

DEPARTAMENTO DE ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECATRÓNICA TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECATRÓNICO

TEMA: DISEÑO Y CONSTRUCCIÓN DE UNA CELDA ROBOTIZADA DE CLASIFICACIÓN DE OBJETOS EN MOVIMIENTO POR MEDIO DE UN ROBOT PARALELO TIPO DELTA MEDIANTE VISIÓN ARTIFICIAL Y REDES NEURONALES PARA EL LABORATORIO DE ROBÓTICA INDUSTRIAL DE LA UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE SEDE LATACUNGA

AUTORES: ORTIZ ARMENDARIZ, LUIS GABRIEL

PAREDES BRAVO, RONNIE JOSUE

DIRECTOR: ING. SINGAÑA AMAGUAÑA, MARCOADOLFO

LATACUNGA, AGOSTO 2021

CONTENIDO

SECCIÓN 1

• INTRODUCCIÓN

SECCIÓN 2

- OBJETIVOS
- MARCO TEÓRICO

SECCIÓN 3

• DISEÑO Y CONSTRUCCIÓN

SECCIÓN 4

- CONCLUSIONES
- RECOMENDACIONES

INTRODUCCIÓN

VIDEO

OBJETIVO GENERAL

Diseñar y construir una celda robotizada de clasificación de objetos en movimiento por medio de un robot paralelo tipo delta mediante visión artificial y redes neuronales para el Laboratorio de Robótica Industrial de la Universidad de las Fuerzas Armadas Espe Sede Latacunga.

 CHA ÚLTIMA REVISIÓN: 13/12/11
 CÓDIGO: SGC. DI.260
 VERSIÓN: 1.0

OBJETIVOS ESPECÍFICOS

- Investigar conceptos sobre celdas robotizadas de clasificación, sus sistemas mecánicos y electrónicos, tipos, variantes, aplicaciones, dispositivos y software usado.
- Diseñar la estructura de la celda de clasificación, robot paralelo tipo delta, banda transportadora, pallets.
- Seleccionar componentes y materiales para la construcción de la celda de clasificación, robot paralelo tipo delta, banda transportadora, pallet.
- Implementar una aplicación con HMI para el manejo y monitoreo de la celda robotizada.
- Implementar algoritmos de visión artificial y redes neuronales para el control de clasificación de objetos.
- Clasificar objetos mediante visión artificial y redes neuronales.
- Realizar pruebas de funcionamiento de la celda robotizada de clasificación.
- Validar la hipótesis mediante el análisis de resultados de las pruebas de funcionamiento realizadas.

MARCO TEÓRICO

Celda Robotizada

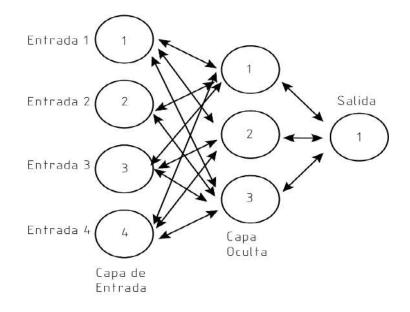
 Conjunto de componentes electromecánicos, que interactúan de manera coordinada para el logro de un objetivo.

Robot Tipo Delta

 Es un robot paralelo que puede llegar a disponer de hasta cinco grados de libertad

Banda Trasportadora

• Es un elemento fundamental en el traslado de materiales y mercancías.



MARCO TEÓRICO

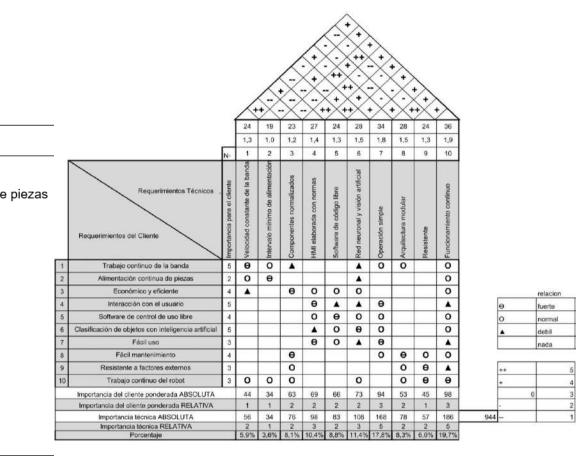
Red Neuronal Artificial

- Son un modelo inspirado en el funcionamiento del cerebro humano.
- Conjunto de nodos que están conectados y transmiten señales entre sí.

Visión Artificial

 Todas las aplicaciones donde una combinación de hardware y software brindan en la ejecución de sus funciones son a base de la captura y el procesamiento de imágenes.

DISEÑO Y CONSTRUCCIÓN


Diseño y construcción del sistema mecánico

Necesidades del usuario

No.	Necesidad	No.	Necesidad
1	Trabajo continuo de la banda	1	Velocidad constante de la banda
2	Alimentación continua de piezas	2	Intervalo mínimo de alimentación entre
3	Económico y eficiente	3	Componentes normalizados
4	Interacción con el usuario	4	HMI amigable para el usuario
5	Software de control de uso libre	5	Software de código libre
6	Clasificación con inteligencia artificial	6	Red neuronal y visión artificial
7	Fácil uso	7	Operación simple
8	Fácil mantenimiento	8	Arquitectura modular
9	Resistente a factores externos	9	Resistente
10	Trabajo continuo del robot	10	Funcionamiento continuo

