

UNIDAD DE GESTIÓN DE TECNOLOGÍAS CARRERA DE TECNOLOGÍA EN MECÁNICA AUTOMOTRIZ

Trabajo de titulación:

"CONSTRUCCIÓN DE UN BANCO DE PRUEBAS PARA BOBINAS DEL SISTEMA DE ENCENDIDO DE VEHÍCULOS AUTOMOTORES"

Autor:

CBOS. DE TRP. QUINGA CHIGUANO EDISON XAVIER

Director:

ING. ROMEL CARRERA

Latacunga-Ecuador Septiembre 2016

PROBLEMA DE INVESTIGACIÓN

PLANTEAMIENTO DEL PROBLEMA

✓ La UGT cuenta con escasos equipos para que el estudiantado Automotriz realice sus prácticas en las bobinas de encendido.

JUSTIFICACIÓN

✓ El equipo contribuirá al mejor desempeño técnico ya que permitirá observar la chispa de encendido para dar un diagnóstico de la bobina.

OBJETIVOS

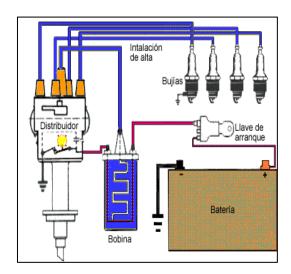
General

Construir un banco de pruebas para bobinas del sistema de encendido de vehículos automotores, mediante un circuito electrónico que haga funcionar módulos de encendido y bobinas para verificar su estado de funcionamiento e implementarlo a la carrera de Mecánica Automotriz de la Unidad de Gestión de Tecnologías.

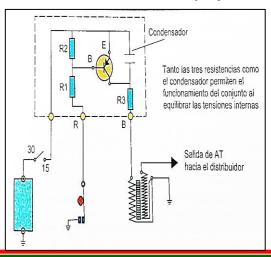
Específicos

- ✓ Investigar los avances tecnológicos acerca del sistema de encendido.
- ✓ Fabricar un banco de pruebas para bobinas del sistema de encendido de vehículos automotores ergonómico, sencillo de utilizar y que satisfaga la necesidad del laboratorio.
- ✓ Realizar pruebas en las bobinas de encendido automotriz en vehículos que poseen diferentes sistemas de encendido.

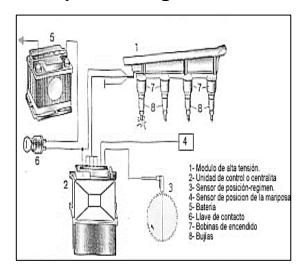
MARCO TEÓRICO

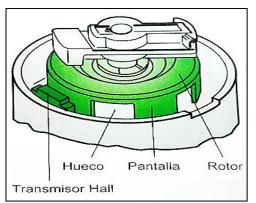

SISTEMA DE ENCENDIDO

- ✓ Originar las chispas entre los electrodos de las bujías con la energía suficiente, las mismas que encienden la mezcla empujando el pistón hacia abajo para hacer girar el cigüeñal.
- ✓ El salto de la chispa debe ser en el momento preciso, ajustándose a los valores estipulados en el ciclo práctico, en cuanto al valor en grados del ángulo de avance al encendido.
- ✓ En motores multicilíndricos, el salto de la chispa debe efectuarse en el cilindro o cilindros adecuados, según el orden de encendido. Esta labor cumple el distribuidor pero en la actualidad la implementación de los encendidos estáticos ha permitido excluir del mismo.



