

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE-L

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA EN PETROQUÍMICA

Hidrocraqueo de polipropileno reciclado en un reactor batch empleando un catalizador $Ni-K/\gamma-Al_2O_3$ para la obtención de precursores aromáticos para la industria petroquímica.

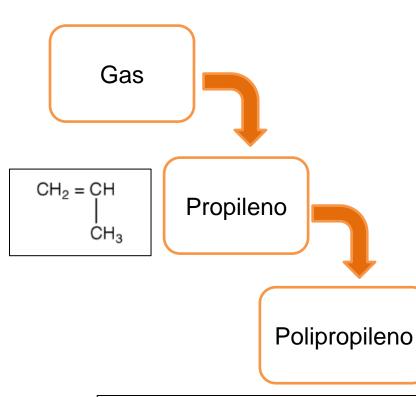
AUTORA: BUCHELI CAMPAÑA, ANA MARÍA

DIRECTORA: ING. DONOSO QUIMBITA, CATERINE ISABEL, MSc.

INTRODUCCIÓN

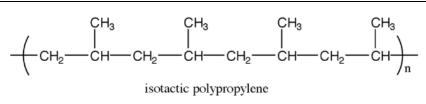
OBJETIVOS

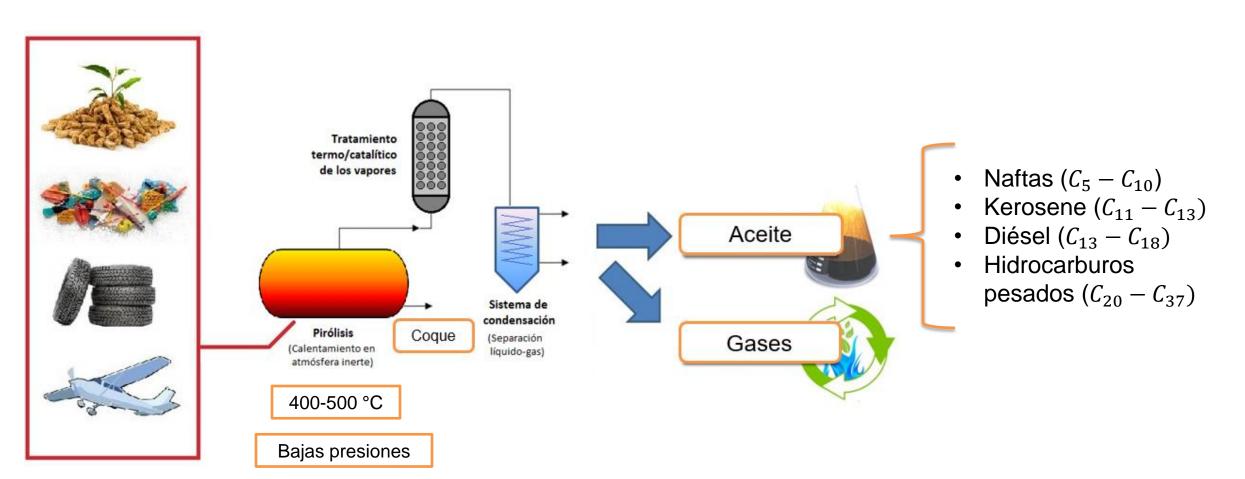
METODOLOGÍA

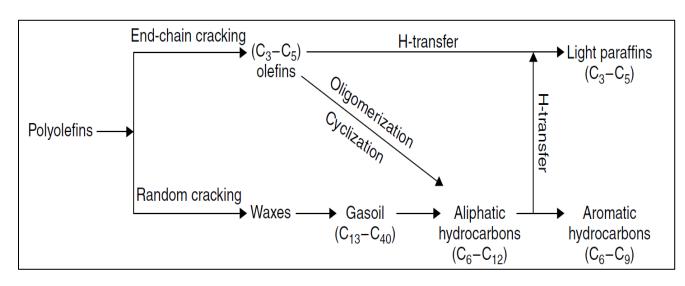

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

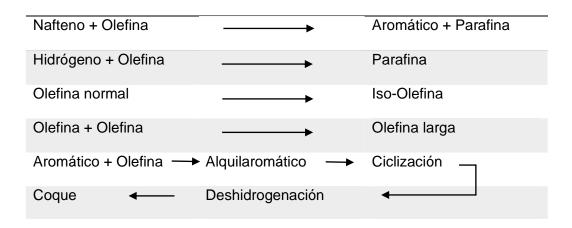
CONCLUSIONES Y RECOMENDACIONES

Polipropileno



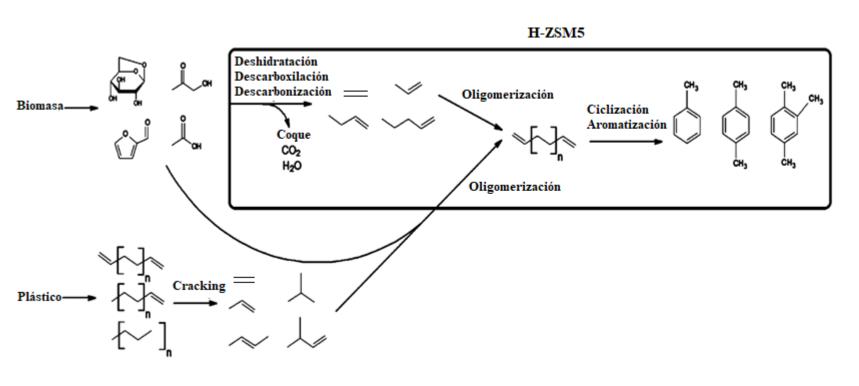