Especificaciones técnicas del proyecto

Matriz QFD

DISEÑO Y CONSTRUCCIÓN

#	Módulo	Subsistema	Función		
1	Planeación	Diseño de la Celda Robotizada	Definición de elementos activos y pasivos, distribución de los elementos y lay-out		
2	Robot paralelo	Geometría y Cinemática del robot	Geometría y posicionamiento del robot		
	Delta	Diseño del robot	Diseño mecánico del Robot Delta		
3	Diseño y construcción de la banda Celda transportadora robotizada Estructura de la celda	Transporte continuo de objetos a ser clasificados			
	Control	Tarjeta de control	Control de los sistemas, adquisición de datos, envío y recepción de señales		
4		Redes neuronales y visión artificial	Detección objetos mediante inteligencia artificial y redes neuronales		
		Algoritmo de intersección de objetos en movimiento	Posicionamiento del robot en el espacio con relación al objeto en movimiento a ser transportado		
5	НМІ	Interfaz gráfica	Interacción con el operario y control de las funciones de la celda		

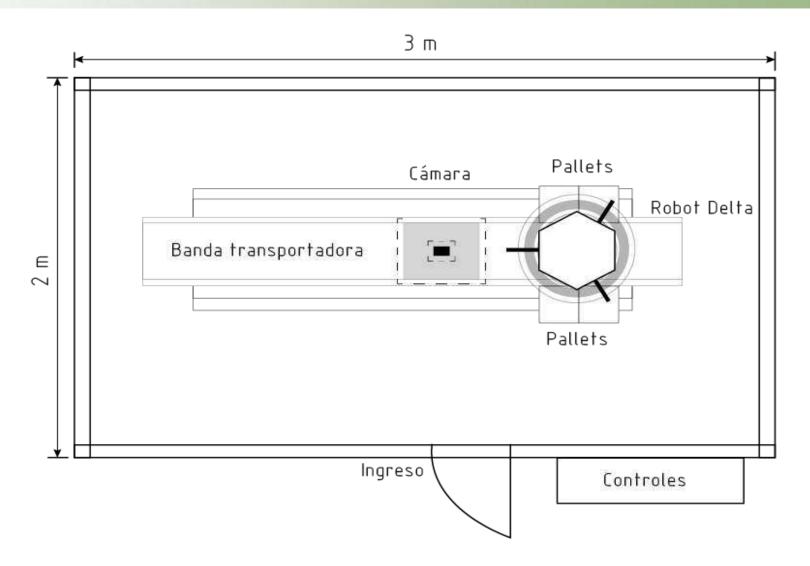
PLANEACIÓN

Módulos y

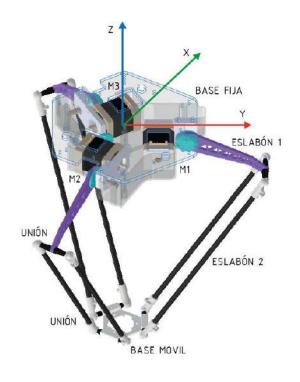
Subsistemas

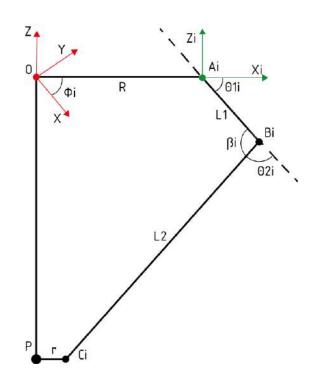
DISEÑO Y CONSTRUCCIÓN

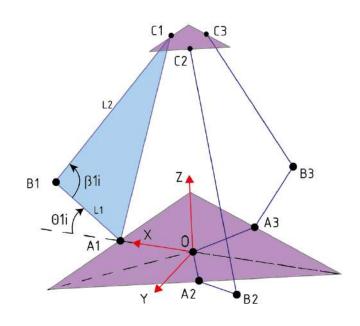
Elementos de la celda robotizada


Elementos Activos	Ilustración
Robot Delta	

Elemento	Descripción
Banda transportadora	
Cámara visión de artificial	w.c. iogitech
Pallets y cajas de almacenamiento	


Diseño y Construcción


LAYOUT Celda Robotizada



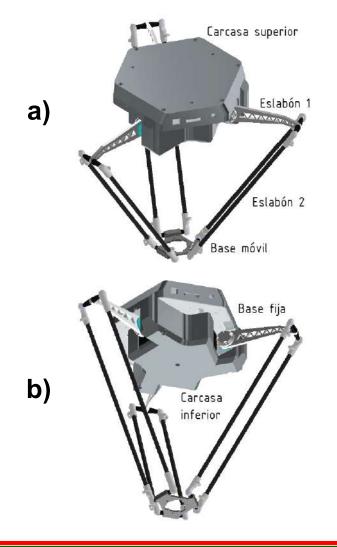
Geometría y Cinemática del Robot

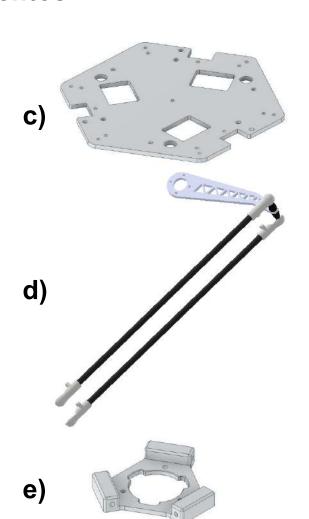
Resultado del Análisis Cinemático

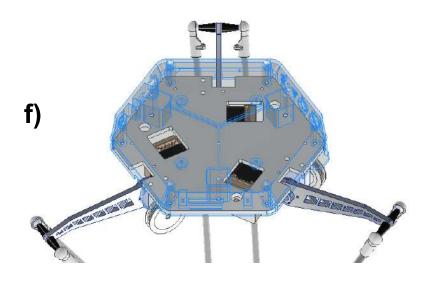
Para
$$\phi_1 = 0$$

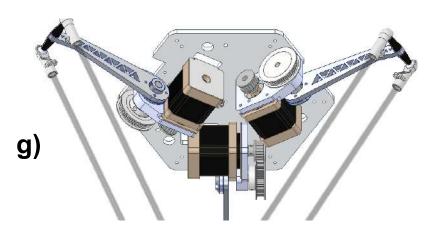
$$\theta_{11} = \sin^{-1}\left(\frac{c_1}{\sqrt[2]{a_1^2 + b_1^2}}\right) - \tan^{-1}\left(\frac{b_1}{a_1}\right)$$

