

DEPARTAMENTO DE CIENCIAS DE ENERGÍA Y MECÁNICA

CARRERA DE PETROQUÍMICA

ESTUDIO IN SILICO, TEÓRICO COMPUTACIONAL DE LAS CORRIENTES DE INGRESO Y SALIDA DE UNA REFINERÍA DE PETRÓLEO ENFOCADO EN EL PROCESO DE "ISOMERIZACIÓN CATALÍTICA" CON ÉNFASIS EN LAS ESTRUCTURAS QUÍMICAS INDIVIDUALES PARA CADA FLUJO, Y EL ANÁLISIS DE SUS PROPIEDADES FISICOQUÍMICAS INTRÍNSECAS, CONFIGURACIONES, CONFORMACIONES Y POTENCIALES INTERACCIONES INTERMOLECULARES ENTRE SÍ

> AUTORES: VACA PÉREZ, JUAN PABLO YUGCHA CASA, EDWIN JAVIER

DIRECTOR: ING. FABIÁN MAURICIO SANTANA ROMO, PhD.

INTRODUCCIÓN OBJETIVOS METODOLOGÍA RESULTADOS CONCLUSIONES RECOMENDACIONES

Introducción

Introducción

M

ESPE

PETROQUIMICA

Introducción

Isomerización catalítica

- Aumenta el octanaje
- Zeolitas
- Química computacional

INTRODUCCIÓN

RESULTADOS

CONCLUSIONES

RECOMENDACIONES

Objetivo general

Determinar *computacionalmente* las características fisicoquímicas de todos los posibles componentes químicos de los flujos de entrada y salida en una refinería de petróleo *"proceso de isomerización catalítica"* mediante cálculos teóricos computacionales.

Objetivos específicos

- *Establecer una lista de potenciales moléculas químicas de origen orgánico* presentes en el flujo de entrada y salida en el proceso de isomerización catalítica.
- *Procesar cada una de las moléculas químicas de origen orgánico*, desde su nomenclatura, estructura química 2D, código SMILES y reporte de propiedades básicas como fórmula, peso molecular y composición elemental.
- *Calcular las propiedades fisicoquímicas básicas de cada molécula de origen orgánico*, mediante la plataforma gratuita del Instituto Suizo de Bioinformática SwissADME.
- *Calcular las estructuras 3D de cada una las moléculas orgánicas*, mediante el software Avogadro, para la obtención de las configuraciones y conformaciones finales.
- *Reportar mediante tablas los datos obtenidos* para cada molécula química procesada en los pasos anteriores.

INTRODUCCIÓN

RESULTADOS

CONCLUSIONES

RECOMENDACIONES

Búsqueda de datos internacionales

Estimación de corrientes del proceso TIP

Componente	Alimentación	Porcentaje	Producto	Porcentaje
	fresca al	de	isomerizado	de producto
	reactor (BPD)	alimentación	(BPD)	isomerizado
		fresca		
Hidrógeno	2175			
consumido				
Corrientes C ₄₊				
isobutano	10	0,1	288	2,86652732
<i>n</i> -butano	58	0,58	136	1,3536379
isopentano	1684	16,84	4523	45,0184135
<i>n</i> -pentano	2907	29,07	142	1,41335722
Ciclopentano	169	1,69	132	1,31382502
2,2-dimetilbutano	51	0,51	910	9,05743008
2,3-dimetilbutano	193	1,93	458	4,5585747
2-metilpentano	1208	12,08	1771	17,6271524
3-metilpentano	880	8,8	1134	11,2869513
<i>n</i> -hexano	1935	19,35	22	0,21897084
metilciclopentano	195	1,95	344	3,42390763
Ciclohexano	341	3,41	98	0,97541555
Benceno	175	1,75	0	0
<i>n</i> -heptano	194	1,94	89	0,88583657
TOTAL	10000	100	10047	100

Meyers, R. (2003). HANDBOOK OF PETROLEUM REFINING PROCESSES (Tercera). New York: McGraw-Hill.

Elaboración de archivos 3D de las estructuras químicas.