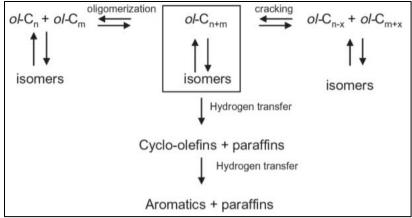




Nota. Adaptado de "Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into

Diesel and Other Fuels" (p. 78), por J. Wiley & Sons Ltd, 2006, John Scheirs & Walter Kaminsky.

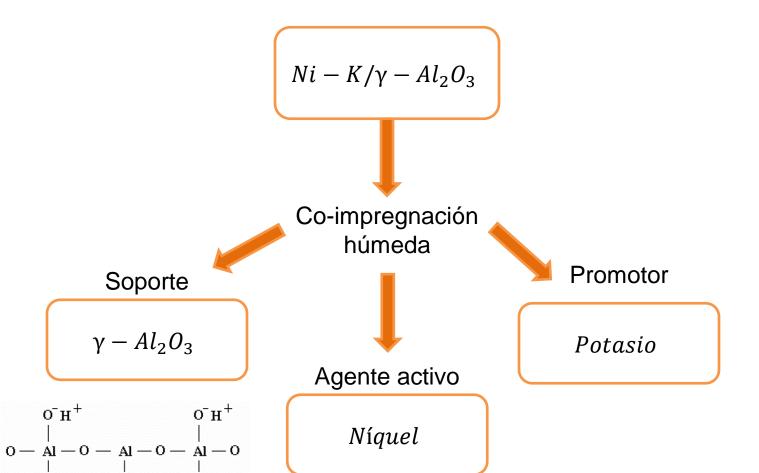

Reacciones secundarias:

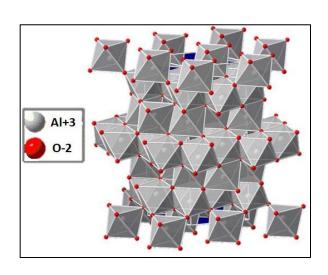


Mecanismo de reacción para la obtención de productos aromáticos

Hidrocraqueo

Oligomerización


Ciclización


Nota. Adaptado de "H-ZSM5 Catalyzed Co-Pyrolysis of Biomass and Plastics" (p. 301), por C. Dorado et al., 2014, ACS Sustainable

Estructura del óxido de aluminio

Columna de Craqueo Controlada desde Computador (PC) con Scada y Control PID, QCCC.

Temperatura máxima del equipo 310°C,

Presión al vacío de hasta -0,6 bar.

Volumen de reactor de 1L.