Para
$$\phi_2=120$$

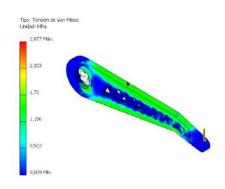

$$\theta_{12} = \sin^{-1} \left(\frac{c_2}{\sqrt{a_2^2 + b_2^2}} \right) - \tan^{-1} \left(\frac{b_2}{a_2} \right)$$

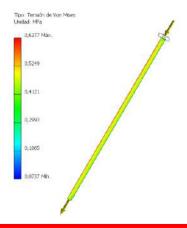

Para
$$\phi_3=240$$


$$\theta_{13} = \sin^{-1}\left(\frac{c_3}{\sqrt[2]{a_3^2 + b_3^2}}\right) - \tan^{-1}\left(\frac{b_3}{a_3}\right)$$

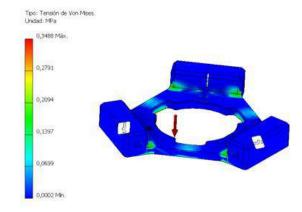


Diseño de Elementos

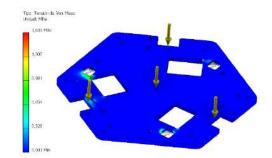



Análisis de Esfuerzos

Eslabón 1


σ_{vm}	2.877 MPa
S _v Al.	207 MPa
2077.14	$v_m < S_y$
2.877 M	Pa < 207

Eslabón 2


σ_{vm}	0.637 MPa		
S_y F C.	570 MPa		
	$S_{ym} < S_{ym}$ $S_{ym} < S_{ym}$ $S_{ym} < S_{ym}$		

Base móvil

σ_{vm}	0.348 MPa
S _y , Al.	207 MPa
σ_1	$m < S_y$
0.348MI	Pa < 207MPa

Base Fija

σ_{vm}	1.633 MPa	
S _y Al.	207 MPa	
$\sigma_{vm} < S_y$		
1.633 <i>MPa</i> < 207 <i>MPa</i>		

DISEÑO DE LA BANDA TRASNPORTADORA

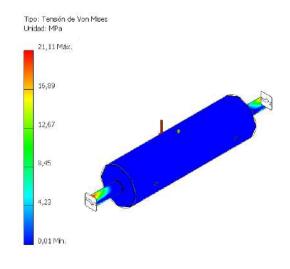
Diseño y Selección de Elementos

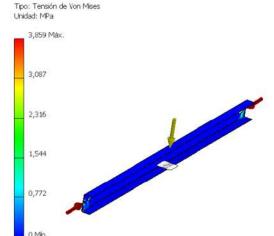
Estructura y Banda Transportadora

Cinta de caucho

Rodillos y ejes

Chumaceras

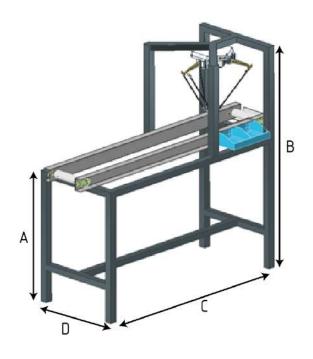



DISEÑO DE LA BANDA TRASNPORTADORA

Análisis de Esfuerzos

Rodillo

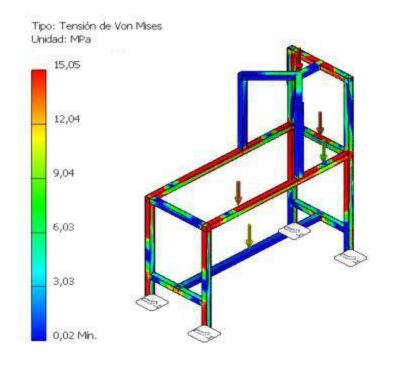
Rieles Laterales


 σ_{vm} 3.859 MPa S_y Acero. 250 MPa $\sigma_{vm} < S_y$ 3.859 MPa < 250 MPa

DISEÑO DE LA ESTRUCTURA

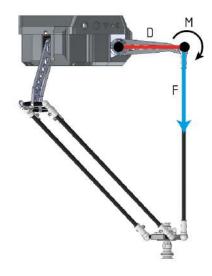
Diseño Estructural de la Celda Robotizada

Estructura


Medidas de la Celda Robotizada

Tipo	Р	Valor
Altura soporte banda	Α	810 mm
Altura soporte robot	В	1440 mm
Longitud	С	1200 mm
Ancho	D	500 mm