Estructura química 3D de la molécula de etano obtenida a través de "Pymol"

Estructura química 3D de la molécula de etano obtenida a través de "Chemcraft"

PyMOL

Chemcraft

14

Reporte la energía de optimización

🗱 Etano no optimizado.mol* - Avogadro File Edit View Build Select Extensions Crystallography Settings Help 🦻 New 🔚 Open 🔚 Save 🛛 😤 Close 🔀 Quit Tool Settings... Display Settings... ~ ₽× AutoOptimization Settings View 1 Force Field: MMFF94s 🔻 AutoOpt: E = -19.8218 kJ/mol (dE = 0) Steps per Update: 4 ≑ Algorithm: Num Constraints: 0 Steepest Descent • Fixed atoms are movable Ignored atoms are movable Stop

Elaboración de archivos con coordenadas 3D

Estructura química 3D optimizada para el etano obtenida en "Chemcraft"

Chemcraft

Ima	ge Ab	stract	Source	Coord	Image/abs.
C2H6					
6	0.9749000	00 0	.082400000	0.04860000	0
6	2.4870000	00 0	.082400000	0.04860000	0
1	0.5906000	00 0	.964700000	0.56900000	0
1	0.5906000	00 -0	.809400000	0.55250000	0
1	0.5906000	00 0	.091900000	-0.97570000	0
1	2.8714000	00 0	.072900000	1.07290000	0
1	2.8714000	00 0	.974200000	-0.45530000	0
1	2.8714000	00 -0	.799900000	-0.47180000	0

Búsqueda de datos internacionales

#	Compuestos	#	Compuestos
1	Hidrógeno	11	n-hexano
2	Metano	12	2-metilpentano
3	Etano	13	3-metilpentano
4	Propano	14	n-heptano
5	Iso-butano	15	2,2-dimetilhexano
6	n-butano	16	2,3-dimetilhexano
7	Iso-pentano	17	Iso-hexano
8	n-pentano	18	Metilciclopentano
9	2,2-dimetilbutano	19	Benceno
10	2,3-dimetilbutano	20	Ciclopentano
		21	Ciclohexano

Generación de estructuras químicas en 2D

#	NOMBRE	Estructura química 2D
1	hidrógeno	H-H
2	metano	CH4
3	etano	/
4	propano	\wedge
5	isobutano	\downarrow
6	n-butano	\sim
7	isopentano	\sim
8	2,2-dimetilbutano	\succ
9	2,3-dimetilbutano	$\downarrow \qquad \qquad$
10	n-pentano	\sim
11	2-metilpentano	\downarrow
12	3-metilpentano	\sim

#	NOMBRE	Estructura química 2D
13	n-hexano	\sim
14	2-metilhexano	\rightarrow
15	2,2-dimetilhexano	$\times \sim$
16	2,3-dimetilhexano	\downarrow
17	n-heptano	\sim
18	ciclopentano	\bigcirc
19	metilciclopentano	\checkmark
20	benceno	
21	ciclohexano	\bigcirc

M

ESPE

PETROQUIMICA

Procesamiento de propiedades básicas

Isopentano

Propiedades químicas básicas del isopentano

Fórmula química	C5H12
Peso molecular	72,1510
Análisis elemental	С, 83.24; Н, 16.76

Generación automática de nomenclatura IUPAC

#	NOMENCLATURA IUPAC	#	NOMENCLATURA IUPAC	
1	hidrógeno	12	3-metilnentano	
2	metano	12	n heveno	
3	etano	13	2-metilbeyano	
4	propano	14	2 2-dimetilhevano	
5	isobutano	15	2,2-dimetilhevano	
6	n-butano	10	n-hentano	
7	isopentano	17	ciclopentano	
8	2,2-dimetilbutano	10	metilciclopentano	
9	2,3-dimetilbutano	20	benceno	
10	n-pentano	20	ciclohovano	
11	2-metilpentano	21	cicionexano	

Generación automática del código SMILES

#	NOMBRE	CÓDIGO SMILES	#	NOMBRE	CÓDIGO SMILES
1	hidrógeno	[H][H]	12	3-metilpentano	
2	metano	С	12	n havana	
3	etano	CC	15	II-IIexano	
1	propapo	CCC	14	2-metilhexano	CC(C)CCCC
- -	propano		15	2,2-dimetilhexano	CC(C)(C)CCCC
5	isobutano	CC(C)C	16	2 3-dimetilhexano	
6	n-butano	CC(C)C	10		
7	isopentano	CCC(C)C	1/	n-heptano	
8	2.2-dimetilbutano	CC(C)(C)CC	18	ciclopentano	C1CCCC1
0			19	metilciclopentano	CC1CCCC1
9	2,3-dimetilbutano	CC(C)C(C)C	20	hanaana	$C_{1} - C_{2} - C_{2} - C_{1}$
10	n-pentano	CCCCC	20	benceno	
11	2-metilpentano	CC(C)CCC	21	ciclohexano	C1CCCCC1