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

OBJETIVO GENERAL

Obtener precursores aromáticos para la industria petroquímica por hidrocraqueo de polipropileno reciclado empleando un catalizador $Ni - K/\gamma - Al_2O_3$ en un reactor batch.

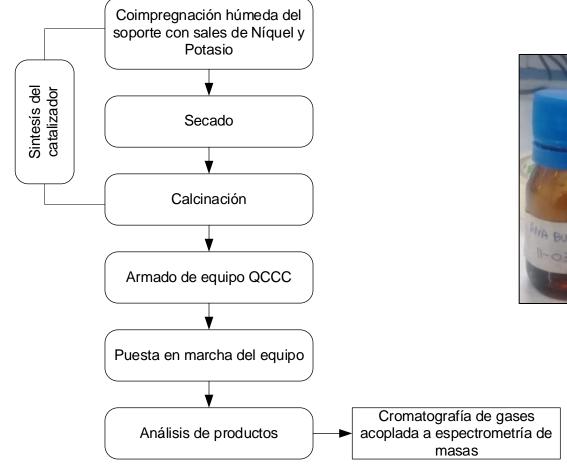
OBJETIVOS ESPECÍFICOS

- Sintetizar el catalizador $Ni K/\gamma Al_2O_3$ por el método de coimpregnación húmeda 2% (p/p) Ni y 2% (p/p) K.
- Determinar las mejores condiciones de operación para la obtención de compuestos petroquímicos aromáticos por hidrocraqueo en un reactor batch de la QCCC.
- Implementar el proceso de Hidrocraqueo en un reactor Batch a escala de laboratorio.
- Caracterizar productos del Hidrocraqueo del PP, mediante cromatografía de gases acoplado a espectrometría de masas.

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

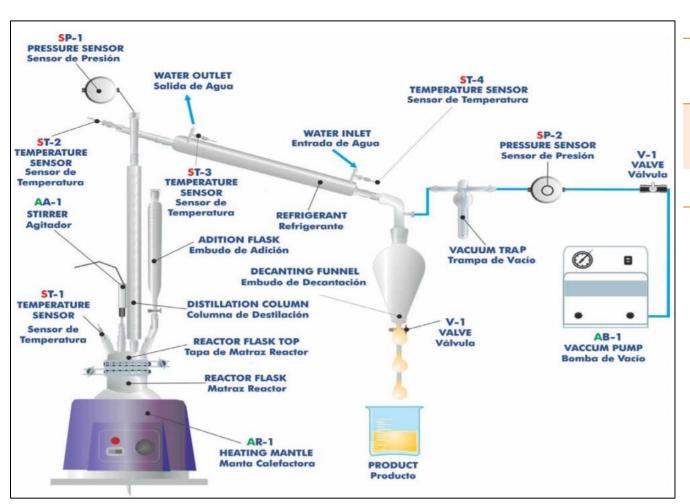

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Proceso para obtención de precursores aromáticos



Sintetización del catalizador



Diseño experimental

	Atmósfera de hidrógeno	Relación catalizador/PP
Ensayo 1	Adición de flujo de gas de hidrógeno	1/150
Ensayo 2	Adición de agua	1/150

Proceso de hidrocraqueo empleando agua mediante el equipo QCCC

Limpiado, triturado y secado

320 g de PP

0,2 ml de agua

Simulación de lecho empacado

5 50

Pirólisis térmica:

- Tiempo: 109 min
- Tasa de calentamiento: 4,40 °C/min

Pirólisis catalítica:

- Tiempo: 72 min
- Tasa de calentamiento: 0,63 °C/min

Temperatura máxima: 307,7 °C

Presión final: 0,02 bar

15

Proceso de hidrocraqueo empleando agua mediante el equipo QCCC

Recuperación de catalizador

Tiempo: 35 minutos

Voltaje: 8.4 V

Corriente: 8.87 A

Proceso de hidrocraqueo empleando gas de hidrógeno agua mediante el equipo QCCC

Limpiado, triturado y secado

54,34 cc/min de *H*₂ 88,23 cc/min de *N*₂

GC-MS

Pirólisis térmica:

- Tiempo: 116 min
- Tasa de calentamiento: 1,87 °C/min

Pirólisis catalítica:

- Tiempo: 75 min
- Tasa de calentamiento: 1,62 °C/min

Temperatura máxima: 310 °C

Presión final: -0,49 bar

Temperatura lecho: 80,4 °C

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Distribución de productos

Compuestos resultantes del hidrocraqueo con flujo de gas de hidrógeno

Compuestos		Fórmula	% Área
Cicloalcanos			
	1,4-dimetilbiciclo[2,1,0]pentano	C_7H_{12}	1,01
	Cis-1,1,3,4-tetrametilciclopentano	C_8H_{16}	2,03
	1,3,5-trimetilciclohexano	C_9H_{18}	4,92
	1,2,3,4,5-pentametilciclopentano	$C_{10}H_{20}$	3,21
	cis-1-metil-2-(1-metiletilideno) ciclopropano	$C_{10}H_{18}$	3,58
	1,1-dimetil-2-propilciclohexano	$C_{11}H_{22}$	5,33
Cicloalquenos			
	1,2,3-trimetilciclopenteno	C_8H_{14}	1,90
	3,3,5-trimetilciclohexeno	C_9H_{16}	5,82
	1,4-dimetil-5-(1-metiletil) ciclopenteno	C ₁₀ H ₁₈	3,63

Reacción de obtención de ciclohexano

Compuestos resultantes del hidrocraqueo con agua

Compuestos		Fórmula	% Área
Cicloalcanos			
	(2,2-dimetilpropyldieno)ciclopropano	C_8H_{14}	1,14
	cis -1,1,3,4-tetrametilciclopentano	C_9H_{18}	1,37
	1,3,5-trimetilciclohexano	C_9H_{18}	3,33
	1,2,3,4,5-pentametilciclopentano	$C_{10}H_{20}$	2,17
	Cis-1-metil-2-(1-metiletil)-3-(1-	0 11	0.44
	metiletilideno)ciclopropano	$C_{10}H_{18}$ 2,41	
	1-butil-2-propilciclopentano	$C_{12}H_{24}$	5,06
	1-isopropil-1,4,5-trimetilciclohexano	$C_{12}H_{24}$	6,33
Cicloalquenos			
	1,2,3-trimetilciclopenteno	C ₈ H ₁₄	1,28
	3,3,5-trimetilciclohexeno	C ₉ H ₁₆	3,93

Distribución de productos considerando el efecto del hidrógeno

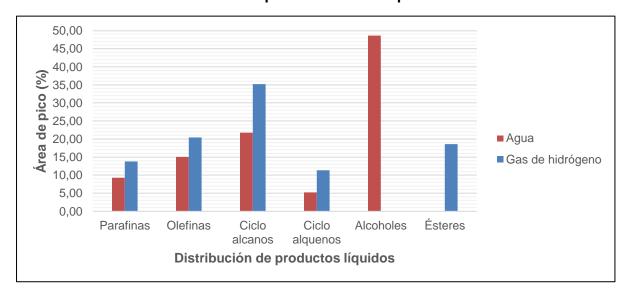
	Rendimiento fracción líquida (%)
Pirólisis Catalítica de madera de pino y poliolefinas:	
Atmósfera de H ₂ catalizada	71-74
Atmósfera de H ₂	67-71
Atmósfera inerte	65
Hidrocraqueo catalítico de PP	
Adición de gas de H ₂	36,20
Adición de agua	15,03

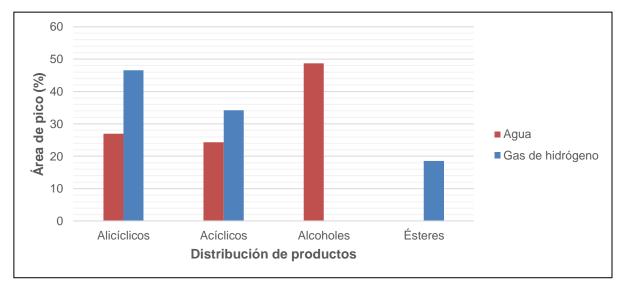
Composición de hidrocarburos ligeros (<180 °C) hidrocraqueo de PP