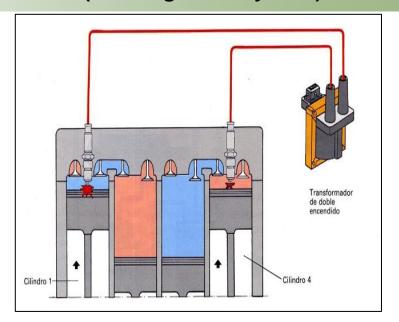
TIPOS DE SISTEMAS DE ENCENDIDO


Convencional

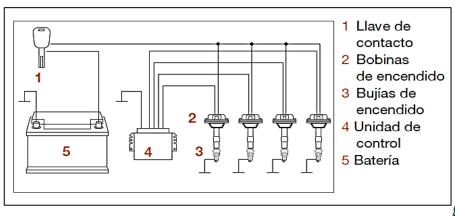

Electrónico transistorizado (ruptor mecánico)

Electrónico por descarga de condensador

Electrónico sin contacto



Electrónico integral


Bobina de encendido con etapa final de encendido integrada Distribuidor o delco Bujía Unidad de control (ECU) 5.- Sensor de temperatura del 6.- Sensor de posición de la mariposa 7.- Sensor de revoluciones y PMS 8.- Disco dentado 9.- Llave de contacto

DIS (Direct Ignition System)

UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

COP (Coil-Over-Plug)

BOBINAS DE ENCENDIDO

Requisitos y características de las bobinas:

- Intervalo de temperatura de -40 °C a +180 °C.
- Intervalo de vibraciones hasta 55 g.
- Resistencia a la gasolina, el aceite y el líquido de frenos.

E = Núcleo de hierro laminado (magnético)

N₁ = Lado del bobinado primario: 100 a 250 vueltas

N₂ = Lado del bobinado secundario: 10.000 a 25.000 vueltas

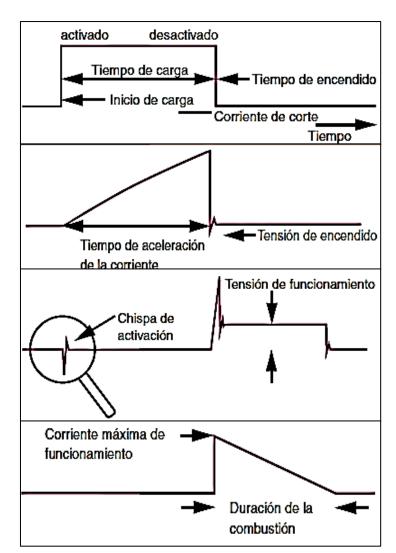
U₁ = Tensión primaria (tensión de la batería): 12 a 14,7 V

U₂ = Tensión secundaria: 25.000 a 45.000 V

I₁ = Corriente primaria: 6 a 20 A

l₂ = Corriente secundaria: 80 a 120 mA

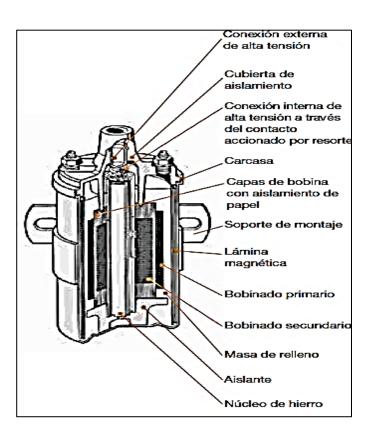
PARÁMETRO	SMBO	VALOR
	LO	
Corriente primaria	I 1	6 a 20 A
Tiempo de carga	T1	1,5 a 4,0 ms
Tensión secundaria	U2	25 a 45 kV
Duración de la chispa	TFu	1,3 a 2,0 ms
Corriente de la chispa	IFU	80 a 115 mA


