

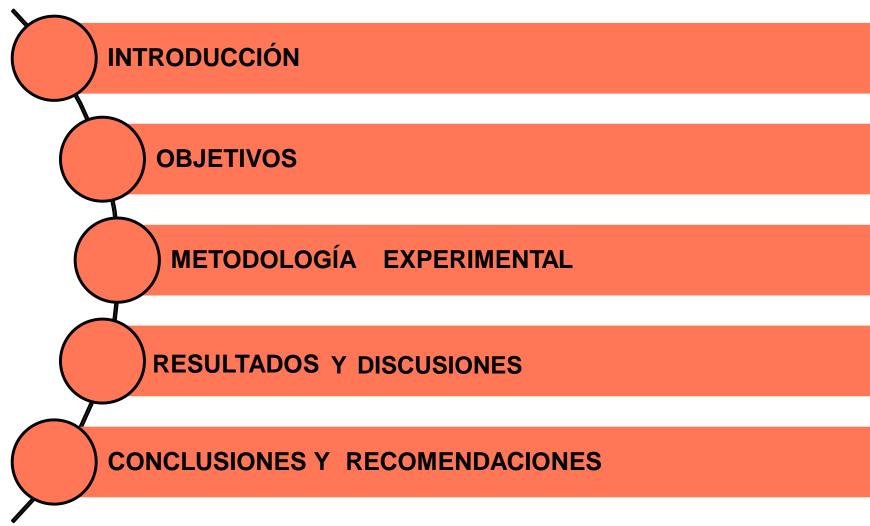
Universidad de las Fuerzas Armadas ESPE-L

Departamento de Energía y Mecánica Carrera de Petroquímica

Evaluación Económica y Financiera de la Planta de Producción de Carragenina.

Unidad de Integración Curricular, previo a la obtención del Título de Petroquímico

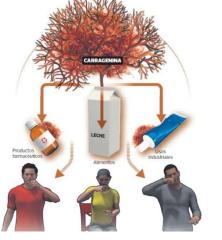
Autores:


Garzón Villacis, Alex David Sarabia Canchignia, Jessica Alexandra

Directora: Ing. López Ortega, Jessenia Estefanía

INTRODUCCIÓN

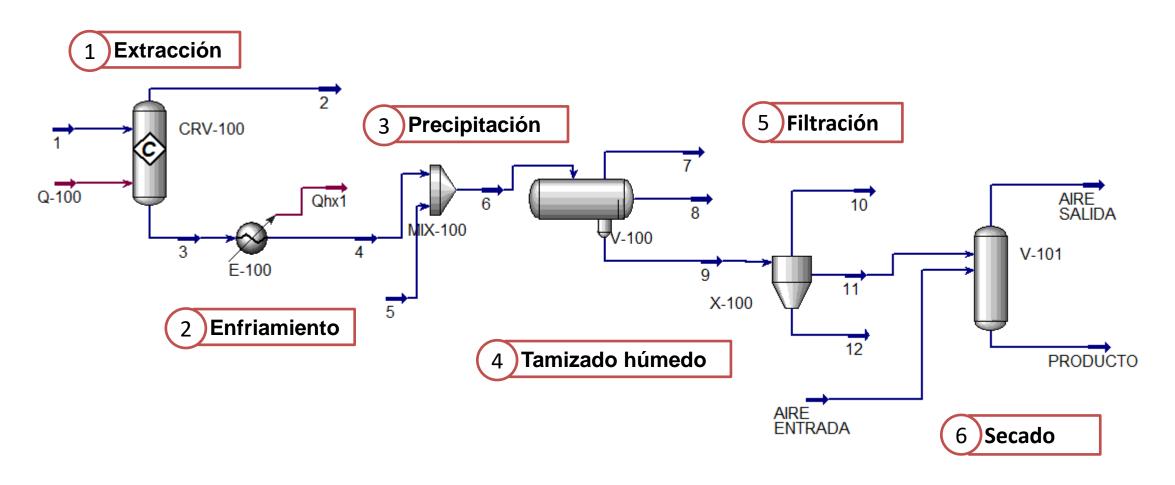
Definición



Obtención

Utilidades

Tipos



INTRODUCCIÓN

Proceso Gel-Press, para la obtención de carragenina

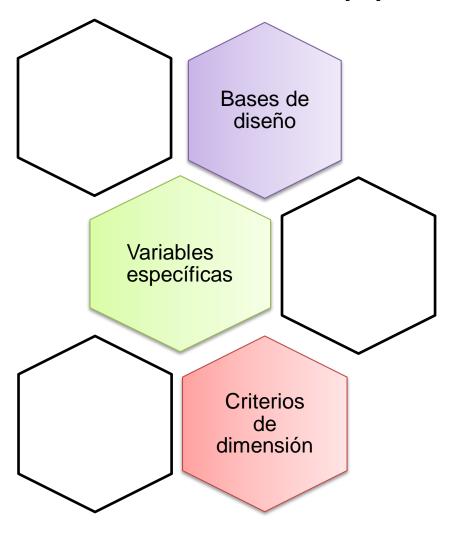
OBJETIVOS

Objetivo general

 Evaluar la parte económica y financiera de la planta de producción de carragenina, por medio del uso de Excel, para determinar si el proyecto planteado es factible.