Compuestos	Proceso con agua	Proceso con flujo de H ₂
	(%)	(%)
Parafinas	51,04	47,01
Olefinas	48,96	52,99

Composición de fracción de hidrocarburos con P.E. <180 °C

Compuestos	Atm. inerte, sin	Atm. de $H_{2,}$ sin	Atm. de H _{2,} con
Compuestos	catalizador (%)	catalizador (%)	catalizador (%)
Parafinas	51,2	50,8	71,9
Olefinas	40,9	35,3	14,2
Aromáticos	6,3	11,9	12,1
Sustancias con O ₂	1,6	2,0	1,8


Nota. Recuperado de "Co-pyrolysis of wood biomass and synthetic polymers mixtures Part IV: Catalytic pyrolysis of pine wood and polyolefinic polymers mixtures in hydrogen atmosphere" (p. 269), por V. Sharypov et al., 2006, *Journal of Analytical and Applied Pyrolysis*.



Efectos del agua y gas de hidrógeno

Distribución micro de productos líquidos

Distribución macro de productos líquidos

Reacción de reducción de ésteres a alcoholes

Nota. Adaptado de "Supported nickel-rhenium catalysts for selective hydrogenation of methyl esters to alcohols" (p.9762), por K. Liu et al., 2017, *Royal Society of Chemistry*.

éster palmitato de metilo

alcohol cetílico

Efectos del agua y gas de hidrógeno

Efectos de ensayos con hidrógeno y agua en hidrocraqueo catalítico de PP

Tipo de proceso	Moles de H ₂	Rendimiento %
Flujo de gas de hidrógeno	0,19	36,21
Adición de agua	0,01	15,03

Condiciones del gas hidrógeno

Temperatura a la que ingresa el gas	249,5 °C
Presión	2 bar
Volumen	54,34 cc/min
Tiempo en el que fluye el gas	75 min

Hidrocraqueo catalítico de tetralina a 450°C empleando el catalizador Ni-Sn/H-Beta por Lee et al (2016)

Relación molar	Rendimiento	Moles de H ₂ asumidas
H₂/tetralina	(%)	a 270 g de tetralina
4	81,5	8,17
8	71,8	16,33

Efecto del tiempo de reacción

Hidrocraqueo catalítico de PP reciclado		
Ensayo	Tiempo de reacción (min)	
Adición de agua	72	
Adición de flujo de gas de H ₂	75	

Pirólisis catalítica de LDPE, Insura et al. (2010)

- 1 hora
- Mayor rendimiento de alcanos y aromáticos, menor rendimiento de cicloalcanos y alquenos.

Degradación de PP, Sekine y Fujimoto (2003)

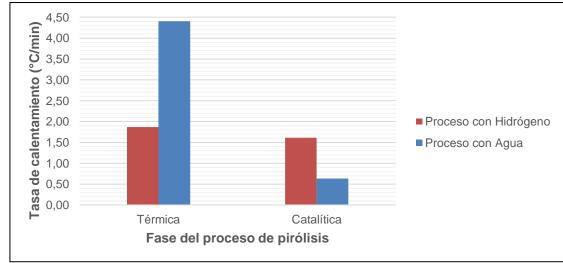
1 hora

Hidrogenación de compuestos aromáticos a cicloalquenos, Estados Unidos Patente nºUS3912787A, (1974)

45 min a 4 horas

Despolimerización de HDPE, Ding et al. (1996).

- 1 hora
- Aumento de conversión a 90 min y disminución de rendimiento de producto líquido.



Efecto de la temperatura de reacción

Hidrocraqueo catalítico de PP reciclado		
Ensayo	Temperatura de reacción (°C)	
Adición de agua	307,7	
Adición de flujo de gas de H ₂	310	

Tasa de calentamiento en fases de pirólisis

Hidrogenación de compuestos aromáticos a cicloalquenos, Estados Unidos Patente nºUS3912787A, (1974)

150 a 200 °C

Craqueo catalítico de polipropileno, Lin y Yen (2005)

290 a 430 °C

Degradación de PP, Sekine y Fujimoto (2003)

420 °C mayor destilado ligero y naftas

Pirólisis catalítica rápida de madera blanda, Wang (2017)

