

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE-EXTENSIÓN LATACUNGA

CARRERA DE PETROQUÍMICA

"DISEÑO DE UNA RED DE INTERCAMBIADORES DE CALOR PARA OPTIMIZAR LOS COSTOS DE OPERACIÓN"

AUTORA: REVELO CUATIN, MARÍA FERNANDA DIRECTOR: TUZA ALVARADO, PABLO VINICIO, D. Sc.

INTRODUCCIÓN

Baja

Temp

Entrada de Producto

Copyright TLV CO.,LTD. TLV

(Baja Temperatura)

Salida de Condensado

OBJETIVOS

<u>Objetivo General</u>

Diseño de una Red de Intercambiadores de Calor de un conjunto de corrientes calientes y frías reportadas en la literatura.

<u>Objetivos Específicos</u>

- Colectar información de corrientes reportadas en la literatura para determinar los Requerimientos Mínimos de Energía.
- Sintetizar la Red de Intercambiadores de Calor mediante el Método de Diseño Pinch y el Método de Programación Lineal de Enteros Mixtos.
- Diseñar una red con el mínimo número de intercambiadores de calor eliminando bucles de calor.
- Incluir Múltiples Utilidades en la Red de Intercambiadores de Calor.
- Realizar el análisis de costos y la comparación de los costos obtenidos de la Red de Intercambiadores de Calor propuesta con la correspondiente reportada en la literatura.

IDENTIFICACIÓN DE FLUJOS DEL PROCESO, DATOS TERMODINÁMICOS Y PROPIEDADES FÍSICAS.

Tabla 1. Datos de las corrientes

Corriente	m(kg/s)	C(kW/K)	Tint (K)	Tout (K)
H1	134	328,83600	413	313
H2	235	576,69000	433	393
Н3	12,1	29,69340	483	318
H4	28,5	69,93900	533	333
Н5	102	250,30800	553	483
Н6	14,2	34,84680	623	443
H7	38,9	95,46060	653	433
C1	235	576,69000	543	658
С2	143	350,92200	403	543
С3	104	255,21600	293	403
CW			293	298
S			700	700

Tabla 2. Propiedades físicas de las corrientes

Propiedad física	Valor
Viscosidad (kg/m s)	2,4x10 ⁻⁴
Densidad (kg/m³)	634
Capacidad calorífica (J/kg K)	2454
Conductividad térmica (W/m K)	0,114
Fuente: (Mizutani et al., 2003)	

Fuente: (Mizutani et al., 2003)

TEMPERATURA PINCH Y REQUERIMIENTOS MÍNIMOSENERGÍA- INTERVALO DE TEMPERATURATabla 3.

Tabla 3. Temperaturas ajustadas

ΔT min			Temperatura	
	10	К	Ajustada	
Corriente	T _{in} (K)	T _{out} (K)	T _{in} (K)	T _{out} (K)
H1	413	313	403	303
H2	433	393	423	383
Н3	483	318	473	308
H4	533	333	523	323
H5	553	483	543	473
H6	623	443	613	433
H7	653	433	643	423
C1	543	658	543	658
C2	403	543	403	543
С3	293	403	293	403

LINIVERSIDAD DE LAS FUERZAS ARMADAS

Figura 10. Método de intervalo de temperatura
Ajustar las temperaturas
iniciales
Definir los intervalos de
temperatura
Realizar la sumatoria de C
Realizar la acumulación de residuos
Eliminar el déficit de calor

Función Lógica

=SI(Y(condición1; condición2); valor_si es verdadero; valor_si es falso)

SÍNTESIS DE LA RED DE INTERCAMBIADORES DE CALOR MÉTODO DE DISEÑO PINCH

Figura 11. Método de Diseño Pinch

SÍNTESIS DE LA RED DE INTERCAMBIADORES DE CALOR PROGRAMACIÓN LINEAL DE ENTEROS MIXTOS (MILP)

REDUCCIÓN DEL NÚMERO DE INTERCAMBIADORES DE CALOR

MÚLTIPLES UTILIDADES

UNIVERSIDAD DE LAS FUERZAS ARMADA

COSTO DE LA RED DE INTERCAMBIADORES DE CALOR

Ec.6

COSTO DE LA RED DE INTERCAMBIADORES DE CALOR

Fuente: (Seider et al., 2009)