Objetivos específicos

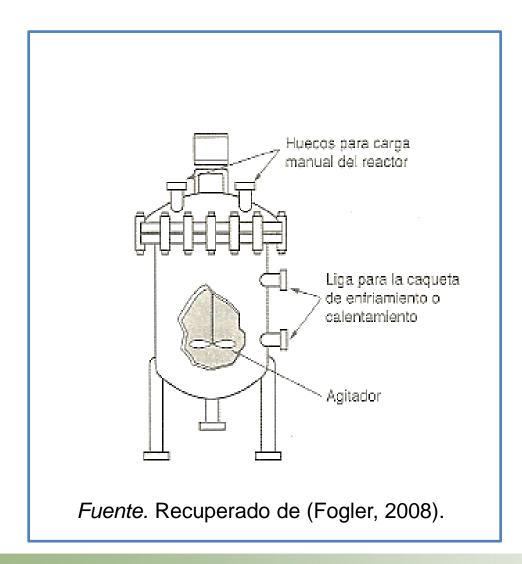
- Dimensionar los equipos utilizados en la simulación de la producción de carragenina.
- Estimar y proyectar la inversión total, capital, beneficio anual del proyecto y gastos administrativos de las operaciones.
- Calcular los indicadores financieros: Valor actual neto (VAN), Tasa interna de rendimiento (TIR),
 Tasa mínima aceptable de rendimiento (TMAR), razón B/C y punto de equilibrio.
- Realizar una proyección de flujo de efectivo estimado para 5 años.
- Realizar el análisis de sensibilidad del proyecto.



DIMENSIONAMIENTO DE EQUIPOS

Dimensionamiento de equipos

Material de fabricación


Para el diseño de todos los equipos se empleó acero inoxidable AISI 304.

E S P E

Dimensionamiento del rector con agitación

Diseño del estanque

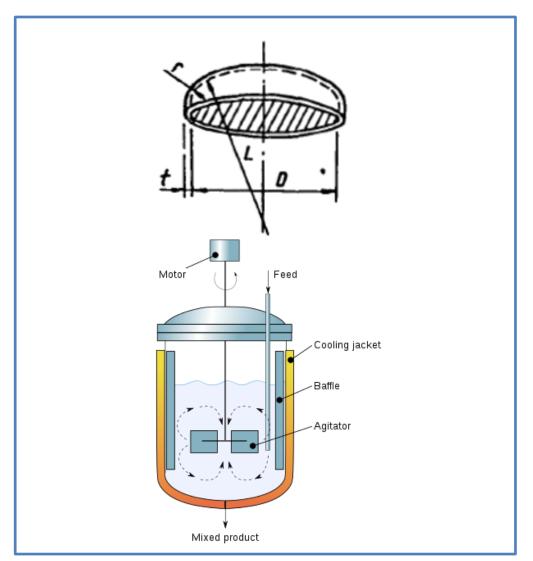
$$\alpha = \frac{H_E}{D_E}$$

$$D_E = \left(\frac{4*V}{\pi*\alpha}\right)^{1/3}$$

donde

 α =relación entre altura y el diámetro del estanque

 H_E =altura del estanque, m


 D_E =diámetro interno del estanque, m

 $V = Volumen real del estanque, m^3$.

E S P E

Dimensionamiento del rector con agitación

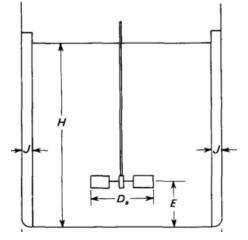
Diseño del cabezal

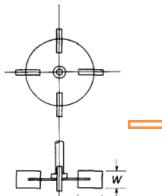
$$V_{cabezal} = D_E^3 * 0.0809$$

$$H_{cabezal} = \frac{D_E}{2} * \tan(30)$$

donde

 D_E =diámetro interno del estanque, m


 $V_{cabezal}$ =volumen del cabezal, m^3


 $H_{cabezal}$ =altura del cabezal, m.

Dimensionamiento del rector con agitación

Diseño del sistema de agitación

$$\frac{D_a}{D_E} = S_1$$

$$\frac{D_a}{D_E} = S_1 \qquad \frac{E}{D_a} = S_2 \qquad \frac{L}{D_a} = S_3 \qquad \frac{W}{D_a} = S_4 \qquad \frac{J}{D_E} = S_5 \qquad \frac{H}{D_E} = S_6$$

$$S_3 = \frac{V}{\Gamma}$$

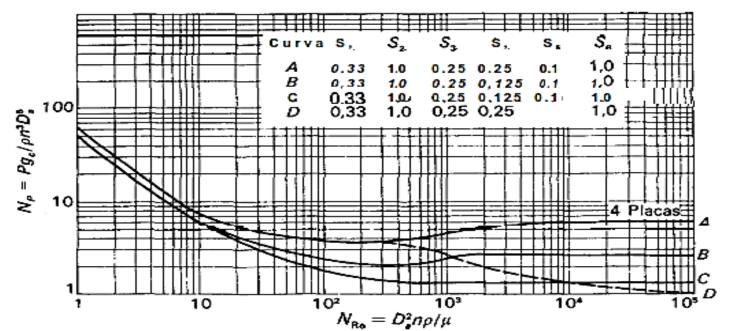
$$\frac{J}{D_{-}} = S$$

$$\frac{H}{D_E} = S_6$$

donde:

 D_a =diámetro del rodete, m

 D_E =diámetro del tanque, m


E =altura del rodete sobre el fondo del tanque, m

H =altura del líquido en el tanque, m

W =anchura del rodete, m

J = anchura de las placas deflectoras, m

L =ancho de paleta, m.

Fuente. Recuperado de (McCabe et al., 1991).

Dimensionamiento del rector con agitación

Espesor de carcasa

$$t_r = \frac{P_o * R}{S * E - 0.6P_o} + E_C$$

donde

 t_r =espesor de carcasa, pulg

 P_o =presión de operación, $lb_f/pulg^2$

R =radio interno de la carcasa, pulg

 $S = \text{esfuerzo máximo permisible}, \frac{lb_f}{pulg^2}$

E =eficiencia de soldadura

 E_C =espesor de corrosión, pulg.

Potencia del motor de agitación

$$P = \frac{\rho * n^3 * D_A^2 * N_p}{gc}$$

donde:


P =potencia del motor de agitación, W

 N_p =número de potencia

gc = factor de conversión gravitacional, $Kg * m/N * s^2$


n = velocidad de rotación, r.p.s

 ρ = densidad de la mezcla, Kg/m^3 .

Dimensionamiento del mezclador estático en línea

Velocidades de flujo

$$P_1 * \dot{V_1} + \frac{\dot{m_1} * \vartheta_1^2}{2} + P_2 * \dot{V_2} + \frac{\dot{m_2} * \vartheta_2^2}{2} = P_3 * \dot{V_3} + \frac{\dot{m_3} * \vartheta_3^2}{2}$$

$$D = \sqrt{\frac{4 * Q}{\vartheta * \pi}}$$

donde

P = presión del flujo, Pa * s

 $\dot{V} = \text{flujo volumétrico}, m^3/s$

 $\dot{m} = \text{flujo másico}, Kg/s$

 $\vartheta = \text{velocidad del flujo}, m/s.$

Diámetro de cañerías

$$D = \sqrt{\frac{4 * Q}{\vartheta * \pi}}$$

donde

 $Q = \text{caudal del fluido}, \frac{m^3}{s}$

D = diámetro de la cañería, <math>m

$$Re = \frac{D * \vartheta * \rho}{u}$$

 ϑ =velocidad del flujo, $\frac{m}{\varsigma}$

 $\mu = \text{viscosidad del fluido}, Pa * s$


 $\rho = \text{Densidad del fluido}, Kg/m^3$.

Dimensionamiento del filtro prensa

Capacidad del equipo

$$C_{ciclo} = \frac{V * x_{s\'olidos} * m_c}{\rho_{s\'olido}}$$

donde:

 C_{ciclo} =capacidad del equipo por ciclo, m^3

V =volumen de alimentación por ciclo, m^3

 $x_{s\'olidos}$ =Fracción de sólidos

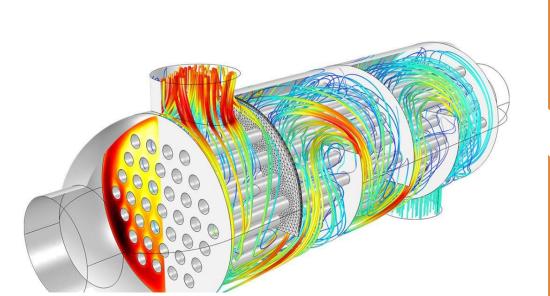
 m_c =Masa de la torta por volumen de filtrado, $\frac{kg}{m^3}$

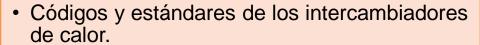
 $\rho_{s\'olido}$ =densidad de los s\'olidos, $\frac{kg}{m^3}$.

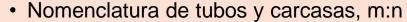
Dimensionamiento del filtro prensa

Una vez determinado la capacidad de la planta, se puede obtener el área de filtrado, número de cámaras y la longitud del filtro.

