

Realización de una simulación de inundaciones en una cuenca hidrográfica, mediante herramienta SIG y UAV, de forma que sirva como insumo para la correcta gestión del riesgo en la zona.

Juela Banshuy, Angélica Liliana

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Trabajo de titulación, previo a la obtención del título de Ingeniera Civil

M.Sc. Sinde González, Izar

06 de abril del 2021

Urkund Analysis Result

Analysed Document:PROYECTO_JUELA_ANGELICA_CORREGIDO (1).pdf (D100625162)Submitted:4/5/2021 3:08:00 AMSubmitted By:iisinde@espe.edu.ecSignificance:2 %

Sources included in the report:

CARACTERIZACIÓN DEL RÉGIMEN HIDROLÓGICO-HIDRAÚLICO EN LA OBRA DE FÁBRICA EMPLAZADA EN LA QUEBRADA SIBAUCU UBICADA EN EL BARRIO BELLAVISTA, PARROQUIA PUENGASÍ.docx (D25648674) Tesis_Rio_Jama_ V003.docx (D39163973) https://dspace.ucuenca.edu.ec/bitstream/123456789/4472/1/TESINA.pdf

Instances where selected sources appear:

9

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Certificación

Certifico que el trabajo de titulación: "Realización de una simulación de inundaciones en una cuenca hidrográfica, mediante herramienta SIG y UAV, de forma que sirva como insumo para la correcta gestión del riesgo en la zona." fue realizado por la señorita Juela Banshuy, Angélica Liliana; el mismo que cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, además ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenidos; razón por la cual me permito acreditar y autorizar para que se lo sustente públicamente.

Sangolquí, 26 de marzo del 2020.

Firma:

M.Sc. Sinde González, Izar

C. C. 1756491278.

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

RESPONSABILIDAD DE AUTORÍA

Yo, Juela Banshuy, Angélica Liliana con cédula de ciudadanía nº 172392345-2, declaro que el contenido, ideas y criterios del trabajo de titulación: Realización de una simulación de inundaciones en una cuenca hidrográfica, mediante herramienta SIG y UAV, de forma que sirva como insumo para la correcta gestión del riesgo en la zona, "es de mi autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Sangolqui, 26 de marzo 2021

Firma:

veta

Juela Banshuy, Angélica Liliana C.C:1723923452

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

AUTORIZACIÓN DE PUBLICACIÓN

Yo, Juela Banshuy, Angélica Liliana con cédula de ciudadanía nº 172392345-2, autorizo a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de titulación: Realización de una simulación de inundaciones en una cuenca hidrográfica, mediante herramienta SIG y UAV, de forma que sirva como insumo para la correcta gestión del riesgo en la zona, en el Repositorio Institucional, cuyo contenido, ideas y criterios son de mi responsabilidad.

Sangolqui, 26 de marzo 2021

Firma:

Juela Banshuy, Angélica Liliana C.C:1723923452

Dedicatoria

A Dios, por ser la luz que ha guiado siempre mi camino.

A mis padres, ejemplo de perseverancia, honestidad, humildad y amor; por ser siempre mi gran apoyo.

A mis hermanos, por su cariño y complicidad.

A toda mi familia, por enseñarme que por sobre todas las cosas siempre será lo más valioso.

Agradecimiento

A Dios, por ser mi guía en toda esta etapa, por demostrarme que no importa que tan grandes sean nuestros sueños, todos se pueden cumplir.

A mis padres, por todo su amor, apoyo y compresión en todo momento, por no permitir que me dé por vencida camino a mi meta. Por ser siempre ese ejemplo de responsabilidad y perseverancia. Todos mis logros serán siempre por y para ustedes.

A mis hermanos, por ser mis primeros grandes amigos y confidentes, porque aunque somos totalmente diferentes compartimos un sinfín de aventuras entre risas y llantos.

A mis abuelos, por todo su cariño y afecto, en todo momento.

A mi director de proyecto, por el apoyo brindado a lo largo de este proyecto y haberme incentivado a explorar un nuevo campo de conocimiento, demostrándome que siempre es bueno aprender nuevas cosas.

Tabla de contenido
Urkund2
Certificación
Responsabilidad de Autoría 4
Autorización de publicación5
Dedicatoria 6
Agradecimiento
Resumen
Abstract 19
Capítulo I
Generalidades
Introducción20
Antecedentes
Planteamiento del problema 22
Justificación23
Objetivos24
Objetivo general24
Objetivos específicos24
Capítulo II
Marco teórico
ArcGIS
Hec-GeoRAS

Hec-RAS2	26
Programa SIGTierras2	27
Morfometría de la cuenca hidrográfica2	28
Coeficiente de compacidad 2	29
Coeficiente de forma2	29
Método de Alvord 3	30
Densidad de drenaje	31
Tiempo de concentración 3	31
Precipitación	32
Precipitación media anual3	32
Precipitación máxima probable3	32
Periodo de retorno3	33
Intensidad de precipitación3	33
Coeficiente de escorrentía 3	33
Coeficiente de rugosidad Manning 3	34
Caudal3	35
ArcGIS Network Analyst	37
Red3	37
Tipos de redes	38
Redes geométricas 3	38
Redes de transporte	38

Reguladores de una red 3	38
Distancia 3	38
Tiempo	39
Capítulo III	40
Procesamiento de información cartográfica4	40
Ubicación del proyecto4	40
Información cartográfica4	40
Polígono de la cuenca hidrográfica4	41
Modelo digital del terreno4	41
Generación de curvas de nivel4	42
Modelo de elevación4	43
Mapa de pendientes4	44
Generación de la red hidrológica4	45
Capítulo IV4	47
Cálculo de parámetros morfométricos4	47
Superficie y forma 4	47
Área y perímetro de la cuenca4	47
Longitud de la cuenca4	47
Gradiente altimétrico de la cuenca4	48
Coeficiente compacidad 4	48
Coeficiente de forma 4	49

Equidistancia entre curvas de nivel	49
Sumatoria de las curvas de nivel de la cuenca	49
Pendiente de la cuenca	50
Mediciones en ArcMap	50
Método de Alvord	51
Red hidrográfica y sistema fluvial	51
Longitud total de los cauces	51
Longitud del río principal	52
Gradiente altimétrica del rio principal	52
Sumatoria de la longitud de los afluentes	53
Densidad de drenaje	53
Perfil longitudinal del río principal	54
Pendiente bruta del río.	55
Pendiente suavizada del río.	55
Capítulo V	58
Diseño Hidráulico	58
Tiempos de concentración	58
Método para descarte de tiempos malos	58
Información hidrometereológica	59
Precipitación media anual	60
Precipitación máxima probable	61

Intensidad	62
Coeficiente de escorrentía	65
Coeficiente de rugosidad Manning	65
Caudales	66
Caudal medio	66
Caudal mínimo	66
Caudal ecológico	66
Caudal máximo	67
Método racional	67
Método Sandoval	67
Capítulo VI	68
Modelado en Hec-GeoRAS Y Hec-RAS	68
Procesamiento de información en Hec-GeoRAS	68
Generación del cauce del río	68
Delimitación de bancos de río	69
Creación de las secciones transversales	70
Modelamiento en HEC-RAS	70
Geometría del cauce	71
Caudal de diseño	73
Datos para corrida final	74
Resultados del proceso	74

Capítulo VII	77
Generación de rutas de evacuación con software GIS	77
Creación de nodos y ejes viales	78
Cálculo de campos	79
Nombre de las vías y sus características	79
Distancia del elemento vial	79
Sentido vial	79
Jerarquía de vías	79
Tiempo en minutos	81
Creación de un Network Dataset a partir de un feature class	83
Análisis de la ruta más corta	
Conclusiones	86
Recomendaciones	88
Bibliografía	89
Anexos	94

Índice de Tablas

Tabla 1 Valores del coeficiente de compacidad 29
Tabla 2 Valores del coeficiente forma
Tabla 3 Rango de valores para densidad de drenaje
Tabla 4 Fórmulas para calcular el tiempo de concentración de acuerdo con distintos
autores
Tabla 5 Valores del coeficiente K3 34
Tabla 6 Valores del coeficiente de rugosidad de Manning (n). Ven Te Chow. 1959 35
Tabla 7 Fórmulas para caudales medio, mínimo, ecológico y máximo. 36
Tabla 8 Resumen de parámetro morofmetricos. 56
Tabla 9 Cálculo de los tiempos de concentración
Tabla 10 Comprobación de los tiempos de concentración
Tabla 11 Información estación meteorológica M0167 Jama60
Tabla 12 Datos de precipitación diaria M167 61
Tabla 13 Cálculos para hallar la desviación estándar
Tabla 14 Intensidades máximas estación Jama M0167 63
Tabla 15 Ecuaciones para el cálculo de la intensidad64
Tabla 16 Valores de intensidad para diferentes periodos de retorno
Tabla 17 Clasificación según desempeño de las carreteras

Índice de Figuras

Figura 1 Inundación presentada en localidad de Jama, tras fuertes precipitaciones	. 23
Figura 2 Uso de ArcGIS para la creación de información geográfica	. 25
Figura 3 Aplicación de la extensión Hec-GeoRAS	. 26
Figura 4 Pantalla principal del software HEC-RAS	. 27
Figura 5 Plataforma de descarga de información de SIGTierras	. 28
Figura 6 Esquema de análisis para el cálculo de la pendiente por el método de Alvoro	d30
Figura 7 Ejemplo de red vial	. 37
Figura 8 Ubicación de la cuenca hidrográfica de estudio	. 40
Figura 9 Polígono de la cuenca hidrográfica	. 41
Figura 10 Modelo digital del terreno de la cuenca hidrográfica	. 42
Figura 11 Generación de las curvas de nivel en la cuenca hidrográfica	. 43
Figura 12 Modelo de elevación de la cuenca hidrográfica	. 44
Figura 13 Mapa de pendientes de la cuenca hidrográfica	. 45
Figura 14 Red hidrológica de la cuenca hidrográfica	. 46
Figura 15 Datos de área y perímetro de la cuenca obtenidos en ArcGIS	. 47
Figura 16 Longitud de la cuenca medida en ArcGIS	. 48
Figura 17 Tabla de atributos de las curvas de nivel de la cuenca	. 50
Figura 18 Pendiente de la cuenca calculada con ArcGIS	. 51
Figura 19 Medida total de los cauces realizada en ArcGIS	. 52
Figura 20 Longitud del río principal tomada de ArcGIS	. 52
Figura 21 Sumatoria de la longitud de los afluentes medida en ArcGIS	. 53
Figura 22 Perfil longitudinal del río generado en ArcGIS	. 54
Figura 23 Pendiente del rio principal	. 55

Figura 24 Estación meteorológica M167	60
Figura 25 Curva de intensidad, duración y frecuencia estación M0167	63
Figura 26 Generación del cauce del río para Hec-GeoRAS	68
Figura 27 Delimitación de bancos del rio	69
Figura 28 Direccionamiento del flujo del cauce	69
Figura 29 Creación de las secciones transversales	70
Figura 30 Creación de la geometría importada de ArcGIS	71
Figura 31 Incorporación del coeficiente de rugosidad de Manning para la geometría	a del
cauce	72
Figura 32 Revisión de los datos de cada una de las secciones transversales	73
Figura 33 Introducción del caudal máximo de diseño en HEC-RAS	73
Figura 34 Corrida final acerada de los datos en HEC-RAS	74
Figura 35 Resultados en perspectiva HEC-RAS	75
Figura 36 Resultados de inundación en la sección transversal mostrados en HEC-	RAS
	75
Figura 37 Polígonos de inundación generados en poblaciones aledañas	76
Figura 38 Mancha de inundación generada en la población de Jama	76
Figura 39 Ubicación y trazado del polígono de la zona de estudio	77
Figura 40 Creación de los nodos	78
Figura 41Creación de los ejes viales	78
Figura 42 Carretera de mediana capacidad	80
Figura 43 Camino básico	80
Figura 44 Camino básico	80
Figura 45 Campos de ejes viales en la tabla de atributos.	82

Figura 46 Creación de un Network Dataset.	83
Figura 47 Creación de la ruta mas corta	84
Figura 48 Creación de rutas con indicaciones y mapa	85

Resumen

Uno de los factores de riesgo para una cuenca hidrográfica es sin duda la presencia de inundaciones, las cuales al sumarse al desmesurado incremento demográfico en la cuenca, la convierten en una zona de riesgo. Aunque la probabilidad de ocurrencia de este fenómeno natural difiere con respecto a varios parámetros de la cuenca como: ubicación, geografía, factores climáticos, entre otros; las inundaciones pueden o no presentarse, motivo por el cual es importante contar con las herramientas y planificación necesaria para proteger a la población vulnerable. Es así como en este trabajo de la Unidad de Integración Curricular de la Carrera de ingeniería Civil se pretende realizar una simulación de inundaciones en una cuenca hidrográfica, mediante herramienta SIG, de forma que sirva como insumo para la correcta gestión de riesgos en la zona. Para lo cual se realizará un análisis bibliográfico a detalle para la búsqueda de información, se recopilarán datos de la zona de estudio con la ayuda de departamentos gubernamentales como SIGTierras y se determinarán parámetros morfométricos de la cuenca, además de su hidrología con la ayuda de herramientas SIG, para a su vez poder determinar las áreas de inundación en la misma. A través de este trabajo se pretende generar rutas de evacuación de las zonas de riesgo para la simulación de evacuación, lo cual será de gran ayuda para la población de la zona de estudio.