TEMPERATURA PINCH Y REQUERIMIENTOS MÍNIMOS ENERGÍA- INTERVALO DE TEMPERATURA

Intervalos (K)		∑(СН-СС)	Q (KW)	Calor acumulado	55156,104000
		(KW/K)		(kW)	
658	643	-576,69000	-8650,35000	-8650,35000	46505,75400
643	613	-481,22940	-14436,88200	-23087,23200	32068,87200
613	543	-446,38260	-31246,78200	-54334,01400	822,09000
543	523	29,69340	593,86800	-53740,14600	1415,95800
523	473	99,63240	4981,62000	-48758,52600	6397,57800
473	433	-120,98220	-4839,28800	-53597,81400	1558,29000
433	423	-155,82900	-1558,29000	-55156,10400	0,00000
423	403	325,40040	6508,00800	-48648,09600	6508,00800
403	383	749,94240	14998,84800	-33649,24800	21506,85600
383	323	173,25240	10395,14400	-23254,10400	31902,00000
323	308	103,31340	1549,70100	-21704,40300	33451,70100
308	303	73,62000	368,10000	-21336,30300	33819,80100
303	293	-255,21600	-2552,16000	-23888,46300	31267,64100

TABLA 6. Requerimientos mínimos de energía

Figura 18. Red De Intercambiadores De Calor Método De Diseño Pinch

Figura 19. Red De Intercambiadores De Calor Programación Lineal De Enteros Mixtos (MILP)

Figura 20. Red De Intercambiadores De Calor

Reducción del Número de Intercambiadores de Calor

Figura 21. Red De Intercambiadores De Calor Múltiples Utilidades

Figura 22. Estimación de Costos para el trabajo de Mizutani et al., (2003), diseño Pinch, MILP, Ruptura de Ciclos y Múltiples Utilidades.

B) UTILIDADES DE ENERGÍA

CONCLUSIONES

- El análisis Pinch permitió identificar que los requerimientos de energía son menores a los utilizados en la literatura.
- En el presente estudio se observó que el método de análisis Pinch reduce en 31,27% la utilidad de calentamiento y en 44,61% la utilidad de enfriamiento en comparación con las utilidades de energía usadas por la literatura.
- El método de programación lineal de enteros mixtos reflejó mayor reducción en el costo total anualizado que el método de diseño Pinch, con reducciones de 31,94% y 31,92% respectivamente, en comparación con el costo anualizado de la red presentada en la literatura.
- La ruptura de ciclos de calor mostró la reducción de dos unidades de intercambiadores de calor en comparación con el número de intercambiadores de calor de la red resultante del Método de Diseño Pinch. Se evidenció una reducción del 28,18% en comparación al costo anualizado correspondiente a la red reportada en la literatura.

CONCLUSIONES

- El uso de múltiples utilidades de energía mostró la reducción de 49,67% en el costo anualizado en comparación al correspondiente con la red proporcionada en la literatura con utilidades de energía.
- En el presente trabajo fue observable que mientras mayor es la cantidad de utilidades de energía utilizada en el proceso, mayor es el costo anualizado para la red de intercambiadores de calor.
- Realizar las redes de intercambio de calor a partir de análisis Pinch garantiza la recuperación máxima de calor y el uso mínimo de utilidades de calentamiento y enfriamiento.
- Finalmente, la red que mostró mayor reducción en los costos de operación en comparación con la red reportada en la literatura fue la red obtenida mediante el método de programación lineal de enteros mixtos, con la cual se evidenció la disminución de 1650855,971 \$/año.

RECOMENDACIONES

- Realizar la red de intercambiadores de calor con utilidades múltiples mediante el método de Programación Lineal de Enteros Mixtos (MILP).
- Usar el método de resolución GRG no lineal y Evolutionary para resolver problemas de programación lineal de enteros mixtos mediante Solver de Microsoft Excel.
- Emplear Matlab o GAMS para la resolución de la Formulación MILP mediante el método de análisis Pinch.

REFERENCIAS BIBLIOGRÁFICAS

Chemical Engineering. (2020, marzo 20). Recuperado 16 de marzo de https://www.chemengonline.com/2019-chemical-engineering-plant-costindex-annual-average/

Linnhoff, B., & Hindmarsh, E. (1982). The pinch design method for heat exchanger networks. *Advanced Materials Research*, *38*, 745-763. https://doi.org/10.4028/www.scientific.net/AMR.512-515.1253

Mizutani, F. T., Pessoa, F. L. P., Queiroz, E. M., Hauan, S., & Grossmann, I. E. (2003). Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs. 2. Network synthesis. *Industrial and Engineering Chemistry Research*, 42(17), 4019-4027. https://doi.org/10.1021/ie020965m

Seider, W. D., Seader, J. D., Lewin, D. R., & Widagdo, S. (2009). *Product and Process Design Principles:Synthesis, Analysis and Evaluation* (Tercera ed). United States of America: John Wiley and Sons.

Sieniutycz, S., & Jezowski, J. (2013). *Energy Optimization in Process Systems and Fuel Cells* (Second Edi). Recuperado de https://books.google.com.ec/books?id=wMX-

e6Sk1ZAC&pg=PA602&dq=chen+approximation+of+the+log+mean+temperature&hl=es&sa=X&ved=2ahUKEwiO__OP1KbvAhUlq1kKHdKuBB wQ6AEwAXoECAQQAg#v=onepage&q=chen approximation of the log mean temperature&f=false

GRACIAS POR SU ATENCIÓN