- 450 °C
- Temperatura mayor a 350 °C es posible la transformación de alquenos en alcanos

Efecto de la presión de vacío

Pirólisis al vacío de neumáticos, Roy et al. (1999)

0,06 hasta 0,1 bar

45% aromáticos
15% isoalcanos
22% alquenos
7% naftenos,
1% alcanos
10% de H. de mayor
peso molecular

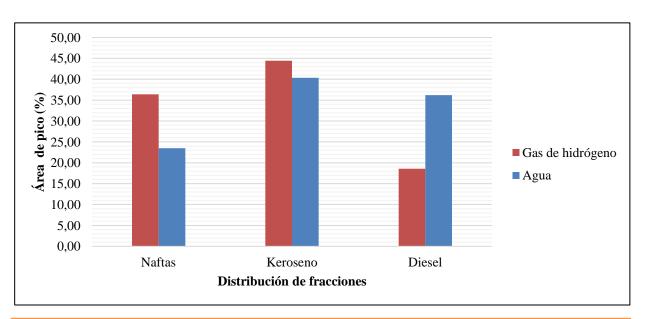
Hidrocraqueo catalítico de PP con adición de agua

-0,58 hasta 0,02 bar

Alcanos 1,4%
Alquenos 2,26%
Cicloalcanos 3,27%
Cicloalquenos 0,78%
Alcoholes 7,31%

Hidrocraqueo catalítico de PP con adición de gas de H_2

-0,59 hasta -0,49 bar


Alcanos 5%
Alquenos 7,39%
Cicloalcanos 12,76%
Cicloalquenos 4,11%
Ésteres 6,72%

E S P E

Efecto del catalizador Ni-K/γ-Al₂O₃

Fracciones del producto líquido del proceso de hidrocraqueo

Pirólisis catalítica de HDPE, Sonawane et al. (2014)

- Rendimiento sin catalizador: 60-62%
- Rendimiento con 5% zeolita: 65-67%
- Rendimiento con 5 % de alúmina: 70-71%
- Gasolinas, keroseno, diésel e hidrocarburos pesados

Composición	Proceso con agua (%)	Proceso con flujo de H ₂ (%)
Alcanos	10,09	18,20
Cicloalcanos	14,89	32,53
Alquenos	11,41	19,80
Sustancias con Oxígeno	63,61	29,47

Composición de fracción líquida con P.E. 180-350 °C

Composición	Atmósfera de H ₂ , sin catalizador (%)	Atmósfera de H ₂ , con catalizador (%)
Alcanos normales + isoalcanos	19,4	45,1
Cicloalcanos	36,8	17,1
Alquenos	22,6	9,3
Aromáticos	2,4	7,1
Sustancias con Oxígeno	1,6	1,8

Nota. Recuperado de "Catalytic pyrolysis of pine wood and polyolefinic polymers mixtures in hydrogen atmosphere" (p. 269), por V. Sharypov et al., 2006, *Journal of Analytical and Applied Pyrolysis*.

Efecto de la relación catalizador/polipropileno

Hidrocraqueo catalítico de PP reciclado

Relación 1/150	Rendimiento fracción líquida
Proceso con flujo de H ₂	36,21%
Proceso con agua	15,03%

Pirólisis catalítica de LDPE bajo catalizadores Pt/Al₂O₃ y Rh/Al₂O₃

Relación cat/LDPE	Observaciones
1/10	Rendimiento producto líquido 88,5%, presencia de aromáticos
1/5	Mayor presencia de cicloalcanos, presencia de aromáticos
2/5	Rendimiento producto líquido 85%, , presencia de aromáticos

Nota. Recuperado de "Catalytic pirolysis of low-Density Polyethylene over Alumina-supported noble metal catalysts", por Insura et al, 2010.

Hidrogenación de compuestos aromáticos a cicloalquenos, Estados Unidos Patente nºUS3912787A, (1974)

Proporción catalizador/polipropileno de 1/200.