Cálculo de propiedades fisicoquímicas básicas

Procesamiento a través del código SMILES

Isopentano

Generalidades acerca del compuesto isopentano

Cálculo de propiedades fisicoquímicas básicas

Procesamiento a través del código SMILES

Isopentano

Propiedades fisicoquímicas para la molécula de isopentano

Propiedades fisicoquímicas				
Fórmula	$C_{5}H_{12}$			
Peso molecular	72.15 g/mol			
Número de átomos pesados	5			
Número de Átomos aromáticos pesados	0			
Fracción de carbonos con hibridación sp3	1.00			
Número de enlaces rotables	1			
Número de aceptores de puentes de hidrógeno	0			
Número de donantes de puentes hidrógeno	0			
Refractividad molar	26.15			
PSA	0.00 Ų			

Cálculo de propiedades fisicoquímicas básicas

Procesamiento a través del código SMILES

Isopentano

Reporte de lipofilia para la molécula de isopentano

Lipofilia				
Log P _{o/w} (iLOGP)	2.11			
Log P _{o/w} (XLOGP3)	2.64			
Log P _{o/w} (WLOGP)	2.05			
Log P _{o/w} (MLOGP)	3.14			
Log P _{o/w} (SILICOS-IT)	1.17			
Promedio Log Po/w	2.22			

Solubilidad en agua de la molécula de isopentano

Solubilidad en agua			
Log S (ESOL)	-1.88		
Solubilidad	9.41e-01 mg/ml; 1.30e-02 mol/l		
Clase	Muy soluble		
Log S (Ali)	-2.29		
Solubilidad	3.69e-01 mg/ml; 5.12e-03 mol/l		
Clase	Soluble		
Log S (SILICOS-IT)	-1.35		
Solubilidad	3.19e+00 mg/ml; 4.42e-02 mol/l		
Clase	Soluble		

Elaboración de archivos con coordenadas 3D

Isopentano

Estructura química 3D de la molécula de isopentano obtenida a través de "Pymol"

Estructura química 3D de la molécula de isopentano obtenida a través de "Chemcraft"

Coordenadas de la estructura 3D de la molécula de isopentano

X	У	Z
-1,0717	0,2062	0,0000
-0,3572	0,6187	0,0000
0,3572	0,2062	0,0000
1,0717	0,6187	0,0000
0,3572	-0,6187	0,0000
	x -1,0717 -0,3572 0,3572 1,0717 0,3572	xy-1,07170,2062-0,35720,61870,35720,20621,07170,61870,3572-0,6187

Elaboración de archivos 3D de las estructuras químicas optimizadas

Isopentano

Estructura química 3D optimizada para el isopentano obtenida en "Pymol"

Coordenadas de la estructura 3D de la molécula optimizada de isopentano

	X	У	Z	
6	0,8781	-0,1170	0,0672	
6	2,3960	-0,0083	0,0387	
6	2,9318	0,8178	-1,1436	
6	2,4784	2,2773	-1,0873	
6	4,4606	0,7520	-1,1727	
1	0,5663	-0,7988	0,8652	
1	0,4938	-0,5073	-0,8805	
1	0,4089	0,8520	0,2603	
1	2,8093	-1,0231	-0,0168	
1	2,7424	0,4213	0,9867	
1	2,5588	0,3786	-2,0775	
1	2,7727	2,7485	-0,1434	
1	1,3920	2,3611	-1,1866	
1	2,9237	2,8538	-1,9055	
1	4,8947	1,1819	-0,2634	
1	4,8579	1,3035	-2,0315	
1	4,8043	-0,2845	-1,2556	

Estructura química 3D optimizada para el isopentano obtenida en "Chemcraft"

Elaboración de archivos 3D de las estructuras químicas optimizadas

Energías de optimización

#	Compuesto	Energía libre del	Campo de	#	Compuesto	Energía libre del	Campo de
		sistema (kJ/mol)	fuerza			sistema (kJ/mol)	fuerza
1	hidrógeno	1,74E-21	UFF	12	3-metilpentano	15,8191	MMFF94s
2	metano	0,110457	MMFF94s	13	n-hexano	-22,9204	MMFF94s
3	etano	-19,8218	MMFF94s	14	2-metilhexano	-0,107135	MMFF94s
4	propano	-20,504	MMFF94s	15	2,2-dimetilhexano	41,409	MMFF94s
5	isobutano	-1,99924	MMFF94s	16	2,3-dimetilhexano	42,841	MMFF94s
6	n-butano	-21,2521	MMFF94s	17	n-heptano	-23,7798	MMFF94s
7	isopentano	1,38367	MMFF94s	18	ciclopentano	6,48011	MMFF94s
8	2,2-dimetilbutano	42,8532	MMFF94s	19	metilciclopentano	27,907	MMFF94s
9	2,3-dimetilbutano	27,7672	MMFF94s	20	benceno	67,9391	MMFF94s
10	n-pentano	-22,0718	MMFF94s	21	ciclohexano	-14,909	MMFF94s
11	2-metilpentano	0,77389	MMFF94s		PROMEDIO	6.09	