TERMINOLOGÍA DE LA TECNOLOGÍA DE ENCENDIDO

Control

Corriente primaria

Tensión secundaria


Corriente secundaria

TIPOS DE BOBINAS

Bobinas de encendido de cartucho

Bobinas de encendido con distribuidor electrónico

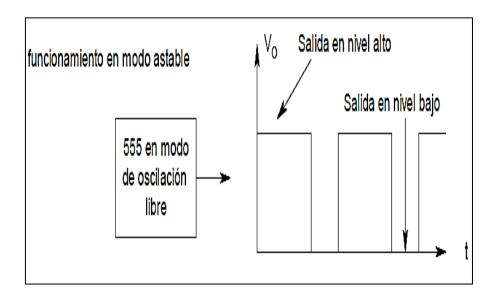
Bobinas de chispa doble

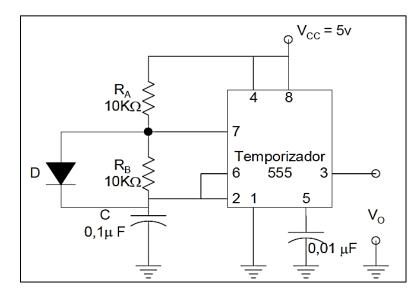
Bobinas de encendido tipo lápiz

DAÑOS QUE SUFREN LAS BOBINAS

- Cortocircuitos internos llevan al sobrecalentamiento
- Alimentación de tensión defectuosa
- Daños mecánicos
- > Fallo de contacto
- Problemas térmicos
- Vibraciones
- Comprobación visual de las bobinas

CONSTRUCCIÓN DEL BANCO DE PRUEBAS




ANÁLISIS

Temporizador 555 configuración:

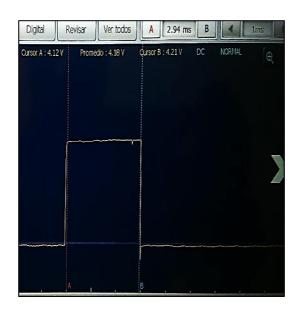
Astable

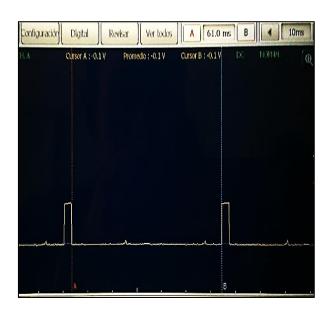
Ampliación de ciclo de trabajo

Ecuaciones:

$$Ta = 0.7 * RA * C$$

$$Tb = 0.7 * RB * C$$

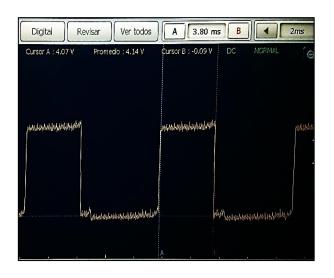

OBTENCIÓN DE DATOS

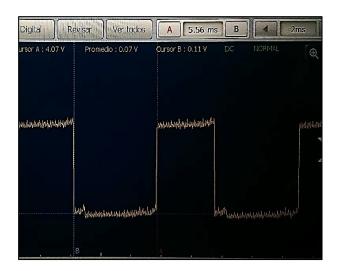

Vehículo corsa wind 2002 en marcha mínima

Tiempo alto

- Tiempo de carga 2.94ms.
- Voltaje de señal 4.1V.

- > Tiempo bajo
- Tiempo de duración de la combustión 61.0ms.
- Voltaje de señal 0V.

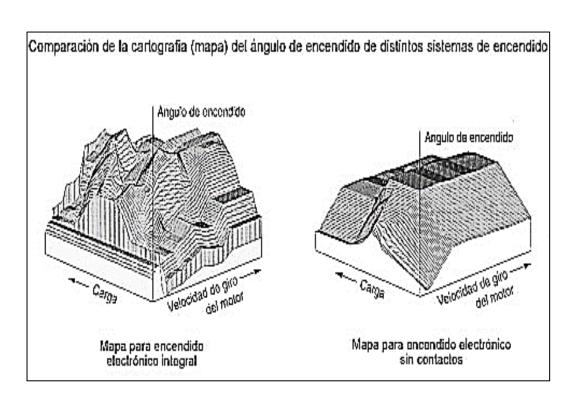

Vehículo corsa wind 2002 aproximado a 4000rpm


Tiempo alto

- Tiempo de carga 3.80ms
- Voltaje de señal 4.14V.