Capacidad del filtro 5,78 ft³


	Capacidad ft ³	Nominal	0.3	0.5	0.6	1	1.5	2	3	4	5	6	8	10	12	15	20	25	30	40	50	60	80	100	150	20
	27" W	Área ft ³	7	10	14	21	35	42	67	88	Las	pren:	sas A	IA 50	n sol	amente manuales.				Estándar			C= 30	H=50		
AA	18.5″x18.5″	Cámaras	2	3	4	6	9	13	19	25		Peso	vací	o 72	0 + 2	20 # / Cámara				Descarga de Tambor			C= 42	H=61		
	470 mm	Longitud	48	50	52	59	68	74	89	104										Portable		C=12	H=36			
Α	34″W	Área ft ³				19	32	44	64	89	108	128	178	223	240				Estándar			C=30	Ξ=	:50		
	18.5"x18.5"	Cámaras				3	5	7	10	14	17	21	28	35	40					Descarga de Tambor			C=42	H=	:72	
	630 mm	Longitud				81	85	9	97	106	113	120	129	155	168						Peso vacío 1610 +			30#/	Cámar	ra
В	41″W	Área ft ³						49	8	80	100	120	160	200	240	300	400	500			Esta	ándar		C=30	H=	:50
	18.5" x18.5"	Cámaras							6	8	11	13	17	21	26	32	43	54		Descarga de Tambor		C=42	H=	72		
	800 mm	Longitud					89	94	99	104	109	119	129	139	154	180	205		Peso Vacío 3150 +			50# /Cámara				


Fuente. Recuperado de (ACS Medio Ambiente, 2021).


E S P E

Dimensionamiento del intercambiador de calor

• Factores de ensuciamiento.

Método de Kern.

Dimensionamiento del intercambiador de calor

Calor transferido

$$Q = UA\Delta T_m$$

Potencial calorífico

$$Q = \dot{m}\Delta T C_P$$


Coeficiente global de transferencia de calor

$$\frac{1}{U_O} = \frac{1}{h_O} + \frac{1}{h_O d} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} * \frac{1}{h_i} + \frac{d_o}{d_i} * \frac{1}{h_i}$$

Coeficiente global

Fuente. Recuperado de (Sinnott & Towler, 2012).

Dimensionamiento del intercambiador de calor

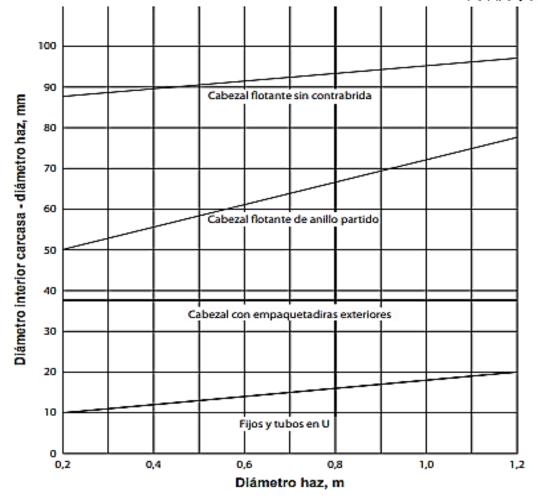
Tubos

Dimensiones: 20 De y 16mm Di

Disposición de los tubos: Triangulo equilátero

La distancia entre centros del tubo recomendado es

1,25 veces el diámetro exterior del tubo


Carcasa

Se seleccionará cabezal flotante de anillo partido.

Diseño de paneles de tubos

$$N_t = K_1 \left(\frac{D_b}{d_o}\right)^{n1}$$

$$D_b = d_o \left(\frac{N_t}{K_1}\right)^{1/n1}$$

E S P E

Dimensionamiento del intercambiador de calor

Diferencia de temperatura promedio

$$\Delta T_{lm} = \frac{(T_1 - T_2) - (T_2 - t_1)}{ln \frac{(T_1 - t_2)}{(T_2 - t_1)}}$$



Factor de corrección de la temperatura

$$R = \frac{(T_1 - T_2)}{(t_2 - t_1)}$$
$$S = \frac{(t_2 - t_1)}{(T_1 - t_1)}$$

Conductividad de los metales

Fuente. Recuperado de (Sinnott & Towler, 2012).

E S P E

Dimensionamiento del intercambiador de calor

Diámetro equivalente de lado de la carcasa

$$d_e = \frac{1.1}{d_o} (p_t^2 - 0.917 d_o^2)$$

Coeficientes para el agua

$$h_i = \frac{4200(1,35 + 0,02t)u_t^{0,8}}{d_i^{0,2}}$$

Factor de transferencia calor, j_h

Flujo turbulento

Número de Nusselt

$$Nu = \frac{h_i d_e}{k_f}$$

Número de Reynolds

$$Re = \frac{\rho u_r d_e}{\mu} = \frac{G_t d_e}{\mu}$$

Número de Prandtl.

$$Pr = \frac{C_p \mu}{k_f}$$

E S P E

Dimensionamiento de la centrifugadora de sedimentación

Ecuaciones que presenta la teoría sigma:

 $\Sigma = \frac{Q}{ef * 2u_g}$

$$Q = 2 * u_g * \Sigma$$

$$u_g = \frac{\Delta \rho * d_s^2 * g}{18 * \mu}$$

$$\frac{Q}{\Sigma} = 2 * u_g$$

donde:

$$\frac{Q}{\Sigma} = 2 * \frac{\Delta \rho * d_s^2 * g}{18 * \mu}$$

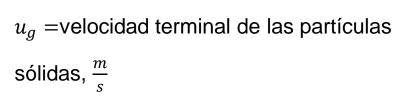
$$Q$$
 =caudal a través de la centrifugadora, $\frac{m^3}{s}$

$$\frac{Q}{\Sigma}$$
 = relación caudal/sigma, $\frac{m}{s}$

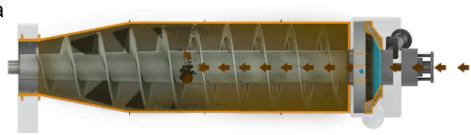
$$ho_{\scriptscriptstyle S}=$$
 densidad del sólido, $rac{{\scriptscriptstyle K}g}{m^3}$

$$ho_l$$
 =densidad del líquido, $rac{Kg}{m^3}$

$$\Delta \rho$$
 =diferencial de densidad, $\frac{Kg}{m^3}$

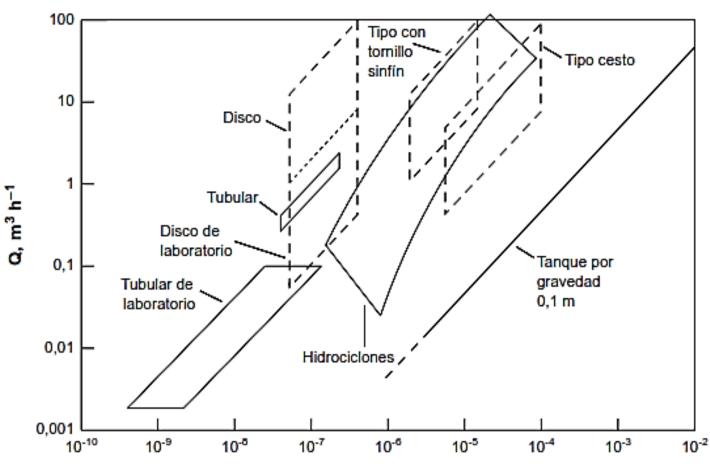

 d_s =diámetro de partícula sólida

 μ =viscosidad del líquido, Pa*s


g =aceleración gravitacional, $\frac{m}{s^2}$

 e_f =eficiencia del equipo.

 Σ =valor sigma de la centrifugadora, m^2



E S P E

Dimensionamiento de la centrifugadora de sedimentación

Selección del tipo de centrifugadora de sedimentación

Tipo	Eficiencia aproximada (%)
Cuenco tubular	90
Disco	45
Cuenco sólido (descarga con tornillo sinfín)	60
Cuenco sólido (cesto)	75

 $Q/\Sigma = 2 \times \text{velocidad de sedimentación por gravedad, ms}^{-1}$

Fuente. Recuperado de (Sinnott & Towler, 2012).

Dimensionamiento del secador

Flujo de la mezcla

$$\dot{m}_{mezcla} = \frac{m}{t}$$

Flujo del agua

$$\dot{m}_{H_2O} = \frac{m}{t}$$

Volumen del lecho de Kappa I

$$V = \frac{C_s}{\rho} = L * b * a$$

Carga del secador

 $m_{carga\ del\ secador} = m_{mezcla,in} + m_{agua,in}$

Costo de equipos

Cuando no se cuenta con acceso a datos de costos fiables o programas de estimación, se puede usar un conjunto de correlaciones que permiten determinar un costo aproximado para los equipos.

$$C_{\rho} = a + b * S^n$$

donde

 C_e =costo del equipo,\$

a, b =constantes de costo

S = parámetro del tamaño

n =exponente para cada tipo de equipo.

Factores de coste de material, relativos al acero de carbono sencillo

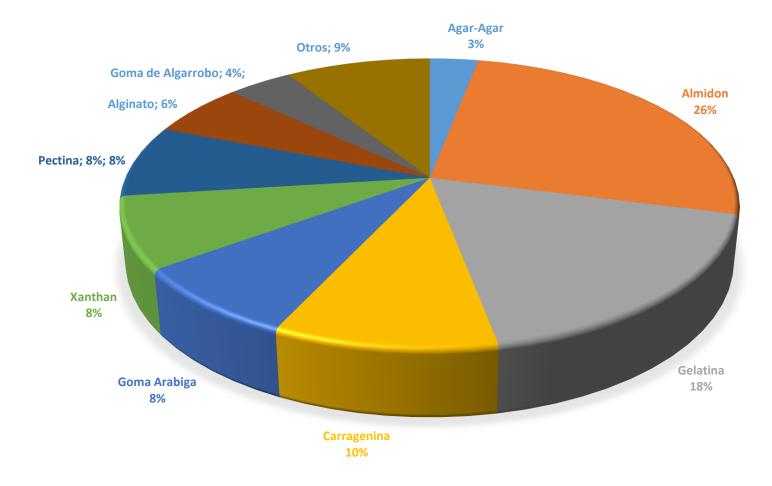
Material	Factor de costo					
Acero al carbono	1					
Aluminio y bronce	1.07					
Acero colado	1.1					
Acero inoxidable 304	1.3					
Acero inoxidable 316	1.3					
Acero inoxidable 321	1.5					
Hastelloy C	1.55					
Monel	1.65					
Niquel e Inconel	1.7					