DISEÑO DE LA ESTRUCTURA


Análisis de Esfuerzos

σ_{vm}	15.05 MPa
S _y Acero.	250 MPa
σ_{vm}	$< S_y$
15.05MPa	< 250MPa

Selección de motores

$$F=m.g$$

$$F = 0.435 \ kg \times 9.8 \frac{m}{s^2} = 4.26 \ N$$

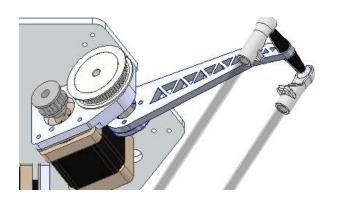
$$T = F.d$$

$$T = 4.26N \times 0.120 m = 0.511 N.m$$

$$T_f = T.n = 0.511N.m \times 2 = 1.022N.m$$

Elementos conectados al eslabón

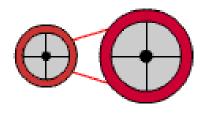
Elemento	Masa $[kg]$	Cantidad	Masa total $[kg]$
Tubos de carbón	0.008	2	0.016
Eslabón	0.029	1	0.029
Acople universal	0.005	8	0.040
Base fija	0.030	1	0.030
Soporte ventoso	0.080	1	0.080
Tuercas y tornillos	0.040	1	0.040
Objeto a clasificar	0.200	1	0.200
TOTAL			0.435


Selección de motores

Motor nema 17 drive integrated

Característica	Valor
Tamaño	42.3×48mm, sin incluir el eje
Peso	350 gramos
Diámetro del eje	5 mm "D"
Pasos por vuelta	200 (1,8º/paso)
Corriente	1.2 Amperios por bobinado
Tensión	4 V
Resistencia	3.3 Ohm por bobina
Torque	4 kg/cm 0,4 N.m

$$n_1. N_1 = n_2. N_2$$


Conductor $N_1 = 20$

Conducido $N_2 = 60$

$$i = \frac{20}{60} = 1/3$$

El torque tiene una relación inversa con respecto a la relación de correa y polea

$$i_{inv} = 3$$

$$T_{final} = 3(0.4) \text{N. m} = 1.2 \text{ N. m}$$

1.2 N. m > 1.022 N. m

 $T_{\rm final} > T_{\rm calculado}$

DESARROLLO DEL SISTEMA DE CONTROL

Selección de Tarjeta Control

Conclusión de la Matriz de Priorización

Tarjeta ARMX

Conclusión	Peso	Resistencia	Costo	Σ	Prioridad
MKS DLC	0.16x0.5	0.33x0.25	0.16x0.25	0.2025	3
ARMX	0.5x0.5	0.33x0.25	0.33x0.25	0.415	1
SZGH	0.33x0.5	0.33x0.25	0.5x0.25	0.372	2

	·	
ARMX	Costo medio	
	Número de ejes 4	
	CPU stm32	
	Archivo formato código G	
	Comunicación SERIAL	
	Control Herramientas, laser, ventosa, extrusor	

DESARROLLO DEL SISTEMA DE CONTROL

Selección del Motor de la Banda Trasportadora

Potencia calculada

Superficie tensada $F_1 = 17.99N$

Superficie floja $F_2 = 2.17 N$

Potencia de la banda

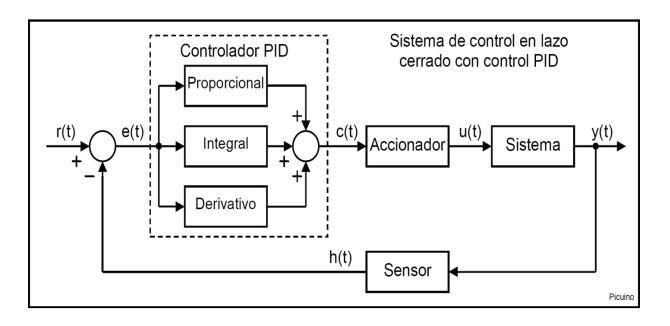
$$P = \frac{F_1 + F_2}{1000} \times v + P_s = 24.8 W$$

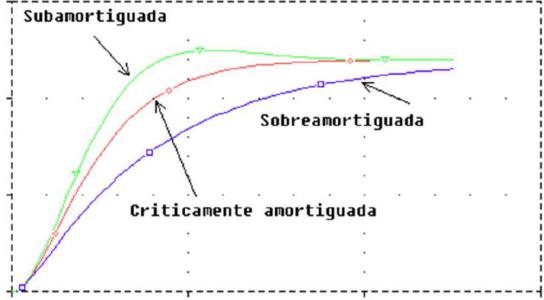
Potencia en base a la eficiencia mecánica

$$P_T = \frac{P}{n.e} = \frac{24.8 W}{0.85 \times 0.95} = 30.71 W$$

Motor Bosh CEP

Características


Característica	Valor
Voltaje	12Vdc
Potencia	30-50W
RPM salida	26 - 35
Torque	6 N.m
Corriente	7 amp
Reductora	65:1


DESARROLLO DEL SISTEMA DE CONTROL

Control de Velocidad del Motor de la Banda Transportadora

Lazo de control

Críticamente amortiguado

Elementos del control

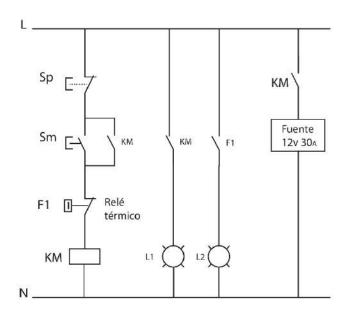
Microcontrolador ATMEGA 328p

Característica	Valor
Arquitectura	8 bits
Pin's programables	23
Voltaje	1.8-5.5 vdc
Oscilador	20 Mhz
Encapsulado	Pdip28
Canales PWM	6

Encoder Rotativo

Característica	Valor	
Voltaje	5-24Vdc	
Rendimiento	600 pulsos/rev	
Velocidad máxima	5000 rev/min	
Frecuencia de respuesta	20kHz	
Salida	Rectangular 2 fases	
Tamaño	39 x 35 mm	