- Palabras clave:
 - HERRAMIENTAS SIG
 - CUENCA HIDROGRÁFICA
 - PARÁMETROS MORFOMÉTRICOS
 - INUNDACIÓN
 - RUTAS DE EVACUACIÓN

Abstract

One of the risk factors for a watershed is undoubtedly the presence of flooding, which, by joining the excessive population increase in the basin, make it a risk zone. Although the probability of occurrence of this natural phenomenon differs from several parameters of the basin such as: location, geography, climatic factors, among others; flooding may or may not occur, which is why it is important to have the tools and planning to protect vulnerable people. This is how this work of the Curriculum Integration Unit of the Civil Engineering Career aims to perform a flood simulation in a watershed, using GIS tool, so that it serves as input for the correct risk management in the area. For which a detailed bibliographic analysis will be carried out for the search for information, data will be collected from the study area with the help of government departments such as SIGTierras and morphometric parameters of the basin will be determined, in addition to its hydrology with the help of GIS tools, in turn to be able to determine the flood areas in it. Through this work it is intended to generate evacuation routes of the risk zones for the evacuation simulation, which will be of great help to the population of the study area.

- Keywords:
 - SIG TOOLS
 - WATERSHED
 - MORPHOMETRIC PARAMETERS
 - FLOOD
 - EVACUATION ROUTES

Capítulo I

Generalidades

Introducción

El presente estudio realiza una recopilación de información cartográfica de la ciudad de Jama, provincia de Manabí, la cual con la ayuda del software ArcGIS, permite obtener un modelo digital del terreno, con el que se podrá determinar la cuenca hidrográfica que cubre al río con el nombre de la misma ciudad, para posteriormente obtener los parámetros morfométricos de la misma; además con la ayuda de la información hidrometereológica del sector, se desarrollará un estudio hidráulico de la zona la cual acompañada del uso de herramientas SIG (Hec-GeoRAS y Hec-RAS), se podrán establecer los parámetros de diseño necesarios para encontrar los polígonos de inundación del sector y así posteriormente generar las respectivas rutas de evacuación.

Antecedentes

En nuestro país los daños que provocan las inundaciones en zonas propensas ante este fenómeno son inmensurables, generando problemas en la infraestructura, zonas agrícolas y ganaderas; por ende el sector económico de la población es sumamente afectado, aunque en muchas ocasiones estos daños pueden ser mínimos ante la pérdida de vidas humanas.

Una de las regiones más propensas a sufrir grandes inundaciones es el litoral ecuatoriano, ya que presenta una serie de planicies, llanos y pequeños cerros en su topografía, la cual acompañada de grandes precipitaciones genera que los ríos crezcan y desborden su cauce, inundando varios sectores urbanos y rurales.

Como lo menciona (Guacho Mueses & Morales Alquinga, 2018), la zona de estudio en esta ocasión Jama, contempla grandes caudales en la época de invierno,

generando inundaciones a lo largo de los poblados afectando a las infraestructuras y habitantes. Motivo por el cual dichos caudales son manejados con el software Hec-RAS para generar las características hidráulicas de la zona.

En nuestro país los mapas temáticos de inundación ya son realizados con mayor frecuencia con software GIS, como lo realizado por (CARPIO RUGEL, 2018), el cual presenta una metodología propuesta para la obtención de los mapas temáticos de inundación que con la implementación del modelo matemático Hydrologic Engineering Center- River Analyst System (Hec-Ras) se modeló el comportamiento del río Catarama en la provincia de los Ríos, para la obtención de resultados como calados con lo que finalmente se determinan los mapas de inundación.

De la misma manera en la provincia de los Ríos se desarrolló por (Solano Zúñiga & Vintimilla Villavicencio, 2013) un estudio fluviomorfológico del Río Vinces con los cual se determinó el área de inundación de la zona de influencia del proyecto Pacalori, en el cual del mismo modo se empleó el software ArcGIS, Hec-RAS y Hec-GeoRAS. Cabe destacar que este proyecto fue incluido en el Plan de Aprovechamiento y Control de Agua de la provincia de Los Ríos, el cual comprende un conjunto de obras que conformaban trasvases que sirven para proveer de agua en el desarrollo agrícola, para el abastecimiento de agua en poblaciones urbanas y rurales y permite el control de las crecientes en el área de Vinces - Babahoyo y Guayaquil. (Empresa Pública del Agua). Con el desarrollo de este tipo de proyectos se puede observar que el estudio de áreas de inundación sirve para manejar crecidas, lo cual permite aprovechar el recurso agua y controlar caudales; permitiendo realizar planes de acción ante fenómenos de inundación.

En la actualidad los planes de acción gubernamentales ante fenómenos naturales, cumple un papel de vital importancia ya que salvaguardar vidas es el objetivo

21

principal de todo plan de acción; motivo por el cual la creación de mapas de inundación y rutas de evacuación son indispensables en zonas propensas a este fenómeno. En nuestro país ya existen mapas de inundación de muchas zonas vulnerables, pero la generación de rutas de evacuación es un tema un poco ambiguo y falto por desarrollar.

Planteamiento del problema

La ciudad de Jama presenta meses de grandes precipitaciones en especial dentro del primer trimestre del año, además de una topografía irregular en donde se identifican varios sectores de planicies y pequeños cerros, al combinar estos factores es indudable la presencia de inundaciones.

Los fuertes temporales de la región, acompañados de un terreno inestable provocan deslizamientos que empeoran aun los daños producidos por la inundación, generando que muchas vías de acceso y salida a los poblados se cierren; motivo por el cual muchas veces el personal de socorro no puede acceder de manera inmediata a los sectores afectados, retrasando no solo las medidas de evacuación, sino además poniendo en riesgo la vida de las personas que no han logrado resguardarse en zonas de encuentro seguras.

Según (UNIVERSO, 2020), en febrero del 2020, el Comité de Operaciones Emergentes (COE) del cantón Jama, declaro en emergencia a este cantón como medida preventiva para evacuar a las familias que estaban más cerca a los sectores de inundación y deslizamientos que provoco el fenómeno; aunque no existieron pérdidas humanas, varias casas y calles sufrieron los estragos del temporal.

Figura 1

Inundación presentada en localidad de Jama, tras fuertes precipitaciones

Nota. Tomado de: (UNIVERSO, 2020)

Como se puede observar en la figura anterior, los daños y perjuicios que provoca una inundación en sectores urbanos y rurales, es sumamente destructivo, no solo porque afecta a las distintas infraestructuras sino además porque pone en riesgo la vida de los pobladores, motivo por el cual es indispensable la creación de modelos de inundación con sus respectivas rutas de evacuación.

Justificación

El litoral ecuatoriano siempre será afectado por la presencia de fuertes precipitaciones, debidamente justificadas por sus condiciones meteorológicas e influenciadas por el cambio climático de los últimos años; las cuales acompañadas de una topografía irregular y sistemas de drenajes ineficientes provocaran la presencia de inundaciones; no solo en zonas urbanas sino además en zonas rurales en donde se afectan conjuntamente a zonas agrícolas y ganaderas, generando grandes pérdidas en la población. El presente estudio busca conocer la topografía y redes hidrológicas de los sectores aledaños a la población de Jama, delimitar su cuenca hidrográfica y así con la ayuda de datos hidrometereológicos, llegar a determinar zonas de inundación que pueden afectar a los poblados cercanos, para posteriormente poder determinar rutas de evacuación adecuadas.

Para un estudio más detallado y especifico se ha visto adecuado el uso de herramientas SIG, las cuales permitirán visualizar de mejor manera los resultados de inundación y evacuación.

Objetivos

Objetivo general

Realizar una simulación de inundaciones en una cuenca hidrográfica, mediante herramienta SIG y UAV, de forma que sirva como insumo para la correcta gestión del riesgo en la zona.

Objetivos específicos

- Estudio de las fuentes bibliográficas y recopilación de información.
- Recolección y procesamiento de datos de la zona de estudio.
- Cálculo de los parámetros morfométricos de la cuenca con herramientas SIG.
- Determinación de las áreas de inundación con software SIG y cuantificación de las parcelas afectadas.
- Propuesta de las rutas de evacuación mediante software SIG.

Capítulo II

Marco teórico

ArcGIS

Es una tecnología de referencia en los Sistemas de Información Geográfica (SIG). Según (Bermejo, 2014) es una herramienta que permiten crear, manipular, editar, analizar y distribuir la información geográfica. Además está pensado y diseñado para ejecutar cada una de las fases de un proyecto SIG. Algunas de las funcionalidades que nos permite esta herramienta son:

- Creación de datos geográficas con información digitalizada.
- Generación de cuencas hidrográficas.
- Diseño y cálculo de redes hidráulicas.
- Visualizaciones espaciales en 2D y 3D.
- Creación de mapas geográficos de todo tipo.

Figura 2

Uso de ArcGIS para la creación de información geográfica

Nota. Representación de información para el cálculo del modelo digital de terreno

tomado de: (Bermejo, 2014)

Hec-GeoRAS

Es una de las extensiones que presenta el software ArcGIS, el cual sirve para desarrollar y generar información hidrológica, el cual permite preparar datos hidrológicos en ArcMap, para posteriormente exportar a HEC-RAS, en donde se incorpora datos hidrológicos. Con la ayuda de esta extensión se pueden determinar límites de cauces, zonas de flujo, trazados longitudinales o transversales, entre otro. (GIS&Beers, 2016)

Figura 3

Aplicación de la extensión Hec-GeoRAS

Nota. Uso de Hec-GeoRAS para trazados transversales. Tomado de: (GIS&Beers,

2016)

Hec-RAS

Según (Benayas Polo, 2016), es un programa de modelización hidráulica que

puede realizar varios análisis en un rio como puede ser:

- Modelación de flujo en régimen permanente
- Modelación de flujo en régimen no permanente
- Modelación del transporte de sedimentos

• Análisis de calidad de aguas

Este programa permite simular los flujos en cauces para determinar el nivel de agua en periodos de tiempo que indique el usuario con la ayuda de datos hidráulicos que son previamente calculados.

Figura 4

Pantalla principal del software HEC-RAS

🔚 HEC-RAS 5.0.7	- 🗆 X
File Edit Run View Options GIS Tools Help	
▣⊻₫☜☜ᄬ╬ॾॾॾॾॾॱॴॾॾॾॾॾ	H and
Project:	
Plan:	
Geometry:	
Steady Flow:	
Unsteady Flow:	
Description :	SI Units

Nota. El software permite calcular geometrías, introducir caudales y controlar niveles de agua. Tomado de: (Benayas Polo, 2016)

Programa SIGTierras

El Sistema Nacional de Información y Gestión de Tierras Rurales e

Infraestructura Tecnológica, SIGTierras, es un programa desarrollado por el Ministerios

de Agricultura, Ganadería, Acuacultura y Pesca, el cual tiene como objetico la

regularización, planificación y ordenamiento territorial. (Ganadería, 2020)

Este programa brinda información acerca de ortofotografías, modelo digital de terreno (MDT), mapas de geomorfología, cobertura uso de tierra, memorias técnicas, mapas, metadatos, etc.

Figura 5

Plataforma de descarga de información de SIGTierras

Nota. En la plataforma de SIGTierras se puede descargar modelos digitales de terrenos y ortofotografías. Tomado de: (Ganadería, 2020)

Morfometría de la cuenca hidrográfica

Se refiere a las características físicas de una cuenca, la cual tiene una relación con los caudales que circulan por el rio al que delimita, al conjunto de estimaciones realizadas se los denomina parámetros morfométricos los cuales se refieren al estudio de un conjunto de variables lineales, de superficie, relieve y drenaje; las cuales permiten conocer las características de la cuenca a estudiarse. (Lux Cardona, 2016)

Lo parámetros morfométricos de la cuenca son: área, perímetro, longitud, gradiente altimétrico, coeficiente de compacidad, coeficiente de forma y pendiente de la cuenca.

