75					
	6/12/19	9:02:30	60,02		1,3	.,	0,5 -		1,3	29,4	2,12		-177,7	-1-		-5,7		-	-1				
	6/12/19	9:02:35	60,05		1,3		0,5 -		1,3	28,5	2,31	-	-177,7	-1		-6		-					
	6/12/19	9:02:40	60,03		1,3	1,39	-		1,3	28,1	2,37		-178	-1-	A -	-6,3	A A I			-0,69			
31	6/12/19	9:02:45	59,99	212,6	1,3	1,4	0,5 -		1,3	29,5	2,2	50,9	-179,7	-5,05	-214,2		√279,6		-	- 7	1,03		
	Tendencia	VAh Armónicos RN	NS (+)								: 4				lr a	Confi	guració	on de P	C para	activa	r Wind	ows.	F

Prueba 1

Balance Energético

		Potencia de					
Hora	Irradiancia	Red					
	(W/m²)	(w)					
11:30:00	999	-1040,41					
11:35:00	992	-1029,36					
11:40:00	997	-1045,37					
11:45:00	986	-1028,88					
11:50:00	984	-1038,57					
11:55:00	899	-1070,65					
12:00:00	929	-1142,53					
12:05:00	953	-1149,6					
12:10:00	949	-1137,96					
12:15:00	915	-1087,68					
12:20:00	898	-1208,48					
12:25:00	894	-1196,08					
12:30:00	900	-1215,37					
12:35:00	953	-1263,64					
12:40:00	897	-1186,68					
12:45:00	914	-1250					
12:50:00	844	-1080,7					
12:55:00	883	-1033,8					
13:00:00	876	-1046,9					
13:05:00	863	-1040,84					
13:10:00	833	-991,19					
13:15:00	834	-986,92					
13:20:00	827	-983,78					
13:25:00	816	-949,53					
13:30:00	800	-513,6					

Hora	Potencia de Red	Potencia de Carga	Potencia del SF	Potencia de baterías
11014	w	W	w	w
11:15:00	1000	410	1670,9	91,8
12:20:00	1221	277	1672	59,25
12:46:00	1082	415	1678,6	53,82
13:33:00	0	424,8	670	53,81

Prueba 1

Balance Energético

 G_T : Energía solar generada = 2,032 $\frac{KWh}{m^2}$

 $\mathbf{E}_{\text{red}} = 2,38 \text{ kWh}$

Energía de entrada al sistema:

$$E_{in} = G_T * A_p$$

$$E_{\rm in} = 2,032 \frac{\rm KWh}{\rm m^2} * 13 \,\rm m^2$$

$$E_{in} = 26,39 \text{ kWh}$$

Energía de la carga y Energía de las baterías:

$$E_{carga} = 0.433 \text{ h} * 227 \text{ W} + 1.083 \text{ h} * 410 \text{ W} + 0.733 \text{ h} * 415 \text{ W}$$

$$E_{\text{carga}} = 846,51 \text{ Wh}$$

$$E_{\text{baterias}} = 2,249 \text{ h} * (1A * 53V)$$

$$E_{\text{baterias}} = 119,19 \text{ Wh}$$

$$E_{cb} = E_{carga} + E_{baterias}$$

$$E_{cb} = 0,987 \text{ kWh}$$

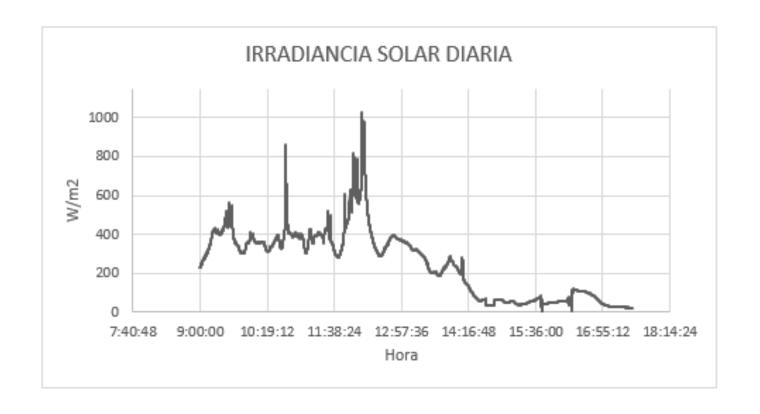
Rendimiento del sistema fotovoltaico:

$$n = \frac{E_{out}}{E_{in}} * 100\%$$

$$n = \frac{\mathbf{E_{cb}} + \mathbf{E_{red}}}{E_{in}} * 100\%$$

$$n = \frac{0,987 \text{ kWh} + 2,38 \text{ kWh}}{26,39 \text{ kWh}} * 100\%$$

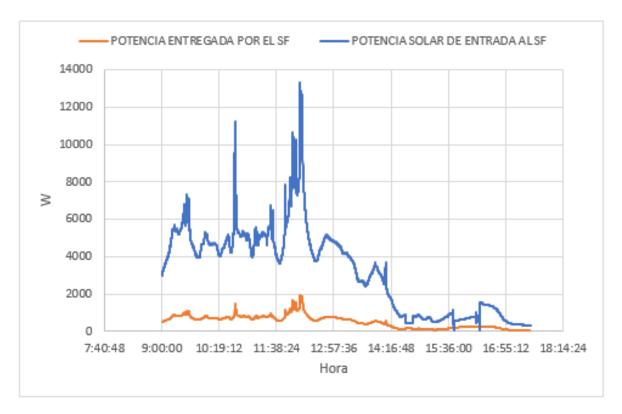
$$n = 13\%$$


Prueba 2

Balance Energético

Registro de datos:

Hora	Irradiancia Solar	Potencia Solar	Potencia Sistema FV	Potencia Red	Potencia Carga	Potencia Baterías	Potencia Inversor
0.00.00	(W/m²)	(W)	(W) 491	(W)	(W)	(W)	(W)
9:00:00	230	2990		-148,86	155	108	70
9:30:00	454	5902	925	-564,08	176	81	70
10:00:00	396	5148	810	-142,38	496	70,2	70
10:30:00	381	4953	761	-110,61	480	70,2	70
11:00:00	393	5109	800	-143,47	495	70,2	70
11:30:00	445	5785	892	-235,17	477	70,2	70
12:00:00	632	8216	1434	-592,65	465	70,2	70
12:30:00	304	3952	599	44,83	478	70,2	70
13:00:00	366	4758	742	-87,99	494	70,2	70
13:30:00	222	2886	454	95,16	499	-201,4	70
14:00:00	240	3120	496	97,21	484	15,87	70
14:30:00	59,9	778,7	118	97,48	477	-314,96	70
15:00:00	51,9	674,7	118	97,13	498	-371,92	70
15:30:00	56,6	735,8	130	97,33	499	-342,72	70
16:00:00	52,5	682,5	265	98,79	504	-344,08	70
16:30:00	108	1404	242	97,39	493	-343,4	70
17:00:00	34,6	449,8	80	97,36	504	-350,7	70
17:30:00	22,4	291,2	21	97,32	519	-369,26	70



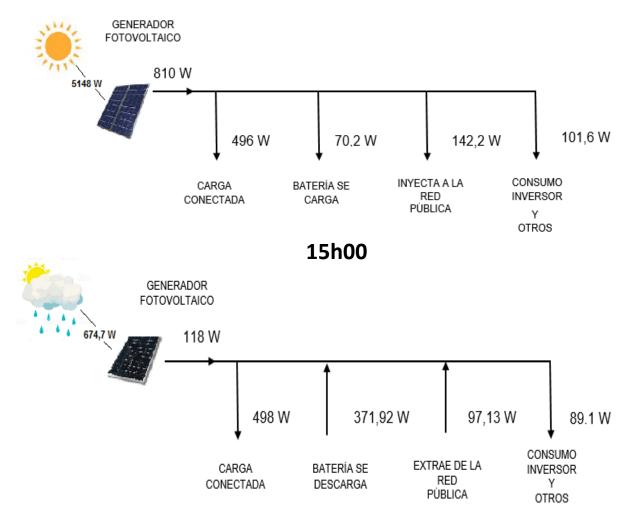
Irradiación solar de 2,1 kWh/m²día

Curva de potencia del sistema fotovoltaico y curva de potencia solar

Rendimiento del sistema:

$$n = \frac{4,38 \, kWh}{27,74 \, kWh} * 100\%$$

$$n = 15,7 \%$$


Energía solar de entrada al sistema: 27,74 kWh

Energía que entrega el sistema fotovoltaico: 4,38 kWh

Balance de Potencias

10h00

CONCLUSIONES

- El sistema de generación fotovoltaico de conexión a red con almacenamiento implementado busca dar a conocer que la energía que es generada de manera propia debe ser consumida de manera directa y así obtener un ahorro en la facturación eléctrica, utilizando como estrategia de mejora del autoconsumo fotovoltaico la acumulación de energía en un banco de baterías.
- Se diseñó e implementó un sistema fotovoltaico de conexión a red con almacenamiento que consta de 8 paneles solares conectados en serie con una potencia total de 2,160 KWp. La potencia del inversor es de 3kW y cuenta para el almacenamiento con 4 baterías de Gel de 12 V y 200 Ah de capacidad cada una, el inversor On/Off Grid es el encargado de transformar la corriente continua en alterna y de gestionar las diferentes energías: paneles, red y baterías para alimentar cargas monofásicas de 220 V.

CONCLUSIONES

- La comunicación del sistema fotovoltaico se la realizó a través del software Solar Power, aplicación que es compatible con los inversores InfiniSolar, el cual monitoriza y almacena los datos de la instalación permitiendo dar prioridad al tipo de fuente de energía con que se debe alimentar a la carga.
- Se determinó que el sistema fotovoltaico obtuvo un rendimiento del 13% en un día de condiciones climáticas favorables alcanzando valores superiores de irradiancia solar de más de 1000 W/ m², produciéndose un exceso de energía que ayudó con la carga de las baterías y vertió a la red pública un total de 2,38 kWh en 2,2 horas de ensayo.
- La energía generada por el sistema fotovoltaico en condiciones climáticas no favorables durante un día fue de 4,382 kWh/día que corresponde al 42% de la demanda de consumo de energía del residente tipo B (10,33 kWh/día).

RECOMENDACIONES

- El inversor implementado cuenta con un slot inteligente, para incorporar una tarjeta de comunicación Modbus (opcional), por lo que se recomienda implementar y plantear nuevos proyectos que permita otras alternativas de monitoreo.
- Durante la realización de las prácticas de laboratorio se debe poner en funcionamiento el sistema de acuerdo a lo establecido por las guías (Anexo 10), y de igual manera en el caso de existir aportación de energía a la red pública, solo hacerlo durante el tiempo que dure el ensayo.
- Realizar los trámites correspondientes con la empresa comercializadora de energía para validar los kilovatios horas que se aportan a la red pública y así obtener un mayor beneficio del sistema implementado de acuerdo a lo establecido por las regulaciones del ARCONEL-003/18.
- Brindar el mantenimiento apropiado al sistema fotovoltaico implementado para asegurar un correcto funcionamiento y evitar averías, sobre todo de los módulos solares ya que se encuentran sometidos a agentes externos que podrían afectar su rendimiento.

GRACIAS POR SU ATENCIÓN