Catalizador empleado en el hidrocraqueo catalítico de PP: Ni(2%)-K(2%)/Al₂O₃

Hidrocraqueo catalítico de tetralina, Lee at al. (2016)

- Ni(2%)/H-Beta rendimiento (40% rendimiento de aromáticos)
- Ni(10%)/H-Beta (7% rendimiento de aromáticos)
- Ni(5%)-Sn(5%)/H-Beta (48,1% de rendimiento de aromáticos)

Producción de hidrógeno por gasificación de vapor de polipropileno, Wu y Williams (2009)

- 10% Ni en Ni/Al₂O₃
- 10% Ni en Ni/MgO
- 10% Ni en Ni/CeO₂
- 10% Ni en Ni/ZSM-5
- (1:2) Ni-Al
- (1:1:2) Ni-Mg-Al
- 10% Ni en Ni/CeO₂/Al₂O₃

Efecto del potasio (K)

Catalizador empleado en el hidrocraqueo catalítico de

PP: Ni(2%)-K(2%)/Al₂O₃

Ausencia de coque

Reformado catalítico de metano, Nandini et al. (2005)

- Ni/Al₂O₃ y Ni-K/Al₂O₃
- Alta conversión de metano y actividad catalítica
- Ni-K/Al₂O₃ menor deposición de coque

Estudio sobre el efecto del potasio como promotor, Juan et al. (2006)

- 0,2 % en peso de K₂O, (0,00165 g K)
- Reducción de la deposición hasta más del 90%
- Actividad catalítica aminorada en solo un 10% o menos.

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

El catalizador Ni-K/γ-Al₂O₃ sintetizado por el método de coimpregnación húmeda 2% (p/p) Ni y 2% (p/p) K; demostró una mayor interacción en el ensayo con adición de flujo de gas hidrógeno, al presentar un menor número de componentes similares a productos obtenidos únicamente en una pirólisis térmica según referencias bibliográficas y al reflejar un mayor rendimiento de productos líquidos de 36,21% a diferencia del ensayo con adición de agua (15,03%).

La inyección de flujo de gas hidrógeno permitió obtener un mayor porcentaje de área de compuestos alicíclicos 46,58%, lo cual demostró una hidrogenación de compuestos aromáticos y eficiencia en el ensayo. Las bajas temperaturas no son favorables para la producción de compuestos aromáticos, mientras que, cortos tiempos de residencia alcanzados por la operación al vacío en los ensayos, evitó reacciones secundarias indeseables como la formación de coque trabajando con una relación catalizador/PP de 1/150.

Conclusiones

La degradación de polipropileno bajo una atmósfera de hidrógeno fue obtenida gracias a la implementación del proceso de hidrocraqueo en un reactor batch a escala de laboratorio, en donde se evidenció un mejor hidrocraqueo en el ensayo con adición de gas de hidrógeno al producir compuestos como cicloalquenos provenientes de la hidrogenación de hidrocarburos aromáticos empleando 0,19 moles de hidrógeno.

Los resultados de la cromatografía de gases acoplada a espectrometría de masas presentaron en su composición en porcentaje de área; 9,31% alcanos, 15,03% alquenos, 21,79% cicloalcanos, 5,20% cicloalquenos y 48,66% alcoholes en el ensayo con inyección de agua, mientras en el ensayo con adición de flujo de gas hidrógeno se presenta una composición; 13,81% alcanos, 20,40% alquenos, 35,23% cicloalcanos, 11,35% cicloalquenos y 18,55% de ésteres.

Recomendaciones

- ✓ Incrementar el flujo de gas de hidrógeno en una cantidad mayor al 54,34 cc/min el cual representa el 38,11%.
- ✓ Tiempos de reacción aproximadamente de una hora.
- ✓ Trabajar a temperaturas en el rango de 400-450 °C
- ✓ Manejar tasas de calentamiento lentas de hasta 10 °C/min. Además, la incorporación de una fuente de calor en el lecho empacado, como un mechero, asegurará la activación del catalizador.
- ✓ Conservar la presión de vació en el rango de 0,02 a -0,60 bar. Sin embargo, es necesario mejorar la sección de condensado
- ✓ Utilizar una relación catalizador/polipropileno mayor a 1/10. Considerar modificar la composición de níquel en el catalizador Ni-K/γ-Al₂O₃ en un mayor porcentaje de hasta el 10% en peso.

GRACIAS POR SU ATENCIÓN