Driver Motor DC

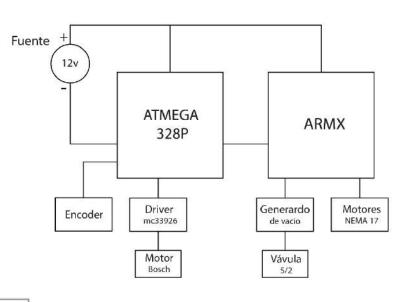
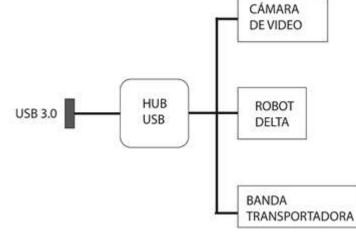
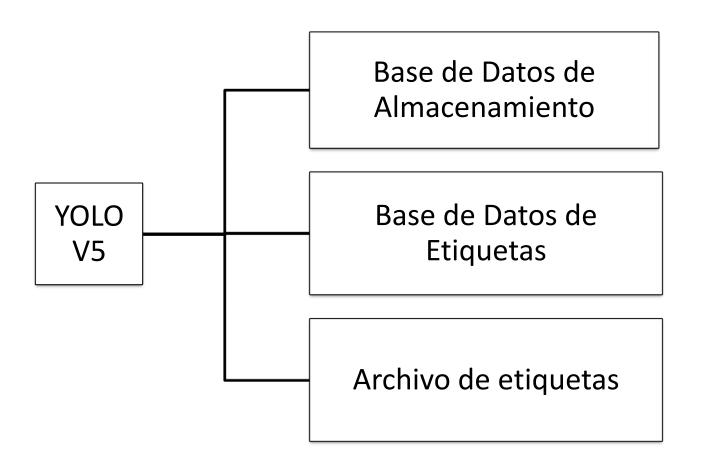


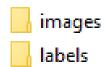
Característica	Valor
Voltaje	6-27 vdc
Corriente	43 amp
Nivel de entrada	3,3-5 vdc
Modelo control	PWM
Ciclo trabajo	0-100%
Pin	8

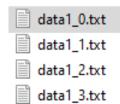
DIAGRAMAS

Diagrama de potencia

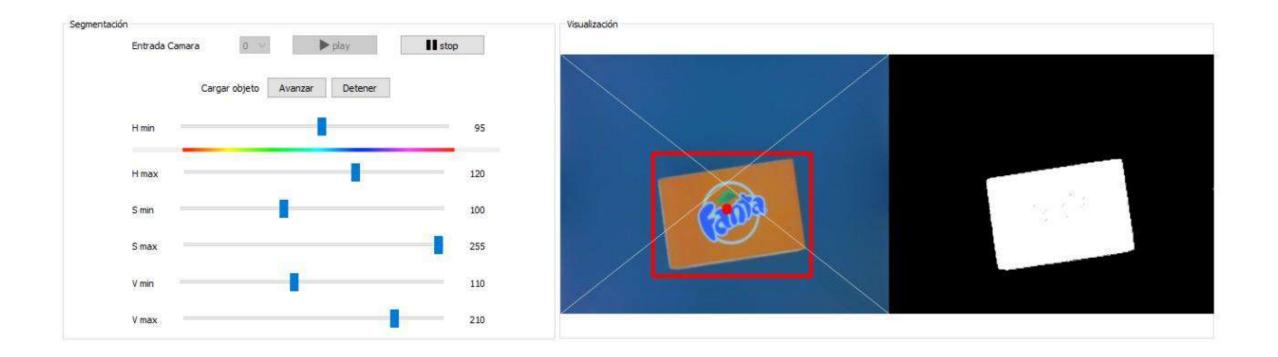
Diagrama electrónico


Diagrama de comunicación


ENTRENAMIENTO RED NEURONAL

Nombre


Sección Entrenamiento

Implementación HMI

Entrenamiento

Entrenamiento

a)

Número de clases

Número de clases

Nombre CLASE 1

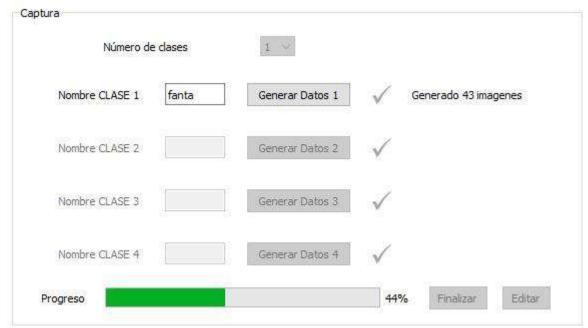
Nombre CLASE 2

Generar Datos 2

Nombre CLASE 3

Generar Datos 3

Nombre CLASE 4


Frogreso

O%

Finalizar

Editar

b)

Entrenamiento

Entrenamiento 2 Épocas | epochs | Nombre de la RED 20 50 prueba1 Cancelar ciar 100 150 Cargando 200 Cargando 300 |0/0 [00:00<00:00, 00.0s/it] Aprendizaje promedio mAP: 0.00 0% Entrenando

Entrenamiento

Épocas | epochs | 2

Nombre de la RED

prueba 1

Época: 2

60% | 3/5 [00:11<00:07, 3.75s/it] | 80% | 14/5 [00:15<00:03, 3.70s/it] | 0% | 10/5 [00:00<?, ?it/s] | 20% | 11/5 [00:05<00:23, 5.76s/it] | V