Nota. Fuente: (Sinnott & Towler, 2012)

Estimación de costo de equipos de una planta

Equipo	Variables de tamaño, S	S	а	b	n
Reactor agitado	Volumen, m ³	24,587	53000	28000	0,8
Intercambiador de calor	Área, m²	122,0000428	2400	46	1,2
Mezclador estático	Caudal, L/s	2,457	500	1030	0,4
Centrifugadora de sedimentación	Sigma, m²	84,078	-63000	80000	0,3
Filtro de prensa	Capacidad, m³	0,1364	110000	77000	0,5
Secador	Área, m²	20,0254511			

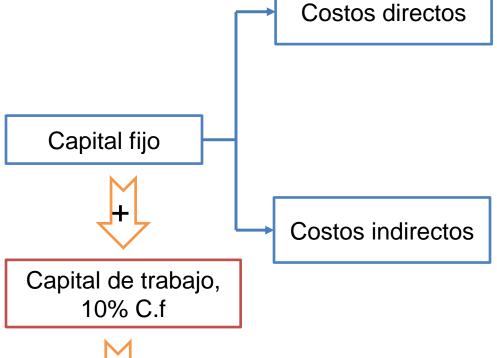
Nota. Recuperado de (Sinnott & Towler, 2012).


Demanda y mercado de la carragenina

HIDROCOLOIDES PRESENTES EN EL MERCADO

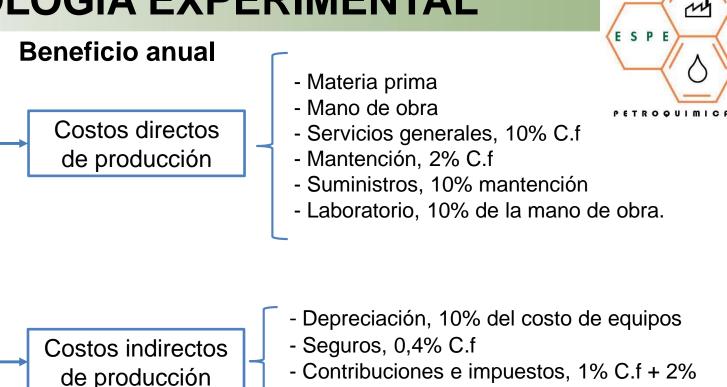
En el año 2012 la carragenina ofertada en el mundo fluctuó entre 45000 a 50000 toneladas al año; lo que representa el 10% del mercado mundial en la industria de hidrocoloides.

ANÁLISIS ECONÓMICO Y FINANCIERO



- Instalaciones, 25%
- Instrumentación y control, 8%
- Cañerías, 10%
- Instalaciones eléctricas, 10%
- Edificaciones, 30%
- Servicios generales, 30%
- Valor del terreno.

- Ingeniería y supervisión, 33%
- Costos legales, 4%
- Costos de construcción, 41%
- Honorario del contratista, 2%
- Contingencias, 10%.


Costo de puesta en marcha, 10% C.f

Estimación de la inversión total

costo del terreno.

Costo total del producto

Gastos generales

de la empresa

Costos de

fabricación

- Administración, 20% de la mano de obra
- Distribución y venta, 10% del costo de fabricación
- Investigación y desarrollo, 2% del costo de fabricación.

Beneficio anual = Ingresos totales por ventas – Costos total del producto

Periodo de recuperación

Tiempo que tarda en recuperarse la inversión inicial.

Periodo de recuperación
$$=\frac{I}{R}$$

donde:

I =Inversión inicial

R = Flujo de caja promedio anual.

Indicadores financieros

Tasa mínima aceptable de rendimiento

Estima como el dinero invertido crece en términos reales.

Valor actual neto

Este indicador da paso a conocer el valor del dinero actual.

Tasa interna de rendimiento

Tasa de interés pagada sobre los saldos de dinero del préstamo

Indicadores financieros

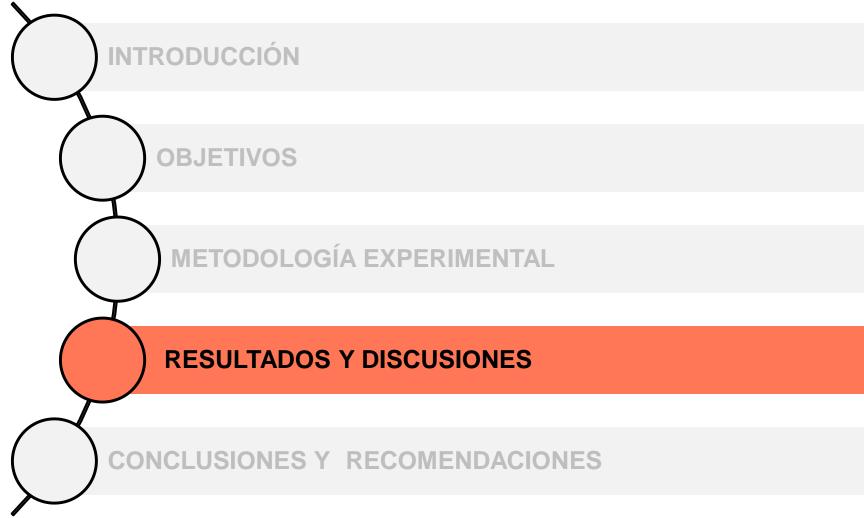
Razón costo beneficio

Conocida como índice de rentabilidad

Punto de equilibrio

Nivel de ventas en donde los ingresos (ventas) son iguales a los egresos (costos y gastos).