Tiempo bajo

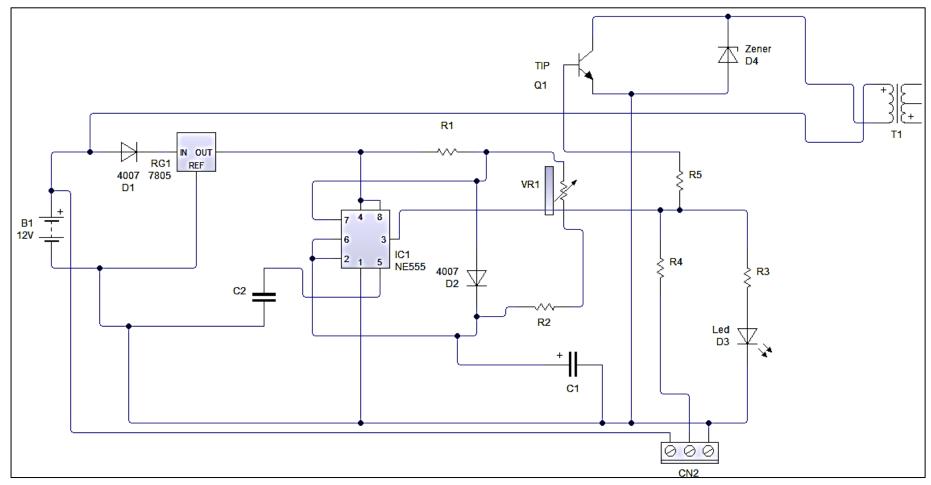
- Tiempo de duración de la combustión 5.56ms
- Voltaje de señal 0V.


Considerando que en el banco se realizarán pruebas en bobinas de diferentes sistemas de encendido, modelos y marcas de vehículos, a los valores obtenidos se les aplicara tolerancia aproximada de \pm 4ms.

Datos para cálculo de las resistencias de la configuración de ampliación de trabajo del timer 555:

Ta = 2.75ms

Tb(marcha mínima) = 62.5ms

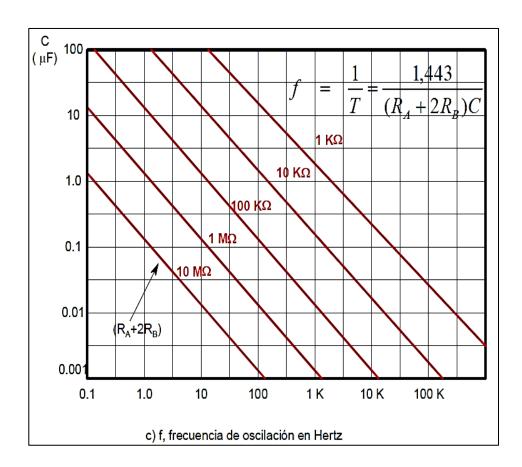

tb(4000rpm) = 4ms

SELECCIÓN DE COMPONENTES

Simulación en software Live Wire

DESIGNACIÓN DEL CONDENSADOR

Frecuencia de oscilación:


> marcha mínima: 15.4

> 4000rpm: 110.4

Condensadores a utilizar:

C1: 1uf, 25V, electrolítico.

C2:10nf, cerámico

CÁLCULO DE LAS RESISTENCIAS

$$Ta = 0.7 * R1 * C1$$

Se despeja R1:

$$R1 = \frac{0.00275s}{0.7 * 0.000001f} = 3928.57\Omega$$

Se resto 600Ω a la resistencia, utilizando una de $3.3k\Omega$

$$P = I * V$$

Donde:

$$I = \frac{V}{R}$$

Entonces:

$$I = \frac{5V}{3300\Omega} = 0.001A$$

Remplazando 0.001A en la ecuación 2

$$P = 0.001A * 5V * 2 = 0.01W$$

Quedando R1 de $3.3k\Omega$ y 1/2W

CÁLCULO DE LAS RESISTENCIAS

$$Tb = 0.7 * R2 * C1$$

P = I * V

Se despeja R2

 $R2 = \frac{0.004s}{0.7 * 0.000001f} = 5714.2\Omega$

$$R2 = 5.7k\Omega$$

Se resto $1k\Omega$ a la resistencia, utilizando una de $4.7k\Omega$

Donde:

$$I = \frac{V}{R}$$

Entonces:

$$I = \frac{5V}{4700\Omega} = 0.001A$$

Remplazando 0.00085A en la ecuación 2

$$P = 0.001A * 5V * 2 = 0.01W$$

Quedando R2 de $4.7k\Omega$ y 1/2W

CÁLCULO DE LAS RESISTENCIAS

$$Tb = 0.7 * R2 * C1$$

Se despeja R2 que denominaremos VR1:

$$VR1 = \frac{tb}{0.7 * C1}$$

Cuando el vehículo está en marcha mínima:

$$VR1 = \frac{0.0625s}{0.7*0.000001f} = 89285.7\Omega$$

$$VR1 = 89.2k\Omega$$

Se utilizo un potenciómetro de $100k\Omega$.

DESIGNACIÓN DEL TRANSISTOR

Transistor 3055

PARÁMETRO	SÍMBOLO	CONDICIÓN	VALOR	UNIDAD
Tensión colector-base	VCBO	Emisor abierto	100	V
Tensión colector-emisor	VCEO	Base abierto	60	V
Tensión emisor-base	VEBO	Colector abierto	7	V
Corriente del colector	IC		15	Α
Corriente Base	IB		7	Α
Capacidad de disipación del colector	PC	TC=25°	90	W

Resistencia de protección de la base del transistor

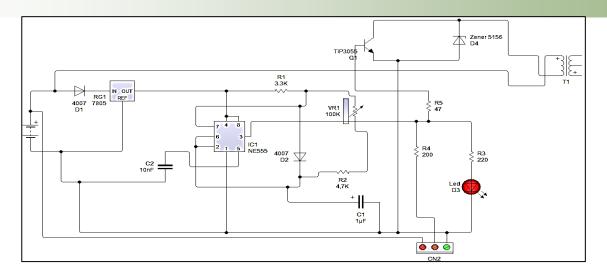
$$Rb = \frac{V - 0.7V}{Ib}$$
 $Rb = \frac{5V - 0.7V}{7A} = 0.61\Omega$

$$Rb = 0.61\Omega$$

Se utilizo una resistencia de 47Ω .

Para la protección del transistor se utilizó un diodo zener en paralelo, la tensión nominal zener debe ser superior a la tensión de la fuente, se utilizó la tensión de 100V es la misma de la base-colector del transistor.

$$P = I * V$$
 $P = 0.12A * 12v * 2 = 2.88W$ $P = 2.88W$

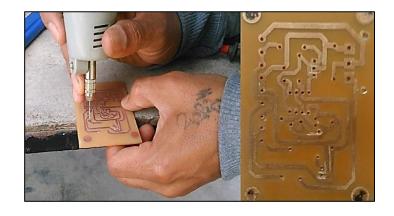

En el mercado no es accesible un zener de 100V 3W

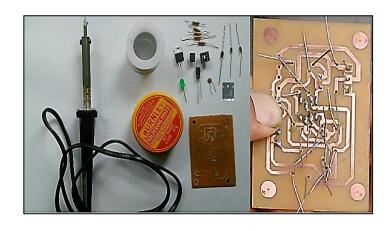
Zener 5156


PARÁMETRO	SÍMBOLO	SÍMBOL O	UNIDAD
Voltaje nominal del zener	Vz	100	V
Capacidad de disipación	PD	5	W