Aprendizaje promedio mAP: 0.043

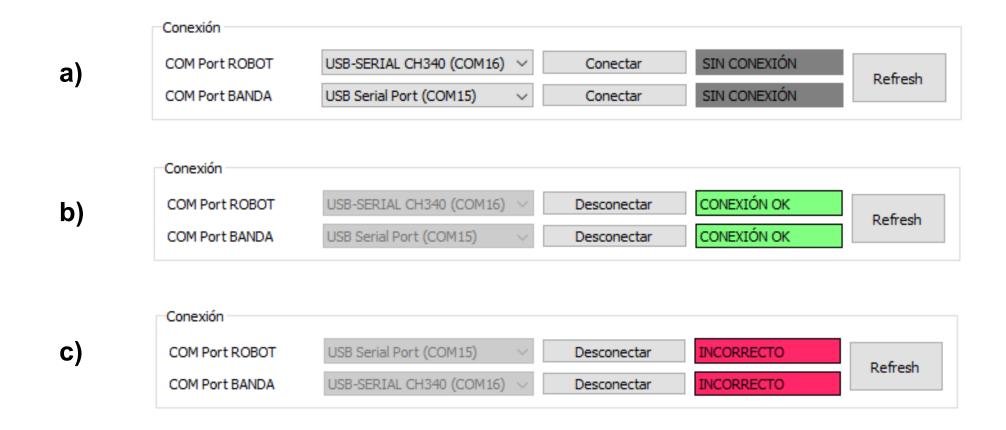
Entrenando | 50%

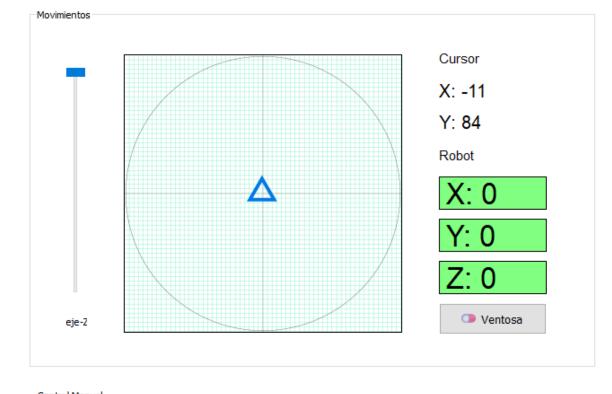
Entrenamiento Épocas | epochs | Resultados Nombre de la RED Desempeño Clases Precisión mAP todas 0.054 0.323 0.0429 prueba1 Iniciar Cancelar mAP Clases Precisión Desempeño todas 0.0542 0.0968 0.0293 Época: 2 W Información X 20% 1/5 [00:05<00:23, 5.7 40% 275 [00:10<00:15, 5 Entrenamiento terminado Archivo guardado en: C:/Users/../pesos/prueba1.pt 3/5 [00:15<00:10, 4/5 [00:19<00:0 OK 2 epocas completadas en 0.014 horas. Aprendizaje promedio mAP: 0.025 Más información 100% Entrenando

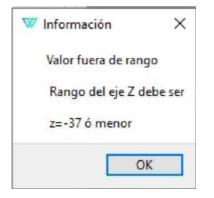
b)

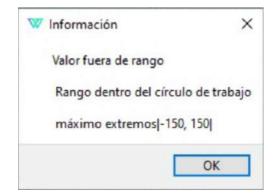
c)

a)