Coeficiente de compacidad

También denominado como índice de Gravelius, este parámetro adimensional permite establecer la relación entre el perímetro de la cuenca con el área de esta, así permite indicar el tipo de cuenca que se puede obtener.

$$K_c = 0,28 * \frac{P}{\sqrt{A}}$$

Tabla 1

Valores del coeficiente de compacidad

kc	Tipo de cuenca
1 < kc < 1,25	Casi redonda a oval redonda
< kc < 1,50	Oval redonda a oval oblonga
1,50 < kc < 1,75	Oval oblonga a rectangular oblonga
Kc > 1,75	Rectangular
	-

Nota. Valores del coeficiente Kc indican el tipo de cuenca. Recuperado de: (Camino,

Cionchi, López de Armentia, Del Río, & De Marco, 2018)

Coeficiente de forma

Es un factor adimensional que expresa la relación entre el ancho promedio de la

cuenca y su longitud. Indica además la forma que tiene la cuenca.

$$K_F = \frac{A_C}{{L_R}^2}$$

Tabla 2

Valores del coeficiente forma

Valores aproximados	Forma de la cuenca
< 0,22	Muy alargada
0,22 - 0,30	Alargada
0,30 - 0,37	Ligeramente alargada
0,37 – 0,45	Ni alargada, ni ensanchada
0,45 - 0,60	Ligeramente ensanchada

0,60 - 0,80	Ensanchada
0,80 – 1,20	Muy ensanchada
>1,20	Rodeando el desagüe

Nota. Valores del coeficiente de forma indican la forma de la cuenca. Recuperado de:

(Dokumen, 2015)

Método de Alvord

Analiza la pendiente existente ente curvas de nivel, trabajando con la faja definida por líneas medias que pasan entre las curvas de nivel. En esta se relaciona la equidistancia entre curvas de nivel (Eq), la sumatoria de la longitud de las curvas internas ($\sum li$) que encierra la cuenca hidrográfica y el área de esta. El resultado de la pendiente se expresa en %.

$$Y_c = \frac{E_q * \sum l}{A_c} * 100$$

Figura 6

Esquema de análisis para el cálculo de la pendiente por el método de Alvord

Nota. La grafica representa el área de la cuenca hidrográfica, acompañada de las curvas de nivel cada 2m. Además del área interna entre curvas de nivel (ai). Tomado de: (hidráulica, 2016)

Densidad de drenaje

Es la relación entre la longitud de los cursos de agua perennes, intermitentes y efímeros, de una cuenca y su propia área. A mayor densidad de drenaje, el tiempo de escorrentía es menor. Su valor es expresado en $\left(\frac{km}{km^2}\right)$.

$$D_d = \frac{L_r + \sum l_i}{A_c}$$

Tabla 3

Rango de valores para densidad de drenaje

Rangos de densidad de drenaje $\left(rac{km}{km^2} ight)$	Tipo de drenaje
0,1 < Dd < 1,8	Bajo
1,9 < Dd < 3,6	Moderado
3,7 < Dd < 5,6	Alto
Dd > 5,6	Muy alto

Nota. Los valores representan los rangos de valores para cada tipo de drenaje. Recuperado de: (Camino, Cionchi, López de Armentia, Del Río, & De Marco, 2018)

Tiempo de concentración

Se define como el tiempo mínimo necesario para que todos los puntos de una cuenca estén aportando agua de escorrentía de forma simultánea al punto de salida o desagüe. (Villegas, 2014). En otras palabras es el tiempo que tarda en llegar el agua desde el punto más alejado de la cuenca hasta el punto de salida o desagüe. Existen varios métodos para calcular este parámetro, cada uno relaciono distintos parámetros morfométricos de la cuenca como son: la longitud del cauce principal, pendiente del rio, pendiente de la cuenca, etc. En la siguiente tabla se indica algunas de las fórmulas para calcular el tiempo de concentración.

Tabla 4

Fórmulas para calcular el tiempo de concentración de acuerdo con distintos autores

Autor	Fórmula	Unidades
Kirpich	$T_c = 0.02 * L^{0.77} * S^{-0.385}$	Tc = min
		$L = longitud \ del \ rio \ (m)$
		S = pendiente del río(m/m)
Giandoti	$- 4 * \sqrt{A} + 1,5 * L$	Tc = horas
	$T_c = \frac{1}{0.8 * \sqrt{H}}$	$A = \operatorname{\acute{a}rea} de la cuenca(km^2)$
		L = longitud del río (km)
		H = gradiente altimétrico del río (m)
Ven Te	$\left(L_{r}\right)^{0.64}$	Tc = min
Chow	$T_c = 60 * 0,8773 * \left(\frac{1}{\sqrt{V_c}}\right)$	L = longitud del río (km)
	$(\sqrt{r_{FD}})$	$Y_{rb} = pendiente \ del \ rio(\%)$
Témez	$(L_{m})^{0,76}$	Tc = horas
	$T_c = 0,30 * \left(\frac{2T}{V^{0,25}}\right)$	L = longitud del río (km)
	(I _{rb})	$Y_{rb} = pendiente del río(m/m)$

NOTA. Tabla realizada para la comparación de las distintas fórmulas de tiempos de concentración. Las fórmulas fueron tomadas de: (Villegas, 2014)

Precipitación

Se refiere a la caída de agua desde la atmosfera, en estado líquido o sólido, en definitiva es cualquier tipo de agua que cae sobre la superficie de la tierra. En nuestro medio se puede expresar de diferentes formas, en ella se incluyen: lluvia, llovizna, nieve, granizo.

Precipitación media anual. Es la lámina total que en promedio cae al año en la estación.

Precipitación máxima probable. Se refiere a la mayor cantidad de precipitación meteorológica posible, para una determinada duración, en un área afectada por un

temporal y en una época del año determinada, sin tener en cuenta las tendencias climáticas a largo plazo. (Montero Maté)

Periodo de retorno

Es uno de los parámetros más importantes a considerar cuando se desee crear una obra hidráulica destinada a soportar avenidas. Según (Álvarez Sacoto & Calle Rivera, 2013), se considera al periodo de retorno como el número de años entre la ocurrencia de una tormenta de determinada intensidad y la ocurrencia de otra mayor.

Intensidad de precipitación

La intensidad de precipitación hace referencia a la cantidad de agua registrada en una unidad de tiempo. Normalmente la intensidad es medida en (mm/h). en base a la intensidad percibida se puede clasificar a la lluvia en débil, media o fuerte. (Álvarez Sacoto & Calle Rivera, 2013).

Coeficiente de escorrentía

Según (Ibañes Asensio, Moreno Ramón, & Gisbert Blanquer, 2011) Representa la fracción de agua total de lluvia precipitada que realmente genera escorrentía superficial una vez se ha saturado el suelo por completo. Su valor depende de las características concretas del terreno que determina la infiltración del agua en el suelo.

Existen varios métodos para calcular el coeficiente de escorrentía uno de ellos se desarrolló bajo la autoría de Nadal, el cual indica:

C = 0,25 * K1 * K2 * K3

K1: factor de la extensión de la cuenca

$$K1 = 3,7 * A^{-0.152}$$
 en donde A, es el área de la cuenca en (km^2)

K2: factor de la lluvia media anual

K2 = 0.71 * ln * (P) - 3.51 en donde P, es la precipitación media anual en (mm)

K3: factor de la pendiente y de la permeabilidad del suelo

Tabla 5

Valores del coeficiente K3

Características de la cuenca	K3	
Cuenca llana y permeable	0,5 - 0,7	
Cuenca ondulada	0,5 – 1,2	
Cuenca montañosa e impermeable	1,2 – 1,5	

Nota. Se escogen los valores de K3 en función a las características de la cuenca.

Tomado de: (Ibañes Asensio, Moreno Ramón, & Gisbert Blanquer, 2011).

Coeficiente de rugosidad Manning

Conocido también como el coeficiente de rugosidad del canal (n), el valor de n es muy variable y depende no solo del material del que se encuentra fabricado, sino además de diversos factores como lo son: tipo de suelo, topografía, vegetación, morfología, irregularidades del cauce, tamaño y forma del canal etc. Razón por la cual varios autores han definido una serie de tablas en donde se encuentran los valores más comunes para determinar este valor y así proceder al cálculo de caudales.

Tabla 6

		TIPO DE CANAL	MÍNIMO	NORMAL	MÁXIMO
		a. Bronce Polido	0.009	0.010	0.013
0		b. Acero	1		
15		soldado	0.010	0.012	0.014
1 #	A.1. METÁLICOS	con remaches	0.013	0.016	0.017
1 ĝ		c. Metal corrugado	1		
1 8		sub - dren	0.017	0.019	0.021
[뎘 울		dren para aguas Iluvias	0.021	0.024	0.030
199		a. Concreto			
85		tubo recto y libre de basuras	0.010	0.011	0.013
25	A.2 NO METÁLICOS	tubo con curvas, conexiones	0.011	0.013	0.014
lă≝		afinado	0.011	0.012	0.014
2 2		tubo de alcantarillado con	0.013	0.015	0.017
50		cámaras, entradas.	1		
188		Tubo con moldaje de acero.	0.012	0.013	0.014
IE -		Tubo de moldaje madera cepilada	0.012	0.014	0.016
15		Tubo con moldaje madera en bruto	0.015	0.017	0.020
1 문		b. Madera	1		
8		duelas	0.010	0.012	0.014
₹		laminada y tratada	0.015	0.017	0.020
		c. Albañilería de piedra.	0.018	0.025	0.030
		a. Acero liso			
1	B.1 METAL	sin pintar	0.011	0.012	0.014
1		pintado	0.012	0.013	0.017
		b. Corrugado	0.021	0.025	0.030
	(a. Tierra, recto y uniforme	í literatura de la companya de la co		
		nuevo	0.016	0.018	0.020
		grava	0.022	0.025	0.030
		con algo de vegetación	0.022	0.027	0.033
		b. Tierra, sinuoso			
8		sin vegetación	0.023	0.025	0.030
1		con malezas y pasto	0.025	0.030	0.033
13		maleza tupida, plantas	0.030	0.035	0.040
l ä		fondo pedregoso - malezas.	0.025	0.035	0.040
υ		c. Roca			
		suave y uniforme	0.025	0.035	0.040
		irregular	0.035	0.040	0.050
		d. Canales sin mantención			
		maleza tupida	0.050	0.080	0.120
		Fondo limpio, bordes con vegetación	0.040	0.050	0.080
		a. Ríos en planicies	1		
		rectos, sin zonas muertas	0.025	0.030	0.033
50	D.1. CORRIENTES	rectos sin zonas muertas con piedras y malezas	0.030	0.036	0.040
1 2 2	MENORES	Sinuoso, vegetación y piedras	0.035	0.045	0.050
1 in 1	(ANCHO SUPERF. < 30	Sinuoso, vegetación y bastante pedregoso	0.045	0.050	0.060
8 5	(m)	Abundante vegetación, sinuoso.	0.075	0.100	0.150
83		b. Torrentes de montaña, sin vegetación, bordes			
o z		abruptos.			
1		Arboles y arbustos sumergidos			
		Parcialmente en crecidas con piedras y	0.030	0.040	0.050
		Pocas rocas grandes rocas y piedras en el fondo.	0.040	0.050	0.070

Valores del coeficiente de rugosidad de Manning (n). Ven Te Chow. 1959

Nota. Se muestran únicamente una parte de los valores del coeficiente de rugosidad de

Manning. Recuperado de: (Sánchez, 2016)

Caudal

Se define al caudal como el volumen de líquido que circula por unidad de tiempo.

Es decir relaciona los parámetros de la siguiente forma:

$$Q = \frac{V}{T} \quad \left(\frac{m^3}{seg}\right)$$

Siendo:

V: volume del líquido

T: transición del líquido

Existen varios métodos para calcular caudales se presentan las fórmulas para el cálculo de caudal medio, mínimo, ecológico y máximo.