Análisis de sensibilidad



Análisis facilita la toma de decisiones en el proyecto

Dimensionamiento de equipos

Reactor con agitación

Dimensiones	de	estanque y	cabezal
--------------------	----	------------	---------

Especificaciones del sistema de agitación

Variable	Especificación	Variable	Especificación
Diámetro interno	4,877833014 m	Número de Reynolds	19821,80377
Altura del estanque	9,755666028 m	Diámetro del agitador	1,609684895 m
Espesor de carcasa	8 <i>mm</i>	Altura del rodete sobre el fondo del estanque	1,609684895 <i>m</i>
Altura de cabezal	1,408109102 m	,	.,
Volumen de cabezal	9,389215517 m ³	Anchura del rodete	0,201210612 m
Altura total	11,16377513 m	Anchura de las placas deflectoras	0,487783301 m
Volumen total	32,37551581 m ³	- Altura del líquido en el estanque	4,877833014 m
		Ancho de aspas	0,402421224 m
		Número de aspas	6
		Potencia del motor del agitador	39,28843335 <i>HP</i>

Mezclador estático

Filtro prensa

			
Velocidad de flujo	(m/s)	Variable	Especificación
Solución de Carragenina	1.6	Capacidad del equipo	0,163633323 m ³
Solución NaCl	1.1	Área filtrante	10,03353 m ²
Kappa 1 precipitada	3.002798261	Número de cámaras	17
Diámetro de cañería	(m)	Largo de la prensa	2,8702 m
Solución de Carragenina	0.041989034	Largo de la placa	0,762 m
Solución NaCl	0.016703858	Espesor de la placa	0,0508 m
Kappa 1 precipitada	0.032274877	Espesor del marco	0,1016 m

Intercambiador de calor

DimensionesEspecificaciónNúmero de tubos74Longitud de tubos2 mÁrea real $122,0000428 m^2$ Uo $720,271178 Wm^2/^{\circ}C$

Centrifugadora de sedimentación

Variable	Especificación
Valor sigma	84,077447 m ²
Relación caudal / sigma	4,83846E-05 <i>m/s</i>

Secador

Dimensiones	Especificación
Largo	2 m
Ancho	10,0127255 m
Área	20,0254511 m ²

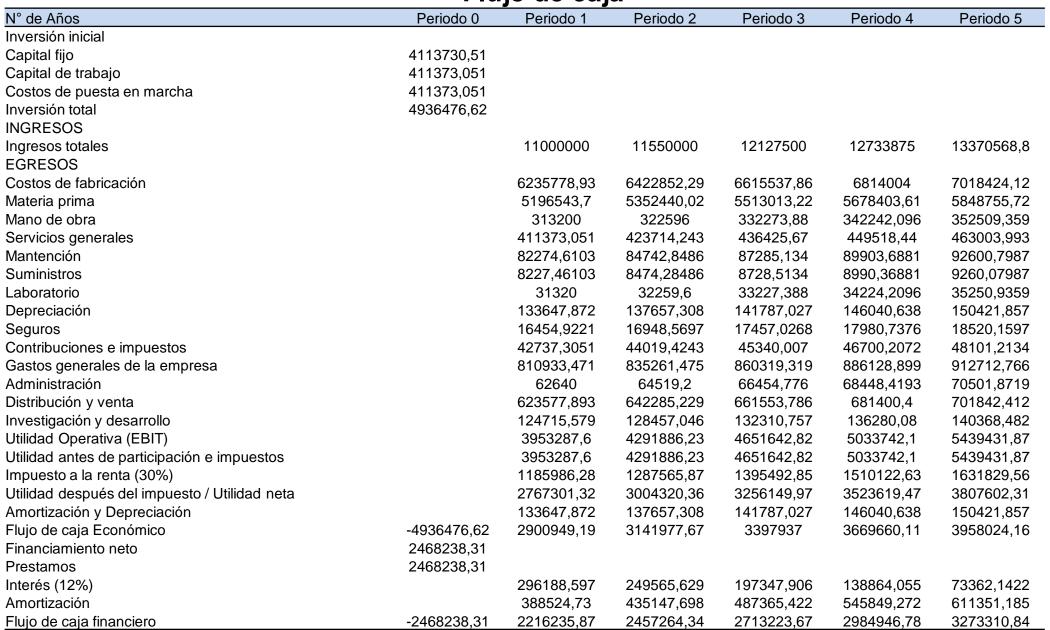
COSTO DE EQUIPOS

Costo de equipo	osto d	e equ	ipos
-----------------	--------	-------	------

Equipo	Costo (\$)
Reactor agitado	390637,5531
Intercambiador de calor	22189,23029
Mezclador estático en línea de inyección	2418,293882
Centrifugadora de sedimentación	330040,401
Filtro de prensa	150492,068
Secador	50063,6277