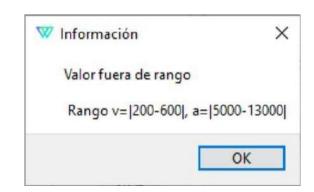




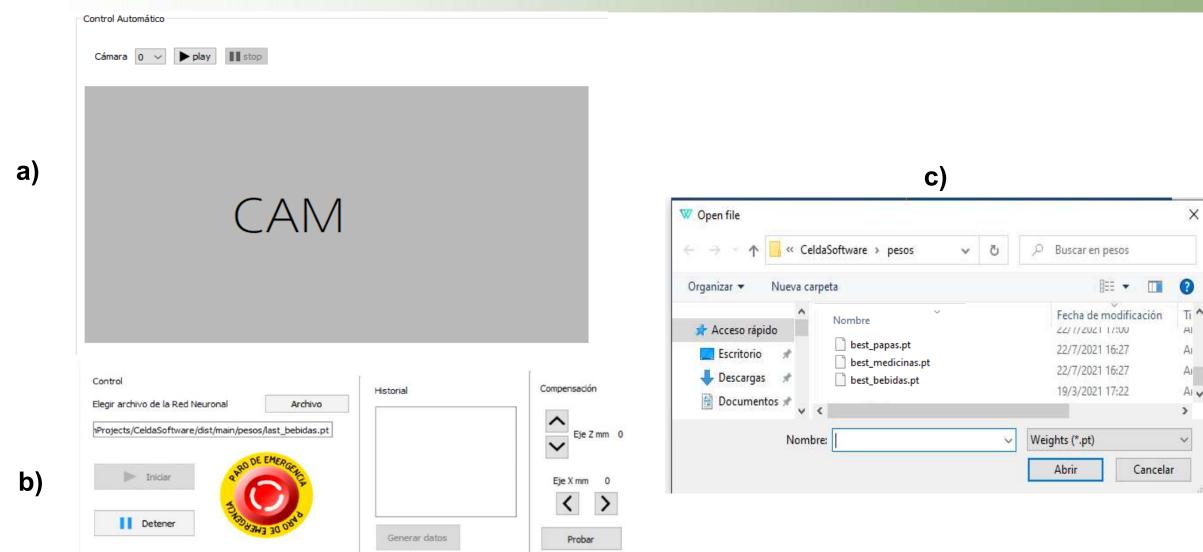




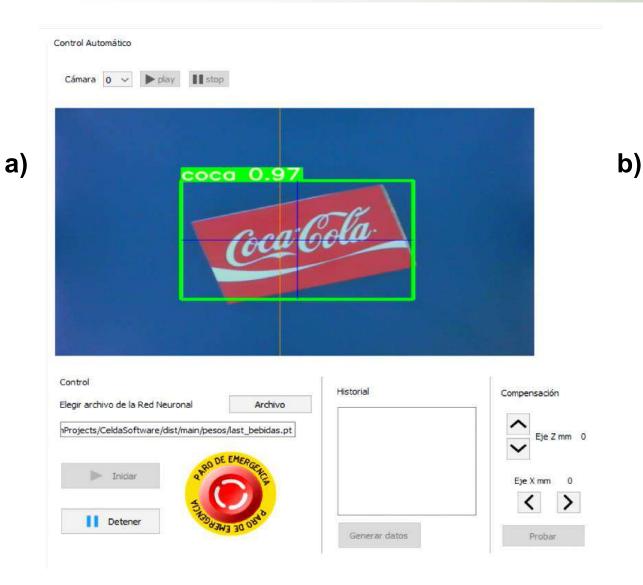


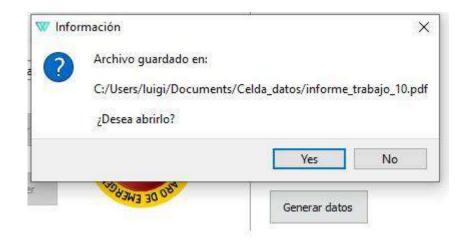


c)


b)

a)





Sección Control

a)

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE LATACUNGA

INFORME DE CICLO DE TRABAJO

HORA INICIO: 16:36:00 03/08/2021

HORA FIN: 16:38:36 03/08/2021

CLASES: 4
OBEJTOS: 19

Información

b)

#	Clase	ID
1	tensi	0
2	carve	1
3	poviral	2
4	lemonflu	3

DATOS

Objeto 0 Clase: ID 0 Objeto 1 Clase: ID 0

Objeto 2 Clase: ID 3

Validación de la Hipótesis

La hipótesis planteada del presente proyecto es: ¿El diseño y construcción de una celda robotizada de clasificación permitirá clasificar objetos en movimiento mediante visión artificial y redes neuronales? Se emplea un nivel de significación alfa = 0.05.

Para lo cual se plantea la hipótesis nula y la alternativa.

Ho = El diseño y construcción de una celda robotizada si clasifica objetos en movimiento mediante visión artificial y redes neuronales

H1 = El diseño y construcción de una celda robotizada no clasifica objetos en movimiento mediante
 visión artificial y redes neuronales.

Validación de la Hipótesis

	Objetos	Objetos no	Total
	Clasificados	clasificados	Total
Clase 1	55	1	56
Clase 2	50	0	50
Clase 3	47	2	49
Clase 4	44	1	45
Total	196	4	200

Frecuencias esperadas

Para que la hipótesis nula sea afirmativa se debe calcular las nuevas frecuencias esperadas, para lo cual se aplica regla de tres

	Objetos Clasificados	Objetos no clasificados	Total
Clase 1	54.88	1.12	56
Clase 2	49	1	50
Clase 3	48.02	0.98	49
Clase 4	44.1	0.9	45
Total	196	4	200

$$f_{(2,2)} = \frac{f_{(6,2)*}f_{(2,4)}}{f_{(6.4)}}$$

$$f_{(2,2)} = \frac{196 * 56}{200}$$

$$f_{(2,2)} = 54.88$$

Método Chi-Cuadrado

$$x^2 = \sum \frac{(o_i - e_i)^2}{e_i}$$

x ² Chi-cua	drado
	arado
o _i Frecuer	ncia observada o muestreada
e _i Frecuer	ncia esperada

Chi-Cuadrado Calculado

$$x^2 = 2.1281$$

Chi-Cuadrado Tabla

$$x^2 = 7.8147$$

Por lo tanto:

$$x^2 < x_a^2$$

2.1281 < 7.8147

Validación de la Hipótesis

Se acepta la hipótesis nula, por lo cual el diseño y construcción de una celda robotizada **SI** clasifica objetos en movimiento mediante visión artificial y redes neuronales.

- El proyecto se concluyó con el diseño y construcción de la celda robotizada mediante los diseños generados aplicando medidas estándar, para la estructura mecánica y piezas móviles; se rigió a un factor de seguridad estándar, los componentes electrónicos fueron seleccionados bajo el criterio de la matriz de Pugh para la toma de decisiones, mediante el análisis de resultados se concluyó que la celda robotizada si clasifica objetos en movimiento mediante visión artificial y redes neuronales.
- Para el diseño y construcción de la celda robotizada se partió de la investigación del concepto principal de una celda robotizada, así como las diferentes estructuras que puede tener esta, determinando así los elementos pasivos y activos.
 Se concluye que la celda robotizada tendrá como elementos principales un robot paralelo tipo delta, una banda transportadora, un sistema controlado de iluminación, un panel de control y una aplicación HMI.

• En el diseño de la estructura mecánica se realizó un análisis estático en un software CAD, regido a especificaciones estándar con un factor de seguridad N=2, por lo cual se determinó que la estructura mecánica tiene las dimensiones de 1500x510x1450mm, el material seleccionado es un ASTM A36, siendo el perfil cuadrado HSS 40x40 cédula 30 el seleccionado para la construcción de la estructura de la celda robotizada. La construcción de la estructura mecánica se realizó respetando el diseño, materiales y dimensiones previamente diseñadas, además se protegió al material de la corrosión mediante la aplicación de una capa de fondo marino "primer" y capa de pintura color gris claro.