Tabla 7

,			
Caudal	Formula	Unidades	
		$Q_0 = caudal medio de la cuenca\left(rac{m^3}{s} ight)$	
Medio	31,71 * <i>P</i> * <i>A</i> * <i>C</i>	P = precipitación media anual(mm)	
	$Q_0 = \frac{10^6}{10^6}$	$A = $ área de la cuenca (km^2)	
		C = coeficiente de escorrentía	
Mínimo	P * 4	$Q_{min} = caudal mínimo de la cuenca \left(rac{m^3}{s} ight)$	
	$Q_{min} = \frac{\Gamma + A}{106}$	P = precipitación media anual(mm)	
	10	$A = $ área de la cuenca (km^2)	
		$Q_{ecologico} = caudal ecológico \left(rac{m^3}{s} ight)$	
Ecológico		k = coeficiente a dimensional (1,00 a 2,5)	
Leologico	$Q_{ecologico} = k * \frac{P * A}{10^6}$	P = precipitación media anual(mm)	
		$A = \operatorname{área} de la cuenca (km^2)$	
		$Q = caudal m$ áximo en $\left(\frac{m^3}{s}\right)$	
	Método racional	Ι	
	$Q = \frac{C * i * A}{360}$	= intensidad de la lluvia de diseño $\left(\frac{mm}{h}\right)$	
		A = área de la cuenca (ha)	
-		C = coeficiente de escorrentía	
Máximo		$Q = caudal m$ áximo en $\left(rac{m^3}{s} ight)$	
		P = precipitación media anual(mm)	
	Sandoval $Q = \propto * \frac{P * \sqrt{A}}{(1 + \log(4))} * (0.5 * \ln(T))$	$A = $ área de la cuenca (km^2)	
		T = período de retorno (años)	
	$(1 + \log(A)) - 0,7)$		
		$\propto = 0,644 - 0,08 * \ln(P)$ para P entre (500 a 2500 mm)	
		\propto = 0,1256 * ln(P) - 0,906 para P entre (2500 a 4000 mm)	

Fórmulas para caudales medio, mínimo, ecológico y máximo.

Nota. Las fórmulas que se presentan en la tabla fueron recopiladas de: (Sandoval

Erazo, 2019).
ArcGIS Network Analyst

Es una extensión de ArcGIS, la cual permite realizar un análisis espacial basando en redes de cualquier tipo ya sean estas de reparto, logísticas, servicios más cercanos, áreas de atención de un servicio, etc. (Aguirre Sanz, 2014)

Con el uso de esta herramienta y datos geográficos previos, se pueden modelar redes, analizar sus condiciones y funcionamiento, para posteriormente generar y calcular a partir de las necesidades que solicite el usuario, una serie de rutas como lo son: rutas de emergencia y evacuación basadas en el tiempo de viaje o ruta más eficiente; permite además estudiar la accesibilidad a un punto geográfico concreto, por ejemplo determinar ubicaciones de estaciones de bombero o policía más cercanas a la zona de estudio. (Aguirre Sanz, 2014).

Red

Es un sistema de elementos interconectados, que representan las posibles rutas desde una ubicación a otra. Estos elementos están conectados por nodos y ejes.

Figura 7

Ejemplo de red vial.

Nota. La grafica representa a la red vial estatal de Ecuador. Tomado de: (Distritales,

37

Tipos de redes

Redes geométricas

Se consideran redes geométricas a las redes generadas por ríos y servicios (electricidad, gas, desagües conducciones de agua), todas ellas representan el flujo e intercambio al interior de un sistema definido de relaciones. Estas redes se almacenan en una Geodatabase, ya que permiten definir de manera precisa las condiciones de conectividad, circulación y coincidencia topológica, dado el rol fundamental de la geometría en el comportamiento de toda la red geométrica. Son redes rígidas en cuanto a la circulación, pero flexibles en cuanto al diseño y conectividad. (Vega Panta, 2016)

Redes de transporte

Se caracterizan por representar de manera eficaz las principales características de la circulación vehicular a través de un área determinada. En estas redes el flujo es totalmente libre. Algunas de las principales restricciones que se presentan en estas redes son: semáforos, bloqueos de calles, restricciones de circulación, estos parámetros que pueden ser manejados con parámetros definidos por el usuario. (Vega Panta, 2016)

Reguladores de una red

Distancia

Corresponde a la lejanía o proximidad entre dos puntos. Es decir es el espacio desde el punto de vista lineal entre dos objetos, personas, lugares, etc. Se puede considerar tres tipos:

- Distancia euclidiana: distancia en línea recta entre varios puntos.
- Distancia planimétrica: distancia que sigue el sentido de la red, respetando sus características y condiciones.

 Distancia real: distancia ente varios puntos considerando la forma del terreno (topografía).

Tiempo

Es una magnitud que mide la duración de un suceso. En una red vial el tiempo depende de los factores asociadas a las características del vehículo, normativa de velocidades, congestión vehicular, condiciones climatológicas, condiciones topográficas, etc.

Capítulo III

Procesamiento de información cartográfica

Ubicación del proyecto

La zona para desarrollar el estudio se encuentra ubicada en la provincia de Manabí, comprendida entre los cantones de Jama, Flavio Alfaro, Chone y Sucre.

Figura 8

Ubicación de la cuenca hidrográfica de estudio

Información cartográfica

Para la obtención del MDT de la zona de estudio, se realizaron varias solicitudes al Departamento del SIGTIERRAS del Ministerio de Agricultura y Ganadería, la información solicitada fue en escala 1:5000.

Para el procesamiento de datos se utilizó el programa ArcMap, el cual sirvió para encontrar los mapas topográficos e hidrológicos.

Polígono de la cuenca hidrográfica

Figura 9

Polígono de la cuenca hidrográfica

Modelo digital del terreno

La información entregada por el SIGTierras fue de casi 1000 archivos que contenían al modelo digital del terreno de la zona de Jama, pero no todas se encontraban dentro de la cuenca a estudiarse, motivo por el cual se realizó una selección de la información necesario la cual una vez clasificada y con la ayuda del polígono definido se pudo obtener el modelo del terreno final. Cabe recalcar que al ser información gubernamental existen zonas protegidas de las cuales la información es confidencial.

Modelo digital del terreno de la cuenca hidrográfica

Generación de curvas de nivel

Para este caso al ser un modelo digital de escala 1:5000 se procede a generar curvas de nivel cada 5 metros, para este proceso se usó el ráster del modelo digital de terreno y las herramientas del software ArcGIS. Una vez obtenidas las curvas de nivel se procedió a suavizar su trazado.

Generación de las curvas de nivel en la cuenca hidrográfica

Modelo de elevación

Con la ayuda de las curvas de nivel, el modelo digital de terreno y la herramienta Tin, se procede a construir el modelo de elevación, en donde se puede constatar de una manera más visual los cauces y elevaciones presentes en la cuenca de estudio.

Modelo de elevación de la cuenca hidrográfica

Mapa de pendientes

Una vez obtenido el modelo de elevación y con ayuda de la herramienta Slope, se procede a encontrar el mapa de pendientes el cual nos servirá para encontrar la pendiente de la cuenca de estudio.

Mapa de pendientes de la cuenca hidrográfica

Generación de la red hidrológica

Con la ayuda del modelo digital del terreno, se procede a usar la herramienta de dirección de flujo y acumulación del flujo presentes en el software ArcMap. Con el uso de esta herramienta se obtiene el cauce principal y afluentes que se presentan en la cuenca hidrográfica.

Red hidrológica de la cuenca hidrográfica

Una vez obtenida la red hídrica se puede observar el cauce principal desde el

punto de inicio hasta el punto de su desembocadura.

Capítulo IV

Cálculo de parámetros morfométricos

Superficie y forma

Área y perímetro de la cuenca

Para la obtención de este parámetro se realizaron mediciones directamente en

ArcMap.

Figura 15

Datos de área y perímetro de la cuenca obtenidos en ArcGIS

Table						
🗄 • 君 • 🖫 🚱 🖾 🐢 🗙						
INTERPOLADOS						
9	hape *	ld	gridcode	Area	Perimetro	
Poh	voon ZM	3	0	1322,563932	241.566807	

Área de la cuenca:

$$A_C = 1322,56 \ km^2$$

perímetro de la cuenca

$$P_{C} = 241,57 \ km$$

Longitud de la cuenca

Para la obtención de este parámetro se realizaron mediciones directamente en

ArcMap.

Longitud de la cuenca medida en ArcGIS

 $L_{C} = 51,88 \ km$

Gradiente altimétrico de la cuenca

Cota Máxima = 650 msnmCota de mínima = 0 msnm $\Delta H = \cot a \text{ máx} - \cot a mín$ $\Delta H = 650 - 0$ $\Delta H = 650 \text{ msnm}$

Coeficiente compacidad

$$k_c = 0,28 * \frac{P_C}{\sqrt{A_C}}$$

Siendo:

- Área de la cuenca (km²): A_c
- Perímetro de la cuenca (km): P_C

$$k_c = 0,28 * \frac{241,57}{\sqrt{1322,56}}$$
$$k_c = 1,86$$

De acuerdo con la Tabla 1, el valor de kc corresponde a una cuenca rectangular.

Coeficiente de forma

$$K_F = \frac{A_C}{{L_R}^2}$$

Siendo:

- Área de la cuenca (km^2): A_C
- Longitud del río principal (km): L_r

$$K_F = \frac{1322,56}{84,68^2}$$
$$K_F = 0,18$$

De acuerdo con la Tabla 2, el valor de K_F corresponde a una cuenca muy alargada.

Equidistancia entre curvas de nivel

El modelo digital adquirido es de escala 1: 5000, debido a esto se han generado curvas de nivel cada 5 metros.

$$E_q = 0,005 \ km$$

Sumatoria de las curvas de nivel de la cuenca

Para el cálculo de este parámetro se utilizó la tabla de atributos y funciones

estadísticas, en donde se sumaron todas las polilíneas de cada curva de nivel.

curvas nivel					
	FID	Shane *	Contour	longitud	
Þ		Polyline	Contour	345 89700	
Ċ	1	Polyline	5	566 60986	
	2	Polyline	10	1285 09900	
	3	Polyline	15	1870 30436	
	4	Polyline	20	2413 12217	
	5	Polyline	25	3062 30938	
	6	Polyline	30	64,94585	
	7	Polyline	30	3379.37084	
	8	Polyline	30	47,88631	
	9	Polyline	30	101,2931	
	10	Polyline	35	3937,79370	
	11	Polyline	35	4,69600	
	12	Polyline	40	4435,11013	
	13	Polyline	40	109,06065	
	14	Polyline	45	5044,35592	
	15	Polyline	50	2578,34668	
	16	Polyline	50	16,272	
	17	Polyline	50	861,53696	
	18	Polyline	50	90,50658	
	19	Polyline	50	117913,56329	
	20	Polyline	50	1882,17497	
	21	Polyline	50	375,3418	
	22	Polyline	50	411,14981	
	23	Polyline	50	87,29853	
	24	Polyline	50	110,61288	
	25	Polyline	50	9748,18298	
	26	Polyline	50	8854,49897	
	27	Polyline	50	138,6209	
	28	Polyline	50	2437,23243	
	29	Polyline	50	5120,14803	
	30	Polyline	50	778,52686	
	31	Polyline	50	72,87264	
	32	Polyline	50	1062,87335	
_	33	Polyline	50	1379,93276	
	34	Polyline	50	1664,48844	
	35	Polyline	50	141,7889	
_	36	Polyline	50	524,15623	
_	37	Polyline	50	837,17791	
_	38	Polyline	55	1852,85452	
_	39	Polyline	55	200,24807	
	40	Polyline	55	10,13023	
_	41	Polyline	55	32,35309	
	42	Polyline	55	103,39514	
_	43	Polyline	55	116719,10879	
	44	Polyline	55	139,3841	
Ŀ	4 4	1	> >I 📔	🔲 (0 out of	

Tabla de atributos de las curvas de nivel de la cuenca

$$\sum l = 37402,56 \ km$$

Pendiente de la cuenca

Mediciones en ArcMap.

Se realizó el cálculo mediante mediciones en ArcMap, en donde se trabajó con el mapa de pendientes interpolado con el polígono de la cuenca, indicando los siguientes resultados.

Pendiente de la cuenca calculada con ArcGIS

	Tab	Table									
	🗄 - 碧 - 唱 👧 🖾 🐗 🗙										
	tab	tablapendientes									
I		Rowid	ID	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
I		1	3	5865581	1319755725	0	206,249954	206,249954	13,703577	17,324633	80379439,417446
I											

En el cual se obtuvo una pendiente del 13,70%.

Método de Alvord.

$$Y_c = \frac{E_q * \sum l}{A_c} * 100$$

Siendo:

- Equidistancias entre curvas de nivel (km): E_q
- Sumatoria de las curvas de nivel de la cuenca (km): $\sum l$
- Área de la cuenca (km²): A_c

$$Y_c = \frac{0,005 * 37402,56}{1322,56} * 100$$

$$Y_c = 14,14 \%$$

Red hidrográfica y sistema fluvial

Longitud total de los cauces

Los datos fueron recopilados de la tabla de atributos de la red hidrológica y

orden de ríos, con cálculos estadísticos.