ANÁLISIS ECONÓMICO Y FINANCIERO

Determinación del heneficio anual


Determinación de la inversión total	
Dato	\$
Capital fijo	4113730,51
Capital de trabajo	411373,051
Costo de puesta en marcha	411373,051
Estimación de la inversión total	4936476,62

Determinación del benefició andal	
Dato	\$
Ingresos totales por venta (anual)	11000000
Costo total del producto	7046712,397
Beneficio anual	3953287,603

Determinación del periodo de recuperación	
Variable	Valor
Inversión total (\$)	4936476,62
Flujo de caja promedio anual (\$/año)	2728996,3
Periodo de recuperación (años)	1,80889824

Flujo de caja

Índices financieros

Inflación en Ecu	uador	
N°	Año	Porcentaje
1	2015	3,97%
2	2016	1,73%
3	2017	0,42%
4	2018	0%
5	2019	0,27%
TOTAL		1,278%

Treffilo al fiesgo		
Premio al riesgo	6,50%	
Tasa mínima aceptab	le de rendimiento	
TMAR	7,778%	

Premio al riesgo

Índices financieros

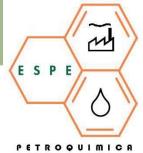
Valor actual neto

TMAR	7,778%					
Años	0	1	2	3	4	5
Flujos netos de fondos en dólares	-2468238,308	2216235,867	2457264,343	2713223,67	2984946,78	3273310,84
Valor actual neto	\$ 10.200.421,44					

Tasa interna de retorno

Años	0	1	2	3	4	5
Flujos netos de fondos en dólares	-2468238,308	2216235,867	2457264,343	2713223,67	2984946,78	3273310,84
TIR	95%					

Índices financieros


Punto de	equilibrio
----------	------------

	1	2	3	4	5
Gastos	69719,33689	71810,917	73965,24451	76184,2018	78469,7279
Costos	561161,1407	577995,975	595335,8542	613195,93	631591,808
Venta	11000000	11000000	11000000	11000000	11000000
PE	73467,24249	75793,49279	78197,40053	80681,8165	83249,7131

Análisis de sensibilidad

TMAR	7,778%	
TIR	Costo por tonelada	
95%	11000	
65%	10000	
33%	9000	
16%	8500	
-5%	8000	

CONCLUSIONES

Con respecto al dimensionamiento de los equipos empleados en la planta de producción, los resultados obtenidos fueron similares a los reportados por Mancilla (2012), por lo que se puede aceptar, mencionados valores de dimensión, el costo total de los equipos es de \$ 1336478,721.

El monto de la inversión total inicial es de \$ 4927734,19, (50%) de este monto será financiado por una entidad bancaria, el capital fijo es de \$ 4106445,16, los gastos administrativos de la empresa son \$ 810785,5546 y el beneficio anual para el presente proyecto es de \$ 3954668,157.

Mediante los resultados obtenidos en el análisis financiero, tomando en cuenta los flujos financieros proyectados para 5 años se obtiene un VAN de \$ 10.207.478,84, por lo que el proyecto es aceptado.

Con un análisis estimado para 5 años mediante los flujos financieros se obtiene un TIR de 95%, si $TIR \ge TMAR$, Acéptese la inversión, por lo tanto, cumple, se acepta la inversión.

El índice beneficio/costo es de \$ 3,07, es mayor a uno, indica que existe ganancias.

CONCLUSIONES

El punto de equilibrio promedio obtenido para los 5 años de proyección se obtiene \$ 78277,933 lo que nos quiere decir que en este punto las ventas son iguales a los costos, en este punto no se obtiene ganancias ni perdidas.

Mediante un análisis de sensibilidad, variando el costo de venta de carragenina desde \$ 11 por kilogramo hasta los \$ 8, se determinó que el precio mínimo de venta debe ser de \$ 8,5 por kilogramo, para que se encuentre dentro de un TIR aceptable.

RECOMENDACIONES

Debido a la factibilidad del proyecto y a los ingresos obtenidos, es recomendable que el proyecto sea puesto en marcha con ayuda financiera, con un trabajo conjunto entre el sector privado y el estado ecuatoriano.

Se recomienda para futuras investigaciones, realizar el diseño y dimensionamiento de una planta de producción de carragenina en química verde, mediante el método de agua subcrítica.

Para el presente estudio, es recomendable el uso de un reactor agitado, debido a que, permite que la reacción se lleve a cabo en todo el volumen del recipiente, dando como resultado una buena mezcla entre reactivos, por otro lado es recomendable emplear reactores en serie, con la finalidad que, al dimensionar mencionados equipos los valores obtenidos no sean excesivos.

MUCHAS GRACIAS POR SU ATENCIÓN