• En el diseño de la banda trasportadora, la parte mecánica se modeló en un software CAD, regido a medidas estándar y con un factor de seguridad N=2, la parte electrónica se diseñó bajo el criterio de la matriz de Pugh. Se determinó que el material para la parte mecánica de la banda trasportadora es un ASTM 36, el perfil seleccionado es un canal en C 80x40 con un espesor de 2 mm, el material seleccionado para el eje de los rodillos es un ASTM A36, con unas dimensiones de 12mm de diámetro y 220mm de longitud, se determinó que el material seleccionado para los rodillos fue nylon con unas dimensiones de 50mm de diámetro exterior, 12 mm de diámetro interior y 180mm de longitud, además se seleccionó dos chumaceras de 12mm de diámetro con dos perforaciones M10 separadas a una longitud de 74mm.

- El motor seleccionado es un motor BOSCH de 35 W, con un torque 12Nm, el material seleccionado para la cubierta superior de la banda es de PVC de color verde con un acabado liso, para la cubierta inferior se utilizó fibras sintéticas, vulcanizada sin fin con un espesor de 3mm
- Para el diseño del robot paralelo tipo delta, la parte mecánica se seleccionó una base fija en forma hexagonal, el material seleccionado fue aluminio con un espesor de 5mm, para el eslabón corto el material seleccionado es aluminio, con una longitud de 120 mm entre ejes y un espesor de 5mm, para el eslabón largo se seleccionó dos tubos de fibra de carbón de 5mm de diámetro interno y 7mm de diámetro externo, con una longitud de 320mm, los elementos electrónicos se seleccionaron bajo el criterio de la matriz de Pugh, por lo cual la tarjeta de control seleccionada fue una ARMX, para los motores se seleccionó tres motores Nema 17 con modulo PID, para proteger la parte electrónica se diseñó una carcasa separada en dos partes una superior y una inferior, la construcción se realizó con un material plástico PLA.

Para la celda robotizada se utilizó la red neuronal YOLOv5, esta es una red convolucional, la misma que permite detectar objetos; el número de épocas idóneo para el entrenamiento de la red neuronal es 200, la red neuronal es capaz de detectar de 1 a 4 diferentes tipos de clases. La detección de objetos se realizó a través de la captura de una imagen de entrada del objeto en movimiento con una cámara de video con ayuda de herramientas de OpenCV, para una mejor obtención de la imagen de entrada se utilizó un domo piramidal de iluminación omnidireccional creando un ambiente controlado.

- Se generó una aplicación HMI basado en código de programación libre Python, la cual permite realizar la comunicación, el control manual y automático, la ejecución de la celda robotizada. Además, la aplicación permite generar el entrenamiento de una nueva red neuronal con una base de datos personalizada, para lo cual se requiere de un hardware computacional de alto nivel, que satisfaga las prestaciones de la red neuronal, ya que la misma es una de las más actuales hasta la fecha de presentación de este proyecto.
- Con la aplicación de la red neuronal y técnicas de visión artificial se logró la detección de objetos en movimiento, estos son desplazados por la banda transportadora a una velocidad idónea de 50mm/s, que posteriormente son clasificados por el robot paralelo tipo delta con una velocidad idónea de 500mm/s, hacia 4 diferentes pallets de almacenamiento.

- Se realizaron varias pruebas de funcionamiento, concluyendo que la celda robotizada tiene la capacidad de clasificar hasta 4 diferentes clases de objetos, con un porcentaje de acierto mayor al 98%, estimando que, por cada 200 objetos detectados, se tiene un error de 4 objetos no clasificados.
- Bajo el método estadístico de chi-cuadrado, tomando en cuenta el resultado del criterio, se concluyó que la hipótesis plateada es afirmativa.

RECOMENDACIONES

- Una vez finalizado el presente proyecto, al trabajar con redes neuronales, se recomienda, que en primer lugar se debería
 asegurar que el recurso computacional disponible sea compatible con el potencial y la flexibilidad de la red neuronal a ser
 implementada, ya que un algoritmo de alto desempeño necesita de mayores recursos computacionales.
- Se sugiere tomar en cuenta en el diseño preliminar, los elementos que se pretende usar, verificando la disponibilidad en la localidad, ya que esto facilitará la obtención de los mismos y no retrasará la construcción.
- Se recomienda respetar las medidas de los objetos a clasificar, tanto en área como en altura, dado que la celda robotizada cuenta al ingreso de la misma con un sistema de detección de objetos sobredimensionados, por lo cual puede causar atascos y daños en la integridad de la banda transportadora, además de al domo de iluminación.

RECOMENDACIONES

- Se sugiere previamente a la ejecución de la celda robotizada en modo automático, realizar la calibración tanto del offset en el eje "Z" como en el eje "X", dado que los objetos a clasificar pueden poseer diferentes dimensiones, y es responsabilidad del usuario preservar la integridad en primer lugar del usuario como de la celda robotizada, evitando colisiones innecesarias entre el robot paralelo tipo delta y su entorno.
- Para la ejecución de un ciclo de trabajo de la celda robotizada, se recomienda verificar en primera instancia que se
 encuentre energizada, revisando el indicar luminoso de color verde, posterior a esto se sugiere, comprobar que la
 comunicación serial se encuentre establecida tanto para el robot, la banda trasportadora y la cámara de visión, para la
 comunicación serial se recomienda utilizar conexión USB 3.0.

VIDEO DEMOSTRATIVO

VIDEO