Medida total de los cauces realizada en ArcGIS

Table		
🗉 + 🖶 + 🏪 👧 [Statistics of RED_HIDRO_STRA	×
RED_HIDRO_STRA	Field	
FID Shape * a 0 Polyline 2 Polyline 2 Polyline 3 Polyline 3 Polyline 4 Polyline 7 Polyline 9 Polyline 9 Polyline 10 Polyline 10 Polyline 12 Polyline 13 Polyline 13 Polyline	Longitud Statistics: Count: 58281 Minimum: 0.002828 Maximum: 2,13141 Sum: 4684,836862 Mean: 0.080384 Standard Deviation: 0,148768 Nulls: 0	Frequency Distribution 50.000 40.000 20.000 10.000 0 0 0 0 0 0 0 0 0 0 0 0
RED HIDRO STRA	/	

 $L_T = 4684,84 \ km$

Longitud del río principal

Figura 20

Longitud del río principal tomada de ArcGIS

Gradiente altimétrica del rio principal

Cota Máxima = 196,48 msnm

Sumatoria de la longitud de los afluentes

Figura 21

		Contraction of the Contraction	
「able □ - 君 - 唱 💦	Selection Statistics of RED_HIDRO_STRA		
ED_HIDRO_STRA	Field		
FID Shape * 0 Polyline 2 Polyline 3 Polyline 4 Polyline 5 Polyline 8 Polyline 9 Polyline 10 Polyline 11 Polyline 12 Polyline 13 Polyline	t <u>Longitud</u> ✓ Statistics: Count: 57347 Mimirum: 0.002828 Maximum: 2,13141 Sum: 4600.154226 Mean: 0.080216 Standard Deviation: 0.148651 Nulls: 0	Frequency Distribution	
	< >>	0,00,20,30,50,70,91,01,21	1,41,51,71,92,1

$$\sum l_i = 4600,15 \ km$$

Densidad de drenaje

Indica la capacidad que presenta una cuenca para evacuar las aguas que

discurren por su superficie.

$$D_d = \frac{L_r + \sum l_i}{A_c}$$

Siendo:

- Longitud del río principal (km): L_r
- Sumatoria de la longitud de afluentes (km): $\sum li$
- Área de la cuenca (km²): A_c

$$D_d = \frac{84,68 + 4600,15}{1322,56}$$
$$D_d = 3,54 \frac{km}{km^2}$$

De acuerdo con la Tabla 3, el valor de Dd corresponde a una cuenca con drenaje moderado.

Perfil longitudinal del río principal

Para calcular el perfil longitudinal del río se usaron las herramientas de ArcMap, con lo cual se obtuvo un primer diseño el cual resulta muy rustico y se usó como primer borrador para el cálculo del perfil longitudinal del río en Excel.

Figura 22

Perfil longitudinal del río generado en ArcGIS

Teniendo ya la tendencia del perfil del río, se interpolaron abscisas (longitud del río) y ordenadas (cotas), con los cuales se pudo trazar un mejor perfil longitudinal, obteniendo así la pendiente bruta y suavizada del río.

Pendiente del rio principal

Pendiente bruta del río.

$$Y_{rb} = \frac{\Delta H}{L_r} * 100$$

Siendo:

- Gradiente altimétrica del río (msnm): ΔH
- Longitud del río principal (km): L_r

$$Y_{rb} = \frac{196,48}{84,68 * 1000} * 100$$

$$Y_{rb} = 0.232 \%$$

Pendiente suavizada del río.

$$Y_{rs} = \frac{\Delta H perfil}{L_r} * 100$$

Siendo:

- Gradiente altimétrica suavizada del río (msnm): ΔHperfil
- Longitud del río principal (km): L_r

$$Y_{rb} = \frac{191}{84,68 * 1000} * 100$$
$$Y_{rb} = 0,226 \%$$

Se presenta a continuación el cuadro de resumen de los parámetros calculados:

Tabla 8

Resumen de parámetro morfométricos.

No	PARÁMETRO		FÓRMULA	VALOR	UNIDAD
. 1	Área de la cuenca	Ac	-	1322,56	km ²
2	Perímetro de la cuenca	Pc	-	241,57	km
3	Longitud de la cuenca	Lc	-	51,88	km
4	Coeficiente de compacidad	Кс	Kc=0,28*P/√ A	1,86	Rectangular
5	Longitud total de los cauces	LT	-	4684,84	km
6	Longitud del río principal	Lr	-	84,68	km
7	Coeficiente de forma	Kf	Kf=A/Lr ²	0,18	Muy alargada
8	Elevación máxima cuenca	Cota máx	-	650,00	msnm
9	Elevación mínima cuenca	Cota mín	-	0,00	msnm
10	Gradiente altimétrico de la cuenca	ΔH΄	-	650,00	msnm
11	Elevación máxima río	Cota máx	-	196,48	msnm
12	Elevación mínima río	Cota mín	-	0,00	msnm
13	Gradiente altimétrico del río	ΔH	-	196,48	msnm
14	Equidistancia entre curvas de nivel	Eq	-	0,005	km
15	Sumatoria de la longitud de las curvas de nivel	ΣI	-	37402,5 6	km
	internas de la cuenca	Yc	ARC GIS	13,70	%
16	Pendiente de la cuenca (Método de Alvord)	Yc	Yc=(Eq*∑l)/A	14,14	% ® Ondulado
17	Sumatoria de la longitud de afluentes	∑li	-	4600,15	km

PARÁMETROS MORFOMÉTRICOS

18	Densidad de drenaje	Dd	Dd=(Lr+∑li)/ A	3,54	km/km²→ Drenaje Moderado
19	Pendiente bruta del río principal	Yrb	Yrb=∆H/Lr	0,232	%
20	Pendiente suavizada del río principal	Yrs	Yrs=Gráfica/ Lr	0,226	%

Capítulo V

Diseño Hidráulico

Tiempos de concentración

Tabla 9

Cálculo de los tiempos de concentración

Autor	Fórmula	Unidades
	$T_c = 0.02 * L^{0.77} * S^{-0.385}$	Tc = 1287 min
Kirnich		Tc = 21,46 horas
This point	$T_c = 0.02 * 84680^{0.77} * 0.00226^{-0.385}$	
	$4 * \sqrt{A} + 1.5 * L$	Tc = 1457.97 min
	$T_c = \frac{1}{0.8 * \sqrt{H}}$	$Tc = 24,30 \ horas$
Giandoti		
Clandoti	$T = \frac{4 * \sqrt{1322,56} + 1,5 * 84,68}{1}$	
	$n_c =$	
	(1	Tc = 1439,15 min
	$T_c = 60 * 0.8773 * \left(\frac{\Delta T}{\sqrt{Y_{rb}}}\right)$	$Tc = 23,99 \ horas$
Ven Te		
Cnow	$T_c = 60 * 0.8773 * \left(\frac{84.68}{\sqrt{2.2020}}\right)^{0.64}$	
	(\(\)0,232)	
	$\pi = 0.00 \left(\frac{L_r}{r} \right)^{0.76}$	Tc = 1663, 16 min
	$T_c = 0.30 * \left(\frac{1}{Y_{rb}^{0.25}} \right)$	$Tc = 27,72 \ horas$
Témez	0.76	
	$T_c = 0.30 * \left(\frac{84.68}{1.000 \times 10^{-2.5}}\right)^{0.76}$	
	\0,00232 ^{6,23} /	

Método para descarte de tiempos malos

Los tiempos de concentración deben cumplir con las velocidades de los flujos o cumplir con valores cercanos. En este caso al ser una cuenca llana sus velocidades se encuentran en el rango de (0,60 a 1,00 m/s), para lo cual se debe verificar los tiempos con la ayuda de la ecuación de velocidad sugerida por (Sandoval Erazo, 2019).

$$V = 0,28 * \frac{L}{Tc}$$

En donde, L representa la longitud del rio principal en (km) y Tc representa el tiempo de concentración en (horas).

Tabla 10

Comprobación de los tiempos de concentración

Horas	Velocidad (0,6-1,00) m/s
21,46	1.105098066
24,30	0.975753688
23,99	0.988514417
27,72	0.855374512
	Horas 21,46 24,30 23,99 27,72

Con la comprobación por este método se puede observar que el primer tiempo no cumple con la velocidad requerida, por tal motivo se descarta y se realiza un promedio con los demás tiempos para hallar el tiempo de concentración final.

 $Tiempo \ de \ concentración \ = \frac{24,30 + 23,99 + 27,72}{3}$

Tc = 25,33 horas

Tc = 1520, 10 min

Información hidrometereológica

Para la recopilación de información meteorológica e hidrológica se solicitó información a el Instituto Nacional de Meteorología e Hidrología (INAMHI), el cual publica cierta información en los anuarios de libre acceso.

Para el caso de precipitaciones se debe realizar un pedido oficial a la institución solicitando los datos específicos de la estación requerida.

Precipitación media anual

Para nuestro de caso de estudio se requerirá información de la estación meteorológica M167.

Figura 24

Estación meteorológica M167

Nota. La estación M167 se encuentra ubicada en el Río Jama. Tomado de: (issue,

2011)

Tabla 11

Información estación meteorológica M0167 Jama

Nombr e de la estació n	Códig o	Тіро	Provinci a	Latitud	Longitu d	Altitu d	Precipitaci ón media anual
Jama	M0167	Climatológi ca principal	Manabí	0°11′4 9" S	80°15 <i>′</i> 5 3" W	46 m	1626 mm

Nota. Información de la estación M0167 publicada en el anuario meteorológico 2013.

Recuperado de: (INAMHI, Anuario Meteorológico, 2017)

Precipitación máxima probable

Tabla 12

Datos de precipitación diaria M167

Precipitación Diaria					
ESTACIÓN M167 JAMA					
Años	Febrero	Día			
1990	60,00	7			
1991	57,50	15			
1992	40,20	20			
1994	40,60	16			
1995	86,40	8			
1996	44,20	28			
1998	168,60	26			
1999	92,20	28			
2000		0			
2001	35,20	5			
2002	57,20	4			
2003	77,50	7			
2004	9,50	18			
SUMA	814,80				
MEDIA	62,68				
MINIMA	9,50				
MAXIMA	168,60				

Nota. Los datos fueron recuperados de: (Guacho Mueses & Morales Alquinga, 2018)

Siendo:

Precipitación media máxima en 24 horas

$$Pm_{max24H} = \bar{x} = \frac{\sum Pi}{n} = \frac{814,80}{12} = 67,9 mm$$

Coeficiente empírico de acuerdo con Hersh Field (1961)

km = 15

Desviación estándar de las precipitaciones

$$s = \sqrt{\frac{\sum_{i=1}^{n} (xi - \bar{x})^2}{n-1}}$$

Tabla 13

Cálculos para hallar la desviación estándar

Año	xi	$(xi - x)^{2}$
1990	60	62,41
1991	57,5	108,16
1992	40,2	767,29
1994	40,6	745,29
1995	86,4	342,25
1996	44,2	561,69
1998	16,6	10140,49
1999	92,2	590,49
2001	35,2	1069,29
2002	57,2	114,49
2003	77,5	92,16
2004	9,5	3410,56
$\sum_{i=1}^{n} (xi)$	$(-\overline{x})^2$	22614,98 mm

$$s = \sqrt{\frac{22614,98}{12 - 1}} = 45,34 \, mm$$

Finalmente se calcula la precipitación máxima probable

 $PMP = Pm_{max24H} + km * \sigma$

$$PMP = 67,9 + 15 * 45,34 = 748 mm$$

Precipitación máxima de un evento en 24 horas = 168,80 mm

Intensidad

Para el cálculo de la intensidad para un periodo de retorno de 100 años se usaron las ecuaciones proporcionadas por el INAMHI.

Tabla 14

т	(min)	2	Período 5	de Retorno 10	25 T (años)	50	100
	5	77.0	104.2	130.9	177.0	222.4	279.5
	10	56.6	76.5	96.1	130.0	163.3	205.2
	15	47.2	63.9	80.2	108.5	136.3	171.3
	20	41.5	56.2	70.6	95.5	119.9	150.7
	30	38.3	50.8	63.0	83.6	103.6	128.4
	60	27.2	36.2	44.8	59.5	73.7	91.4
	120	19.7	25.7	31.4	41.0	50.1	61.2
	360	8.8	11.5	14.0	18.3	22.3	27.3
1	440	3.2	4.1	5.1	6.6	8.1	9.9

INTENSIDAD MAXIMA (mm/h)

Valores de intensidad máxima para distintos periodos de retorno y tiempos de concentración. Tomado de: (INAMHI, Determinación de ecucaciones para el cálculo de intensidades máximas de precipitación, 2015).