Conclusiones

- Mediante la búsqueda bibliográfica se obtuvo el listado de compuesto químicos presentes en la corrientes de entrada del proceso de isomerización catalítica, siendo estos en su mayoría hidrocarburos de entre 5 y 6 carbonos en su estructura molecular con sus respectivos isómeros.
- Las propiedades básicas, tales como, código SMILES y estructura 2D de los compuestos presentes en el proceso de isomerización catalítica, se generaron automáticamente a través de la interfaz amigable con el usuario, debido a que mediante clics consecutivos se generaron todos los componentes requeridos, con el fin de facilitar la transferencia de conocimiento para su posterior socialización.
- La plataforma suiza de bioinformática "SwissADME" permitió la obtención de propiedades fisicoquímicas mediante la importación de los códigos SMILES obtenidos anteriormente, para cada hidrocarburo presente en el proceso de isomerización catalítica y se determinó tanto la solubilidad como la lipofilia, con lo cual se obtuvo una perspectiva de análisis más amplia. Mediante este análisis se pudo comprobar que los hidrocarburos son relativamente solubles en agua, y que a su vez tienen la capacidad de permear las membranas celulares a excepción de la molécula de hidrógeno.
- Se utilizó ChemDraw versión 18.2, Avogadro, así como también la plataforma suiza bioinformática "SwissADME" (Daina et al., 2017), en un periodo de tiempo entre diciembre 2020 y marzo 2021, juntamente con la utilización de otros programas de apoyo tales como Pymol y Chemcraft.

ESP

Conclusiones

- La estructura molecular 3D y la energía de optimización, de los compuestos de análisis, se obtuvo mediante el programa Avogadro usando como campos de fuerza el MMFF94s que es el adecuado para simular la conformación instantánea, más acorde al tiempo mínimo que se puede dar para la optimización de los hidrocarburos, mientras que el campo de fuerza UFF se utilizó para la molécula de hidrógeno.
- Se observo que las **moléculas no optimizadas no presentaron coordenadas en el eje z**, además no exhiben una buena visualización de sus átomos en la estructura química 3D, mientras que **las moléculas optimizadas presentaron valores en los tres ejes**, con una distribución adecuada de sus átomos en el espacio.
- Las moléculas que requieren mayor cantidad de energía para la optimización de su estructura son: para las parafinas el 2,2-dimetilbutano, 2,2-dimetilhexano y el 2,3-dimetilhexano con 42,8532 kJ/mol, 41,409 kJ/mol, 42,841 kJ/mol respectivamente. Para los cicloalcanos tenemos el metilciclopentano con 27,907 kJ/mol. Finalmente, para los aromáticos tenemos el benceno con 67,9391 kJ/mol, este último también requiere la mayor energía para su optimización de entre todos los compuestos presentes el proceso de isomerización catalítica.

ESP

Recomendaciones

- Caracterizar las corrientes de entrada y salida al proceso de isomerización catalítica en una industria nacional, para poder comparar con datos obtenidos internacionalmente y así poder tener un punto de vista local.
- **Buscar nuevos programas** que sean usados para este tipo de análisis, con el fin de corroborar los resultados obtenidos.
- Guardar los archivos generados en el programa Chemdraw en el formato adecuado para poder ejecutarlos en los programas graficadores de estructuras químicas en 3D como por ejemplo Pymol y Chemcraft.

DEPARTAMENTO DE CIENCIAS DE ENERGÍA Y MECÁNICA

CARRERA DE PETROQUÍMICA

ESTUDIO IN SILICO, TEÓRICO COMPUTACIONAL DE LAS CORRIENTES DE INGRESO Y SALIDA DE UNA REFINERÍA DE PETRÓLEO ENFOCADO EN EL PROCESO DE "ISOMERIZACIÓN CATALÍTICA" CON ÉNFASIS EN LAS ESTRUCTURAS QUÍMICAS INDIVIDUALES PARA CADA FLUJO, Y EL ANÁLISIS DE SUS PROPIEDADES FISICOQUÍMICAS INTRÍNSECAS, CONFIGURACIONES, CONFORMACIONES Y POTENCIALES INTERACCIONES INTERMOLECULARES ENTRE SÍ

> AUTORES: VACA PÉREZ, JUAN PABLO YUGCHA CASA, EDWIN JAVIER

DIRECTOR: ING. FABIÁN MAURICIO SANTANA ROMO, PhD.