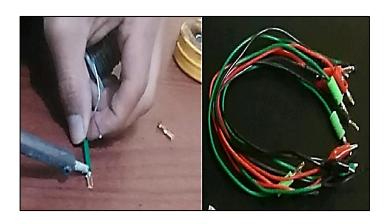
CIRCUITO COMPLETO EN LIVE WIRE

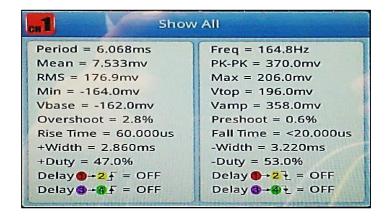
Gráficos de osciloscopio





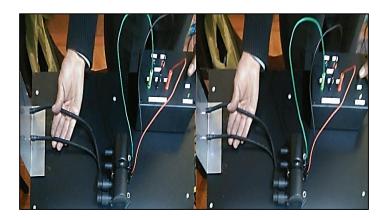
CONSTRUCCIÓN DEL CIRCUITO ELECTRÓNICO



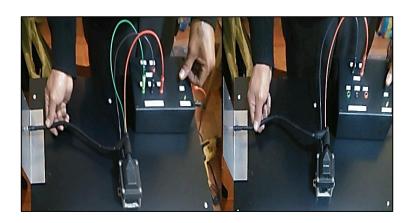

PRUEBAS DE FUCIONAMIENTO DEL CIRCUITO

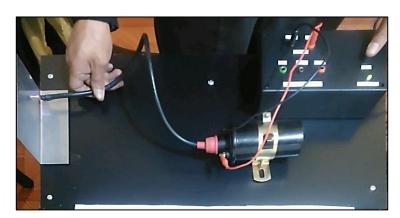
Datos de osciloscopio

CONSTRUCCIÓN DE LA MESA DE TRABAJO



PRUEBAS EN DIFERENTES TIPOS DE BOBINAS


Bobina de chispa doble


Bobina tipo lápiz

Bobina de distribuidor electrónico

Bobina de cartucho

GUÍA PARA EL USO DEL BANCO DE PRUEBAS DE BOBINAS DEL SISTEMA ENCENDIDO DE VEHÍCULOS AUTOMOTORES

- 1. Verificar que la batería este en buen estado.
- 2. Conectar los cables de la fuente en el siguiente orden primero positivo y después negativo
- 3. Presionar Start y verificar que el módulo de control este trabajando.
- 4. Realizar las pruebas en una sola sección, módulos de encendido o bobinas. Nunca realizar pruebas en las dos secciones al mismo tiempo.
- 5. Conectar correctamente los pines de los módulos de encendido o las bobinas. En caso de no tener ninguna señalización acudir al manual del fabricante o revisar en el vehículo la polarización de los pines de los módulos de encendido o las bobinas, de no estar seguro, NO accionar las bobinas en el banco de pruebas.
- 6. NO accionar por más de 60 segundo ninguna de las secciones.
- 7. Si el banco no activa las bobinas revisar los fusibles. FUSIBLE 1 corresponde a MÓDULOS DE ENCENDIDO y FUSIBLE 2 corresponde a BOBINAS.
- 8. Terminada la prueba desconectar los cables (cables de la fuente en el inverso de la conexión).
- 9. Dejar el banco de pruebas desenergizado y ordenada el área de trabajo.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Mediante la investigación se recopiló información sobre el avance de la electrónica en los sistemas de encendido automotriz dichos avances optimizaron el funcionamiento del sistema.
- A través de cálculos se seleccionaron los elementos electrónicos adecuados para el correcto funcionamiento del módulo de control, esto permitió accionar los módulos de encendido y bobinas, poniendo en práctica los conocimientos adquiridos en la Unidad de Gestión de Tecnologías.
- La construcción del banco de pruebas facilitó el análisis de las pruebas en las bobinas de encendido.
- Una vez realizadas las pruebas en las bobinas de diferentes sistemas de encendido, se concluyó que el banco de pruebas permite verificar el funcionamiento de las bobinas de una forma rápida y concreta, además identifica otras averías en el cableado que llega a las bobinas.

RECOMENDACIONES

- Seleccionar información de fuentes fidedignas referente a los sistemas de encendido y electrónica básica para un mejor desarrollo del proyecto.
- Realizar correctamente los cálculos para la designación de los elementos electrónicos e instalar de forma adecuada los elementos en el circuito.
- Construir un apropiado banco de pruebas para el fácil análisis de las bobinas.
- Conectar correctamente los bornes de la batería, módulos de encendido y bobinas al módulo de control para evitar averías.
- Utilizar de manera adecuada el banco de pruebas para que pueda ser utilizado por los estudiantes de la carrera de Mecánica Automotriz por largo tiempo, en óptimas condiciones de operación.

GRACIAS