Figura 25

Curva de intensidad, duración y frecuencia estación M0167

Nota. Tomado de: (INAMHI, Determinación de ecucaciones para el cálculo de intensidades máximas de precipitación, 2015)

Tabla 15

Ecuaciones para e	l cálculo	de la	intensidad
-------------------	-----------	-------	------------

ESTACIÓN CÓDIGO NOMBRE		INTERVALOS DE TIEMPO	FOUNCIONES	R	R ²
		(minutos)	ECUACIONES		
		5<30	$i = 125.5845 * T^{0.3294} * t^{-0.4455}$	0.9885	0.9771
M0167	ЈАМА	30<120	$i = 164.1148 * T^{0.3095} * t^{-0.4911}$	0.9796	0.9596
		120<1440	$i = 542.1518 * T^{0.2894} * t^{-0.7341}$	0.9924	0.9848

Nota. Ecuaciones de intensidad para la estación M0167 Jama. Tomada de: (INAMHI,

Determinación de ecucaciones para el cálculo de intensidades máximas de

precipitación, 2015)

Con cálculos previos se obtuvo un tiempo de concentración de: Tc =

1520,10 min. Con este tiempo se procede a ingresar en una de las ecuaciones de la

Tabla 14. Dado que el tiempo supera al rango más alto se ingresa con la siguiente ecuación:

 $i = 542,1518 * T^{0,2894} * t^{-0,7341}$

Siendo t el tiempo de concentración en minutos y T el periodo de retorno en años, se indica a continuación un cuadro de intensidades para diferentes periodos de retorno.

Tabla 16

Valores de intensidad para diferentes periodos de retorno

Т	Intensidad
años	mm/hora
10	4,87
20	5,95
50	7,76
100	9,49

200	11,59
500	15,11
1000	18,47
5000	29,43
10000	35,97

Para el caso de estudio con un periodo de retorno de 100 años se obtuvo una intensidad de 9,49 mm/hora.

Coeficiente de escorrentía

$$C = 0,25 * K1 * K2 * K3$$

Siendo:

$$K1 = 3,7 * A^{-0.152} = 3,7 * 1322,56^{-0,152} = 1,24$$

 $K2 = 0,71 * ln * (P) - 3,51 = 0,71 * \ln(1626) - 3,51 = 1,74$

De acuerdo a la Tabla 5, para una cuenca ondulada, K3 = 1

$$C = 0.25 * 1.24 * 1.74 * 1$$

 $C = 0.54$

Coeficiente de rugosidad Manning

Considerando los valores de la Tabla 6, se determinaron los valores de coeficiente de rugosidad a usarse dependiendo el tramo del río, en donde se tiene:

- Corrientes naturales, corrientes menores, ríos en planicies, sinuoso, vegetación y piedras: n=0.035
- Corrientes naturales, corrientes menores, ríos en planicies, abundante vegetación y sinuoso: n=0,100

 Corrientes naturales, corrientes menores, ríos en planicies, rectos sin zonas muertas con piedras y malezas: n=0,040

Caudales

Caudal medio

$$Q_0 = \frac{31,71 * P * A * C}{10^6}$$

- P = 1626 mm
- $A = 1322,56 \ km^2$
- *C* = 0,54

$$Q_0 = 36,80 \frac{m^3}{s}$$

Caudal mínimo

$$Q_{min} = \frac{P * A}{10^6}$$

- P = 1626 mm
- $A = 1322,56 \ km^2$

$$Q_{min} = 2,15\frac{m^3}{s}$$

Caudal ecológico

$$Q_{ecologico} = k * \frac{P * A}{10^6}$$

- P = 1626 mm
- $A = 1322,56 \ km^2$
- *k* = 1,5

$$Q_{ecologico} = 3,23 \frac{m^3}{s}$$

Caudal máximo

Método racional.

$$Q = \frac{C * i * A}{360}$$

\circ *A* = 132256 *ha*

- $\circ C = 0,54$
- \circ i = 9,49 $\frac{mm}{hora}$

$$Q = 1880,93 \frac{m^3}{s}$$

Método Sandoval.

$$Q = \propto * \frac{P * \sqrt{A}}{(1 + \log(A))} * (0.5 * \ln(T) - 0.7)$$

- $\circ A = 1322,56 \ km^2$
- $\circ \quad P = 1626 \ mm$
- \circ T = 100 años
- $\circ \propto = 0.644 0.08 * \ln(P) = 0.644 0.08 * \ln(1626) = 0.05$

$$Q = 1206,92 \frac{m^3}{s}$$

Por lo tanto:

$$Q_{m\acute{a}x} = 1880,93 \frac{m^3}{s}$$

Capítulo VI

Modelado en Hec-GeoRAS Y Hec-RAS

Para empezar con el modelado hidráulico es necesario activar la herramienta Hec-GeoRAS con la misma versión de ArcGIS que se tiene.

Procesamiento de información en Hec-GeoRAS

Se empieza creando un archivo en ArcGIS que contenga el modelo digital del terreno y una imagen de la zona de estudio.

Generación del cauce del río

Con la ayuda de la herramienta Hec-GeoRAS, se procede a digitalizar el cauce del rio. Se identifica con su respectivo nombre y alguna referencia. Se inicia el trazado desde aguas arriba del río y se trata de llevar el trazo por la parte más central del cauce.

Figura 26

Generación del cauce del río para Hec-GeoRAS

Delimitación de bancos de río

Se procede a crear los bancos del río guiándose con la imagen que se tenga,

además se trata de ir lo más cercano posible a los bordes del cauce.

Figura 27

Delimitación de bancos del rio

De la misma manera se crea la dirección del flujo con la ayuda del modelo digital, se traza primero el borde derecho y después el borde izquierdo, mirando desde aguas arriba del río. Posteriormente se identifica cada una de las direcciones.

Figura 28

Direccionamiento del flujo del cauce

Creación de las secciones transversales

Para la creación de las secciones transversales del río se escoge un abscisado adecuado para generarlo de manera automática, una vez creadas las secciones se verifica que ninguna choque entre ellas, esto dependerá del abscisado que se le dé.

Figura 29

Creación de las secciones transversales

Cuando ya se creen las secciones transversales se procede a generar el modelo 3D para el cauce, dirección y secciones; cuando este procedimiento haya finalizado los datos están listos para exportar al software HEC-RAS

Modelamiento en HEC-RAS

Para empezar con el modelamiento en HEC-RAS, es indispensable modificar algunas configuraciones del computador como establecer que el separador de miles sea el punto (.), además de tener instalada adecuadamente la versión compatible entre HEC-RAS, Hec-GeoRAS y ArcGIS.

Cuando el software se encuentre listo se procede a crear un nuevo archivo y se verifica que las unidades se encuentren dentro del sistema métrico (S.I.).

Geometría del cauce

Con el nuevo archivo en Hec-RAS se procede a importar la geometría generada en ArcGIS; de esta manera se importarán los datos generados previamente en forma de secciones transversales.

Figura 30

Creación de la geometría importada de ArcGIS

Una vez que se haya importado con éxito la geometría se procede a ingresar los valores del coeficiente de rugosidad de Manning, para el cauce de estudio los valores

pueden variar en distintas secciones en donde tendremos que usar los valores como: 0,035, 0,100 y 0,040. La elección de cada valor dependerá de las características mencionadas en el capítulo anterior.

Figura 31

Incorporación del coeficiente de rugosidad de Manning para la geometría del cauce.

Para terminar con la edición de la geometría se procede a verificar los datos de cada una de las secciones transversales generadas, en ella se verifica que los valores de Manning se encuentren debidamente ingresados al igual que los datos generados previamente en ArcGIS.
Figura 32

Revisión de los datos de cada una de las secciones transversales

Caudal de diseño

En esta sección del diseño se debe introducir el caudal máximo de diseño

encontrado en el capítulo anterior, además de las pendientes del cauce.

Figura 33

Introducción del caudal máximo de diseño en HEC-RAS

HEC-RAS 5.	.0.7						_	- X				
File Edit Ru	un View Options	GIS Tools Help										
B	📩 🔁 🏠 👻		1	≉ 🛩 🖉			🚰 DSS	Imil				
Project:	HEC-INUNDACIONJC			C:\\ANGIE\MIC\	modelos\CUENCA	ЈАМА\ДИТЕНТО\	EC-INUNDACIONJC	.prj 📄				
Plan:	Plan 01			C:\\Desktop\AN	GIE (MIC (modelos)	CUENCA JAMA (IN	TENTO HEC-INUND	ACIONJC.p01				
Geometry:	GEOMETRIACJ			C:\\Desktop\ANK	GIE (MIC (modelos)	CUENCA JAMA/IN	TENTO HEC-INUNDA	ACIONJC.g01				
Steady Flow:	CAUDALCJ			C:\\Desktop\AN	GIE (MIC (modelos)	CUENCA JAMA\IN	TENTO HEC-INUNDA	ACIONJC.f01				
Unsteady Flow:	l		-									
Description :]		र्षे⇒ Steady F	ow Data - CAUDAI	LCJ				- 0	×		
			File Option	s Help								
1	9	100	Description :						<u></u> A	oply Data		
S 😫 🖉			Enter/Edit Num	ber of Profiles (3200	0 max): 1	Reach Bound	dary Conditions					
Papelera de	Acrobat Reader	aTube Catcher			Locations of Fl	ow Data Changes						
reciclaje	DC		River: RIO J	AMACJ	•			Add Multiple				
			Reach: CTUD	AD 1AMA	River Sta.: 1	1500	→ Add A Flow 0	Change Location		1.1		
				Flow Chapped Locati			Drofilo Nor	non and Flow Date				
			River	Reach	RS	PE 1	FIOTIE IVAI	nes and now Rate	:9			
Panel de contro	Google Chrome	Music Search	1 RIO JAMA	CJ CIUDAD JA	MA 11500	1280.93	Steady Flow Bou	ndary Condition	IS			
Tuner de contro	. ooogie enitonie	MP3					Set boundary	for all profiles		C Set boundary f	for one profile at a time	
-									Available Ext	ernal Boundary Condtion	Types	
							Known W.S.	Critica	Depth	Normal Depth	Rating Curve	Delete
									Selected Bounda	ry Condition Locations a	nd Types	
		5					River	Reach	Profile	Upstream	Down	stream
ANGIE	EPSON Scan	Zoom					RIO JAMACJ	CIUDAD JAMA	al	Normal Depth S = 0.	.01 Normal Depth	S = 0.01
							-	HEC	-RAS			
	٨	-				_						
			w						Enter the upstre normal depth com	am slope for putation for		
-									reach: CIUDAD J	AMA for all		
AutoCAD 2018	- matlab - Acceso	ArcMap 10.5	ZONA DE				Steady Flow Rea	ich-Storage A	pronie		OK Cance	Help
cspanor (spanis	unecto		DESCANDA						0.01			
									ок	Cancel		15 BE 200
								_		111 A 110		

Datos para corrida final

Finalmente se procede a correr el programa, al momento de que todo se valide correctamente el archivo se encuentra listo para exportar nuevamente a ArcGIS y visualizar los polígonos de inundación generados.

Figura 34 Corrida final acerada de los datos en HEC-RAS

			1000 C				
HEC-RAS Finished Computations					-		×
Write Geometry Information							
Layer: COMPLETE							
Steady Flow Simulation							
River: RIO JAMACJ	RS:	1016.915					
Reach: CIUDAD JAMA	Node Type:	Cross Section					
Profile: PF 1							
			Computing super	critical profile			
Simulation: 1/1							
Computation Messages							
Plan: 'Plan 01' (HEC-INUNDACIONJC.p01)							
Simulation started at: 04mar2021 05:22:31 AM							
Writing Geometry							
Completed Writing Geometry							
Starting to copy Geometry Data to Results							
Completed copying Geometry Data to Results							
Steady Flow Simulation HEC-RAS 5.0.7 M	arch 2019						
Einished Steady Flow Simulation							
Finished Steady Flow Simulation							
Communitaria and Communitaria							
Computations Summary							
Computation Task	Time(hh:mm	1:ss)					
Completing Geometry(64) Steady Flow Computations(64)		2					
Complete Process		3					
1							
	1						
Pause Take Snapshot of Result:	5				(Close	•

Resultados del proceso

En base a los datos proporcionados al software podemos observar que se nos entrega información de la sección inundada en perspectiva y en corte, en donde se puede observar en cada una de las secciones transversales si existió o no inundación.

Figura 35

Resultados en perspectiva HEC-RAS

4.0

Ó

50

100

Figura 36

Resultados de inundación en la sección transversal mostrados en HEC-RAS

Una vez que los datos han sido importados de HEC-RAS, se puede observar de mejor manera los polígonos generados por la inundación.

150

Station (m)

200

250

300

Figura 37

Polígonos de inundación generados en poblaciones aledañas.

El polígono de inundación generado abarca un área de 41.63km².

