

CARRERA DE ELECTRÓNICA MENCIÓN INSTRUMENTACIÓN & AVIÓNICA

AUTOR: CBOP. VITERI GARCÍA CARLOS RICARDO

TEMA: IMPLEMENTACIÓN DE UNA COMUNICACIÓN MODBUS MEDIANTE RADIOS INALAMBRICOS RS485 PARA PRÁCTICAS DE CONTROL DE PROCESOS EN EL LABORATORIO DE INSTRUMENTACIÓN VIRTUAL.

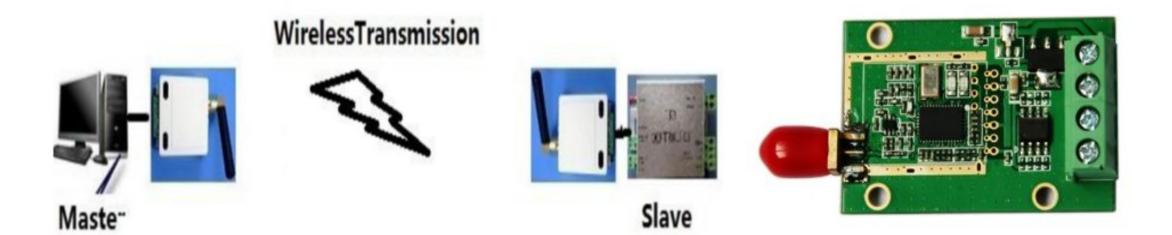
OBJETIVO GENERAL

IMPLEMENTAR UNA COMUNICACIÓN MODBUS MEDIANTE RADIOS INALÁMBRICOS RS485 PARA PRÁCTICAS DE CONTROL DE PROCESOS EN EL LABORATORIO DE INSTRUMENTACIÓN VIRTUAL.

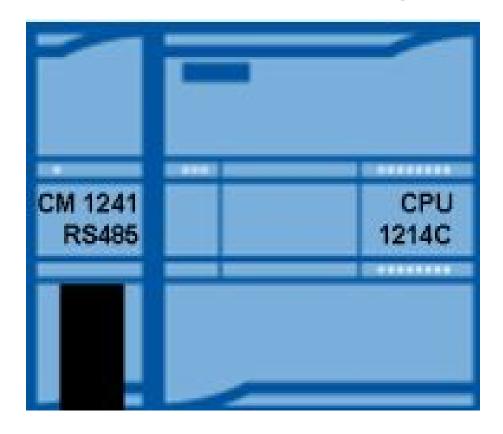
OBJETIVOS ESPECIFICOS

- Determinar las características de los radios inalámbricos Rs485 y sus diferentes aplicaciones basados en la bibliografía existente.
- Realizar la comunicación Modbus entre dos PLCs s7 1200 mediante radios inalámbricos Rs485.

 Desarrollar aplicaciones básicas mediante los radios inalámbricos RS485 para comprobar su correcto funcionamiento.

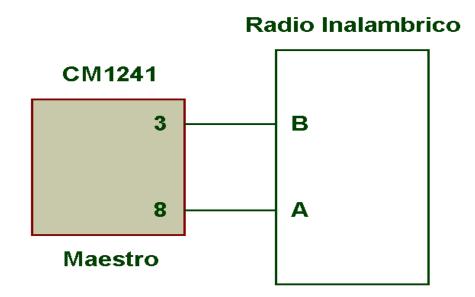

REQUERIMIENTOS DE HARDWARE

- 2 PLCs S7 1200 CPU 1214C AC/DC/RLY
- 2 Módulos de comunicación CM1241 RS422/485
- 2 Conectores DB 9 macho
- 2 Radios inalámbricos RS485
- Cables Rj45
- Cables UTP

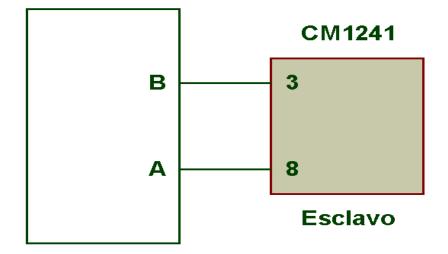


Radio Modbus inalámbrico RS485

Comunicación entre módulo CM1241y Radios Inalámbricos.


> Descripción de pines del conector DB9

Pin	Descripción
3	Señal B (RxD/TxD+): Entrada/salida
5	Masa lógica o de comunicación
6	+5V
8	Señal A (RxD/TxD-): Entrada/salida



IMPLEMENTACIÓN DE LA COMUNICACIÓN MODBUS INALÁMBRICA

Comunicación entre el PLC maestro y el PLC esclavo bajo las siguientes condiciones:

Radio Inalambrico

Conclusiones

- > Se implementó una comunicación Modbus entre dos PLCs S7 1200 mediante radios inalámbricos RS 485.
- ➤ Los Radios inalámbricos RS 485 trabajan a una frecuencia de 433 MHz, a una velocidad de 9,6 kbps, se alimentan con 5 voltios de corriente directa y funcionan para modo transparente o punto a punto.
- Se utilizó dos PLC S7 1200 y dos módulos de comunicación CM 1241 para realizar la comunicación maestro/esclavo, esta fue programada en el software TIA Portal V12.

- Para realizar la comunicación entre el maestro y el esclavo es necesario crear en cada dispositivos bloques de datos que servirán para el intercambio de información entre ellos.
- Los módulos de comunicación CM 1241 están configurados para trabajar en modo RS 485 semi dúplex a una velocidad de 9,6 kbps.
- ➤ Los terminales diferenciales RS 485 A y B en el módulo CM 1241 corresponden a los pines 8 y 3 del conector DB9 hembra respectivamente.

- Se realizó una aplicación básica donde el maestro envía el valor de un contador para que este sea visualizado en las salidas digitales del PLC esclavo, esta a su vez envía el byte de estado de sus entradas digitales para que sean visualizadas en las salidas digitales del PLC maestro.
- ➤ La fuente de 5 voltios de corriente continua que genera el módulo de comunicación CM1241 no tiene la corriente necesaria para alimentar a los radios inalámbricos.

Recomendaciones

- Alimentar únicamente con una fuente de 5 Vdc y una corriente de 1A a los radios inalámbricos RS 485.
- > Trabajar con una velocidad de transmisión de 9,6kbps en vista que los radios vienen configurados a esa velocidad.
- Comprobar la comunicación primero en forma alámbrica para luego conectar los radios inalámbricos RS 485.

PREGUNTAS O INQUIETUDES?

GRACIAS POR SU ATENCION