Figura 38

Mancha de inundación generada en la población de Jama.

Para una mejor visión de los polígonos de inundación generados se anexan al final los mapas de inundación creados para las poblaciones de Jama, San Isidro, Eloy Alfaro y Convento.

Capítulo VII

Generación de rutas de evacuación con software GIS

Se crearon cuatro mapas de rutas de evacuación para los poblados de Jama, San Isidro, Convento y Eloy Alfaro. En este espacio se indica la metodología para el cálculo de la ruta del poblado de Jama, mencionando que se siguió el mismo procedimiento para los poblados restantes.

Como primer paso se procede a ubicar un mapa previo de la zona de estudio el cual indique el sentido vial en las distintas calles de la zona de estudio, puede servir plataformas como Google Maps o Sasplanet, es necesario indicar que un levantamiento topográfico es la forma más efectiva ya que al visitar la zona de estudio, se puede determinar el sentido vial para cada elemento.

Figura 39

Ubicación y trazado del polígono de la zona de estudio.

Nota. La imagen fue tomada de: Google Maps.

Creación de nodos y ejes viales

En esta etapa se crearon los nodos en cada intersección de calles, justo en la mitad y posteriormente se procederá a identificar a cada uno de ellos.

Figura 40

Creación de los nodos.

A continuación se procede a trazar los ejes viales, usando los nodos como guía e indicando cual es el nodo final y nodo inicial de cada eje, esto nos servirá para indicar el sentido vial.

Figura 41

Creación de los ejes viales.

Cálculo de campos

Una vez determinado la red final de nodos y ejes viales se procede a caracterizar sus elementos.

Nombre de las vías y sus características

Con la ayuda de Google Maps, se pudieron obtener los nombres de las calles e identificar el tipo de vía al que pertenecía. En esta red se presentaron: carreteras, avenidas y caminos convencionales.

Distancia del elemento vial

Con la ayuda de las herramientas del software se genera un nuevo campo en la tabla de atributos de los ejes viales, en donde se calculó la distancia de cada uno de ellos.

Sentido vial

En este campo se usa la dirección indicada con anterioridad mediante el nodo inicial y nodo final, el cual indica el sentido de las vías.

Es necesario considerar:

- "FT": (from to) vectorización desde nodo inicial a nodo final.
- "TF": (to from) vectorización desde el nodo final a nodo inicial.
- "BI": vectorización bidireccional.

Jerarquía de vías

Según los establecido en el Plan Estratégico de Movilidad PEM, según su desempeño se clasifica de la siguiente manera:

Tabla 17

Clasificación según desempeño de las carreteras.

Nota. Se indican únicamente los tipos de vías presentes en el estudio. Fuente:

(Ecuador, 2013).

Tiempo en minutos

Se crearon dos campos adicionales en donde se calcularán el tiempo en minutos, dependiendo de la velocidad del tipo de vía que se presente y usando la siguiente formula.

$$T = \frac{M * K}{V}$$

En donde:

- T= tiempo recorrido en minutos
- M= distancia de vía
- K=constante de tiempo (60 minutos)
- V=velocidad en (m/h)

Para establecer la velocidad para cada uno de los tipos de vías se consideró lo que indica el Reglamento a la Ley de Transporte Terrestre Transito y Seguridad Vial, en el CAPITULO VI "De los límites de velocidad":

Art. 190.- Las Unidades Administrativas y los GADs, en sus correspondientes jurisdicciones territoriales, determinarán los límites máximos de velocidad en las diferentes vías del país, pero de manera general se sujetarán a los límites establecidos en el presente capítulo. (Públicas, 2012)

Art. 191.- Los límites máximos y rangos moderados de velocidad vehicular permitidos en las vías públicas, con excepción de trenes y autocarriles, son los siguientes:

1. Para vehículos livianos, motocicletas y similares:

Tipo de Límite Rango Fuera del Vía máximo moderado rango moderado (Art. 142.g (Art. 145.e de la Ley) de la Ley)

- Urbana 50 Km/h mayor que 50 Km/h mayor que 60 menor o igual km/h que 60 Km/h Perimetral 90 Km/h mayor que 90 Km/h mayor que 120 menor o igual Km/h que 120 km/h
- Rectas en 100 Km/h mayor que 100 Km/h mayor que carreteras menor o igual 135 Km/h que 135 Km/h
- Curvas en 60 Km/h mayor que 60 Km/h mayor que 75 Carreteras menor o igual Km/h que 75 Km/h. (Públicas, 2012).

Para el proyecto se determinaron las siguientes velocidades tomando en

consideración lo dictado en la normativa de diseño NEVI12 y el Reglamento a la Ley de

Transporte Terrestre Transito y Seguridad Vial.

- Carretera de mediana capacidad= 100km/h
- Camino básico= 50km/h
- Camino agrícola/forestal= 40km/h

Figura 45

Campos de ejes viales en la tabla de atributos.

FID	Shape *	NODO INICIAL	NODO FINAL	NOMBRE DE VIA	CATEGORIA	DISTANCIA	SENTIDO	JERARQUIA	TF_MINUTES	FT_MINUTES	
0	Polyline	7	6	RUTA DEL SPON	CARRETERA	102.599877	FT	1	0.1539	0.1539	
1	Polyline	6	5	RUTA DEL SPON	CARRETERA	42.969022	FT	1	0.064454	0.064454	
2	Polyline	5	4	RUTA DEL SPON	CARRETERA	80.881344	FT	1	0.121322	0.121322	
3	Polyline	4	3	RUTA DEL SPON	CARRETERA	67.70866	FT	1	0.101563	0.101563	
4	Polyline	3	2	RUTA DEL SPON	CARRETERA	81.199231	FT	1	0.121799	0.121799	
5	Polyline	2	1	RUTA DEL SPON	CARRETERA	215.836222	FT	1	0.323754	0.323754	
6	Polyline	7	8	Av. JAMA	AVENIDA	212.608774	FT	2	0.255131	0.255131	
- 7	Polyline	8	16	Av. JAMA	AVENIDA	91.582672	FT	2	0.109899	0.109899	
8	Polyline	16	27	Av. JAMA	AVENIDA	96.314523	FT	2	0.115577	0.115577	
9	Polyline	27	29	Av. JAMA	AVENIDA	109.893913	FT	2	0.131873	0.131873	
10	Polyline	29	34	Av. JAMA	AVENIDA	80.363946	FT	2	0.096437	0.096437	
11	Polyline	34	47	Av. JAMA	AVENIDA	82.849351	FT	2	0.099419	0.099419	
12	Polyline	47	58	Av. JAMA	AVENIDA	91.298303	FT	2	0.109558	0.109558	
13	Polyline	58	73	Av. JAMA	AVENIDA	83.635965	FT	2	0.100363	0.100363	
14	Polyline	73	84	Av. JAMA	AVENIDA	84.83204	FT	2	0.101798	0.101798	
15	Polyline	84	91	Av. JAMA	AVENIDA	90.702497	FT	2	0.108843	0.108843	
16	Polyline	91	99	Av. JAMA	AVENIDA	50.822145	FT	2	0.060987	0.060987	
17	Polyline	99	106	Av. JAMA	AVENIDA	83.94942	FT	2	0.100739	0.100739	
18	Polyline	106	115	Av. JAMA	AVENIDA	78.744709	FT	2	0.094494	0.094494	
19	Polyline	115	124	Av. JAMA	AVENIDA	81.937312	FT	2	0.098325	0.098325	
20	Polyline	124	133	Av. JAMA	AVENIDA	92.778058	FT	2	0.111334	0.111334	
21	Polyline	133	140	Av. JAMA	AVENIDA	68.685889	FT	2	0.082423	0.082423	
22	Polyline	140	145	Av. JAMA	AVENIDA	85.862222	FT	2	0.103035	0.103035	
23	Polyline	145	148	Av. JAMA	AVENIDA	163.902068	FT	2	0.196682	0.196682	
24	Polyline	148	151	Av. JAMA	AVENIDA	81.127858	FT	2	0.097353	0.097353	
25	Polyline	151	154	Av. JAMA	AVENIDA	81.89501	FT	2	0.098274	0.098274	
26	Polyline	154	159	Av. JAMA	AVENIDA	169.183175	FT	2	0.20302	0.20302	
27	Polyline	159	160	Av. JAMA	AVENIDA	128.107267	FT	2	0.153729	0.153729	
28	Polyline	160	163	Δν ΙΔΜΔ	Δ\/FNIDΔ	75 439351	FT	2	0.090527	0.090527	

Nota. Una vez calculados todos los campos se procede a generar el Network Dataset.

Creación de un Network Dataset a partir de un feature class

Para crear un Network Dataset se realizan los siguientes pasos.

- 1. Crear un nuevo Personal Database.
- 2. Dentro de la creación previa se procede a generar un nuevo Feature New Dataset.
 - 2.1. Ingresar el respectivo nombre
 - 2.2. Elegir el sistema de referencia y el sistema de coordenadas verticales.
 - 2.3. Una vez concluido, importar el Feature Class, con lo cual se ha creado la nueva

capa.

3. En la capa generada, crear un nuevo Network Dataset, modificar el nombre y la versión.

Figura 46

Creación de un Network Dataset.

lew Network Dataset		×
This wizard will help you build a network dataset. A network dataset is built from feature classes which act as network sources and have a connectivity policy and attributes associated with them.		
Enter a name for your network dataset: Ejes_Viales_ND		
Choose a version for your network dataset:		
10.1 ~		
< Ab	trás Siguiente >	Cancelar

3.1. Elegir el Feature Class correspondiente, se activan los giros

- 3.2. Modificar las políticas de conectividad, la cual es end point para nodos iniciales y nodos finales.
- 3.3. Cargar los atributos que hagan falta, considerar para el atributo tiempo el valor de giro (0,084 equivalente a 5 segundos). Cargar el atributo jerarquía junto a todos los parámetros necesarios que engloba el nombre y tipo de vía.
- 3.4. Aceptar todos los parámetros establecidos y finalizar.

Análisis de la ruta más corta

Para crear las rutas de evacuación se siguen los siguientes pasos:

- 1. Se debe activar previamente la barra de herramientas de Network Analyst.
- 2. Cargar el Network Dataset
- 3. Crear una nueva ruta, la ruta más corta se crea con el parámetro distancia.
- 4. Modificar las propiedades de la capa ROUTE, a la cual se le indica que el análisis se realizara con la variable distancia.
- 5. Cargar la ventana de análisis de redes.
- 6. Ubicar dos puntos en el área de trabajo y calcular la ruta.

Figura 47

Creación de la ruta más corta.

Si se desea encontrar la ruta más eficiente se debe modificar las propiedades de la ruta e indicarle que el análisis se realizara con la variable tiempo mas no con distancia.

Para el análisis de direcciones se puede realizar con impedancia de tiempo o distancia es decir con ruta corto o ruta más eficiente. Dentro de las direcciones de puede observar el tiempo y recorrido total, además se puede observar el mapa total de la ruta o por segmentos.

Cabe recalcar que dentro del análisis de rutas se pueden generar muchas de rutas con varias características haciendo uso de barreras de tipo: punto, línea y polígono; se puede además relocalizar los puntos cuando no se respeta la tolerancia definida, de igual manera se puede modificar los valores de esta.

Figura 48

Creación de rutas con indicaciones y mapa.

Se generaron tres rutas de evacuación ante inundaciones por cada uno de los cuatro poblados; toda la información se adjuntó en los mapas de rutas de evacuación y los mapas de indicaciones por cada ruta, los cuales se presentan como parte de los anexos.

Conclusiones

- Con el uso de herramientas SIG, el cálculo de parámetros morfométricos puede reducirse en tiempo y tener un grado de precisión más acertada; ya que en métodos tradicionales con el uso de cartas topográficas de diferentes escalas, el observador tiende a cometer errores en el cálculo de parámetros iniciales como área y perímetro, los cuales posteriormente afectaran en los resultados de los demás parámetros morfométricos.
- Con la ayuda del cálculo de los parámetros morfométricos se pudo determinar que el área de estudio corresponde a una cuenca rectangular, muy alargada, con un área de 1322,56 km2, y una pendiente de 14,14%, lo cual representa a un terreno ondulado con drenaje moderado. Además se determinó la extensión de 84,68 km para el rio principal con una pendiente del 0,23%.
- Para el cálculo del caudal máximo de diseño se ha considerado un periodo de retorno de 100 años, además se usó la información hidrometereológica correspondiente a la estación más cercana a la zona de estudio en este caso corresponde a la estación M0137 Jama. Obteniéndose en esta ocasión un caudal máximo de $Q_{máx} = 1880,93 \frac{m^3}{s}$.
- Para la caracterización y determinación de los polígonos de inundación se usaron valores de rugosidad de Manning, correspondientes a los valores de n=0,035, 0.10, y 0,040, los cuales corresponde a corrientes naturales, menores en ríos en planicies, pero que se diferencia en cuanto a su forma y tipo de vegetación.
- El polígono de inundación se generó a través del rio principal y los afluentes cercanos a las poblaciones más significativas dentro de la cuenca hidrográfica,

correspondientes a los poblados de Jama, San Isidro, Convento y Eloy Alfaro; el polígono de inundación generado abarca un área de 41,63 km2.

- Se crearon tres rutas de evacuación para cada poblado, considerando las rutas desde establecimientos o lugares, donde existen gran aforo de habitantes y han sido inundados, hacia lugares seguros donde no se presentaba este fenómeno natural.
- Para el cálculo de campos en la red de ejes viales se usaron velocidades de 40km/h para caminos agrícolas/forestales, 50 km/h para caminos básico y 100 km/h para carreteras de mediana capacidad, todos establecidas en función de las normativas vigentes.
- La generación de rutas es muy manejable, con la creación de un Network
 Dataset, ya que esta herramienta nos permite operar de la manera que mejor convenga una red diseñada, en este caso el estudio corresponde a una red vial.

Recomendaciones

- Para el uso de la extensión Hec-GeoRAS y el programa Hec-RAS, es indispensable crear de manera adecuada las secciones transversales en el rio, usando la extensión antes mencionada, es decir, se deben tomar todas las precauciones en cuanto a la distancia entre cortes o también denominado como abscisado, ya que en muchas ocasiones cuando ciertos tramos del rio son sinuosos, los cortes llegan a chocarse, generando errores los cuales no permite avanzar con la exportación desde la extensión hacia el programa.
- El uso del programa Hec-RAS es eficiente cuando se establece en el computador que el separador de miles sea el punto, además se deben descargar las versiones compatibles con el software de ArcGIS, caso contrario no se obtendrán los resultados adecuados.
- Para la generación de redes es necesario obtener la información vial actualizada y precisa de la zona de estudio, debido a que se necesita conocer el sentido vial de cada uno de los ejes, ya que si la información es obtenida por programas como Google Maps, se encuentra el problema que no todas las calles presentan el sentido de circulación.
- Si se realiza la recopilación de información topográfica, geográfica, hidráulica, meteorológica, etc., de manera virtual, es necesario considerar que cierta información es privada; motivo por el cual el único acceso a ella es a través de solicitudes que en muchas ocasiones no son atendidas, o si lo son, demoran mucho tiempo en proporcionar la información requerida, motivo por el cual se recomienda al usuario que se anticipe con mucho tiempo antes de hacer sus solicitudes.

Bibliografía

Aguirre Sanz, S. (21 de julio de 2014). *Geoinnova*. Obtenido de Optimización de redes con ArcGIS Network Analyst: https://geoinnova.org/blog-territorio/optimizacionde-redes-con-arcgis-network-analyst/

Álvarez Sacoto, J. A., & Calle Rivera, G. F. (2013). Universidad de Cuenca, Facultad de Ingeniería, Escuela de Ingeniería Civil. Obtenido de "ESTUDIO DE PARÁMETROS HIDRÁULICOS E HIDROLÓGICOS PARA EL DIMENSIONAMIENTO DE OBRAS PARA DRENAJE VIAL EN LA VÌA DE ACCESO AL SECTOR "LA UNIÓN" EN SANTA ISABEL – AZUAY": https://dspace.ucuenca.edu.ec/bitstream/123456789/4472/1/TESINA.pdf

- Benayas Polo, R. (19 de Agosto de 2016). *GEASIG*. Obtenido de ¿Qué es HEC-RAS y para qué sirve?: https://www.geasig.com/que-es-hec-ras-y-para-que-sirve/
- Bermejo, E. (5 de Mayo de 2014). *Geo Innova*. Obtenido de ¿QUÉ ES LA TECNOLOGÍA ARCGIS?: https://geoinnova.org/blog-territorio/que-es-latecnologia-arcgis/
- Camino , M., Cionchi , J., López de Armentia, A., Del Río, J., & De Marco, S. (Junio de 2018). *Revista Universitaria de Geografía*. Obtenido de Estudio morfométrico de las cuencas de drenaje de la vertiente sur del sudeste de la provincia de Buenos Aires (Argentina):

http://bibliotecadigital.uns.edu.ar/scielo.php?script=sci_arttext&pid=S1852-42652018001100005&Ing=en&nrm=iso

CARPIO RUGEL , A. A. (24 de enero de 2018). UNIVERSIDAD DE GUAYAQUIL. Obtenido de Generación del modelo de areas de inundación del Río Catarama mediante el uso de los softwares Hec-RAS y ArcGIS:

http://repositorio.ug.edu.ec/bitstream/redug/32242/1/TESINA%20GENERACI%c

3%93N%20DE%20AREAS%20DE%20INUNDACI%c3%93N%20DEL%20R%c3 %8dO%20CATARAMA.pdf

Distritales, D. (abril de 2020). *Ministerio de Transporte y Obras Públicas República del Ecuador*. Obtenido de Subsecretaria de Infraestructura del Transporte : https://www.obraspublicas.gob.ec/wp-

content/uploads/downloads/2020/05/RVE_Mapa_Vial_Ecuador_ABRIL2020.pdf

- Dokumen. (Enero de 2015). *HIDROL SEMANA 02 CUENCAS.* Obtenido de https://dokumen.tips/documents/2015-1-hidrol-semana-02-cuencas.html
- Ecuador, M. d. (2013). Volumen No. 2 Libro A Norma para estudiso y diseños viales. Obtenido de Norma Ecuatoriana Vial NEVI-12 MTOP: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-

2013_Manual_NEVI-12_VOLUMEN_2A.pdf

Empresa Pública del Agua . (s.f.). Estudio de Plan de Aprovechamiento y Control de Agua de la Provincia de Los Ríos PACALORI. Obtenido de http://www.empresaagua.gob.ec/wp-

content/uploads/downloads/2019/03/ESTUDIO-PACALORI.pdf

Ganadería, M. d. (2020). SIGTierras. Obtenido de

https://www.agricultura.gob.ec/sigtierras/#:~:text=El%20Sistema%20Nacional%2 0de%20Informaci%C3%B3n,%2C%20Ganader%C3%ADa%2C%20Acuacultura %20y%20Pesca.

GIS&Beers. (3 de Enero de 2016). *GIS&Beers*. Obtenido de HEC-GeoRAS: http://www.gisandbeers.com/hec-georas/

Guacho Mueses, J. A., & Morales Alquinga, J. P. (2018). *Respositorio Digital ESPE.* Obtenido de Diseño hidrológico e hidraúlico del puente sobre el río Jama: http://repositorio.espe.edu.ec/bitstream/21000/14895/1/T-ESPE-040162.pdf hidráulica, D. d. (2016). *Facultad de Ingeniería Universidad Nacional del Nordeste.* Obtenido de Determinación de las características físicas de la cuenca: http://ing.unne.edu.ar/pub/hidrologia/hidro-tp1.pdf

Ibañes Asensio, S., Moreno Ramón, H., & Gisbert Blanquer, J. M. (20 de Abril de 2011). Universidad Politécnica de Valencia. Obtenido de Métodos para la determinación del coeficiente de escorrentía (c):

https://riunet.upv.es/bitstream/handle/10251/10781/Coeficiente%20de%20escorr ent%C3%ADa.pdf

INAMHI. (2015). Determinación de ecucaciones para el cálculo de intensidades máximas de precipitación. Obtenido de Actualización del estudio de lluvias intensas:

serviciometeorologico.gob.ec/Publicaciones/Hidrologia/ESTUDIO_DE_INTENSI DADES_V_FINAL.pdf

INAMHI. (Junio de 2017). Anuario Meteorológico . Obtenido de https://drive.google.com/file/d/1BEYmGnfVCXZmb9m6IAcCmMJwXx3zSqDN/vie w

issue. (10 de Noviembre de 2011). *issue*. Obtenido de Mapas parte 1: https://issuu.com/inamhi/docs/mapas_parte_1/21

Lux Cardona, B. (6 de Mayo de 2016). *Repositorio del Sistema Bibliotecario Universidad San Carlos de Guatemala.* Obtenido de Conceptos básicos de Morfometría de Cuencas Hidrográficas.:

http://www.repositorio.usac.edu.gt/4482/1/Conceptos%20b%C3%A1sicos%20de %20Morfometr%C3%ADa%20de%20Cuencas%20Hidrogr%C3%A1ficas.pdf

Montero Maté, M. (s.f.). *Universidad Complutense de Madrid.* Obtenido de Estimación de la precipitación máxima probable en una cuenca hidrográfica como parámetro

de riesgo :

https://app.mapfre.com/documentacion/publico/es/catalogo_imagenes/grupo.do? path=1018121#:~:text=La%20%3C%3CPrecipitaci%C3%B3n%20M%C3%A1xim a%20Probable.,tendencias%20clim%C3%A1ticas%20a%20largo%20plazo.

Públicas, M. d. (25 de junio de 2012). Reglamento a la Ley de Transporte Terrestre Tránsito y Seguridad Vial. Obtenido de https://www.obraspublicas.gob.ec/wpcontent/uploads/downloads/2015/03/Decreto-Ejecutivo-No.-1196-de-11-06-2012-REGLAMENTO-A-LA-LEY-DE-TRANSPORTE-TERRESTRE-TRANSITO-Y-SEGURIDAD-VIA.pdf

- Sánchez, J. (07 de Marzo de 2016). *Slideshare.* Obtenido de Laboratorio de hidráulica de canales: https://www.slideshare.net/juank84/laboratorio-de-hidrulica-de-canales
- Sandoval Erazo, W. (2019). *Diseño de Obras Hidrotécnicas.* Sangolquí: David Cabrera Reinoso, B.A.
- Solano Zúñiga, T. D., & Vintimilla Villavicencio. (21 de octubre de 2013). Universidad de *Cuenca*. Obtenido de Estudio fluviomorfolóogico del Río Vinces y determinación de las áreas de inundación de la zona de influenia del Proyecto Pacalori aplicando Hec-GeoRAS:

http://dspace.ucuenca.edu.ec/bitstream/123456789/4628/3/TESIS%20%282%29 .pdf

UNIVERSO, E. (20 de Febrero de 2020). COE declara en emergencia al cantón Jama de Manabí por fuertes lluvias. Obtenido de https://www.eluniverso.com/noticias/2020/02/20/nota/7748706/coe-declaraemergencia-canton-jama-manabi-fuertes-lluvias/

- Vega Panta, L. Á. (1 de marzo de 2016). *CAEG Centro de Altos Estudios en Geomática*. Obtenido de Análisis de redes: https://www.youtube.com/watch?v=hxVcpxQQ84
- Villegas, P. (18 de Agosto de 2014). *Agua y SIG.* Obtenido de Tiempo de concentración de la cuenca: https://aguaysig.com/tiempo-de-concentracion-de-la-cuenca/

94

Anexos

Anexo A.

Ubicación cuenca hidrográfica

Cuenca hidrográfica "Jama"

Modelo digital del terreno

Río principal

Red hidrológica

Anexo B.

Mapa de pendientes

Polígono de inundaciones en poblados de la cuenca hidrográfica

Cuadro de resumen de los parámetros morfométricos

Anexo C.

Rutas de evacuación ante inundaciones de la ciudad de Jama

Ruta 1: Iglesia Adventista del Séptimo Día Jama – Estadio Arnulfo Cevallos

Intriago

Ruta 2: Hotel Ciragan - Estadio Arnulfo Cevallos Intriago

Ruta 3: El mono aullador - Estadio Arnulfo Cevallos Intriago

Anexo D.

Rutas de evacuación ante inundaciones de la parroquia San Isidro

Ruta 1: Iglesia San Isidro – Santuario Virgen de Guadalupe

Ruta 2: Maternidad San Isidro - Santuario Virgen de Guadalupe

Ruta 3: Estación de servicio - Santuario Virgen de Guadalupe

Anexo E.

Rutas de evacuación ante inundaciones de la parroquia Convento

Ruta 1: Centro de Salud Convento – Estadio Convento

Ruta 2: Sala de Reuniones de los Testigos de Jehová - Estadio Convento

Ruta 3: Tenencia Política de Convento - Estadio Convento

Anexo F.

Rutas de evacuación ante inundaciones de la parroquia Eloy Alfaro

Ruta 1: Subcentro de Salud Parroquia Eloy Alfaro – Zona segura

Ruta 2: Iglesia Católica Eloy Alfaro – Zona segura

Ruta 3: UPC Eloy Alfaro Chone Manabí - Zona segura