

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍAY MECÁNICA CARRERA DE INGENIERÍA EN MECATRÓNICA

TRABAJO DETITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN MECATRÓNICA

"DISEÑOY CONSTRUCCIÓN DE UN BRAZO ROBÓTICO ARTICULADO DE 4 GRADOS DE LIBERTAD DE APLICATIVO "PICK AND PLACE" PARA UN ROBOT DE TELEPRESENCIA"

AUTORES: BENAVIDES HERNÁNDEZ ISIDRO ISRAEL

MONAR REDROBAN, JAVIER

DIRECTOR: ING. LOZA MATOVELLE, DAVID CÉSAR

2022

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Antecedentes

- Brazos Robóticos en sistemas de Teleoperación.
- Tele- Operación Bilateral

	• • •
Introd	luccion
111100	UCCIUI

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Definición del problema

- Necesidad de creación de automatismos capaces de suplantar la realización de tareas:
 - Peligrosas
 - Agotadoras
 - Desagradables

• Comunicación física más cercana a distancia.

- Tareas de manipulación de objetos
- Alcance Social Ilimitado

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Justificación e Importancia

- Sistema móvil de telepresencia
- Habilidad de recoger y colocar objetos
- Nuevo enfoque: Operación bilateral de un robot

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Objetivos

 Diseñar y construir un brazo robótico articulado de 4 grados de libertad de aplicativo "pick and place" para un robot de telepresencia.

ESPECÍFICOS

GENERAL

- Analizar y desarrollar los cálculos de la cinemática y dinámica del brazo robótico articulado.
- Realizar el diseño del sistema mecánico de la estructura del brazo robótico (base o soporte del brazo articulado, eslabones, articulaciones y gripper).
- Realizar el diseño del sistema electrónico del brazo articulado que permita el control de los elementos de accionamiento.
- Diseñar la carcasa del sistema de telepresencia juntamente con el brazo robótico.
- Desarrollar un sistema de reconocimiento "pick and place" de objetos (pequeños) determinados por métodos de visión artificial.
- Desarrollar una HMI para el control del brazo robótico como también para la simulación del sistema.

Alcance

Introducción

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Brazo robótico manipulador de

4GDL

- Visión Artificial
- Aplicación "pick and place"

Robot Manipuladores

Máquina reprogramable y multifuncional

- Mayor Productividad y Eficiencia
- Gran flexibilidad para trabajar en diferentes tareas
- Robótica social y de servicio

- Grados de Libertad (GDL)

- Tipos de Articulaciones

Introducción

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Cinemática y Dinámica de Robots Manipuladores

Cinemática: Estudia el movimiento sin la intervención

de las fuerzas.

Dinámica: Estudia las fuerzas y torques que causan el movimiento.

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

ROS (Robot Operating System) :::ROS

Librerías y herramientas para desarrollo de aplicaciones Robóticas Drivers y Algoritmos

> Movelt

-

Visión Artificial

Extracción de información y características relevantes

- Captar, Analizar y Actuar de forma casi autónoma
- Permiten retroalimentación sensorial

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño Conceptual

Combinación de Conceptos

Forma estructural de articulación prismática.	Transmisión de movimiento en articulación prismática	Transmisión de movimiento Articulación Rotacional	Tipo de efector final
 Estructura triangular con 3 ejes guías. Estructura con un perfil rectangular quía. 	Tornillo sin fin.Banda dentada.	 Directa Poleas con Correas Sistema de piñón y engranaje 	 Pinzas de Enganche

Ventajas	Desventajas
Compactos	Bajo rendimiento
Elevada capacidad de carga	Desgaste en las superficies de apoyo
Sencillos de diseñar y fabricar	Requiere que sean altamente resistentes
Permiten un movimiento lineal preciso	Deben estar perfectamente calibrados
Alta reducción de velocidad	Riesgo de desgaste en los filetes
No generan ruido	
Económico	

Ventajas	Desventajas
Fácil montaje	No soportan altas temperaturas
Amortigua impactos en la transmisión	Deterioro mayor a factores ambientales
Nivel de ruido mínimo (silencioso)	
Transmite potencia a distancia	
Económicos y Poco mantenimiento	
Fácil cambio de relación de transmisión	

Diseño Estructural

Base Móvil Superior

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Base Diferencial

Cubierta Base Diferencial

Investigación previa

Metodología

Proceso de

Manufactura

Material: PLA

Aditiva

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño Estructural

Análisis Estático de la Estructura

- 80N Sección Columna
- 2N Base de Batería

Análisis de Tensiones de la Base 3.78MPa

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Diseño Estructural

Análisis Estático de la Estructura

Análisis de deformaciones de la Base 0.126mm Factor de Seguridad de la Base 7.24

Trabajos futuros

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño Brazo Articulado

Diseño de Eslabones

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño Brazo Articulado

Análisis Estático del Brazo Articulado

nt	rc	١d		\mathbf{c}	\boldsymbol{c}	
ΠL	IU	^v u	U	C	C I	

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño Brazo Articulado

Articulación Prismática

Posición Actuador y Polea Conductora

Sistema de tensión con polea conducida

Acoplamiento de la base Superior

Introducci	\sim
muouocci	

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño Brazo Articulado

Articulación Prismática

Correa dentada o Síncrona Powergrip HTD

Ref.	Pitch (mm)	T (mm)	B(mm)
3M	3	1,2	2,4
5M	5	2,1	3,8
8M	8	3,4	6,0
14M	14	6,0	10,0
20M	20	8,4	13,2

Elevado regímenes de potencia Transmisiones Compactas Nada de engrase o lubricación

Elemento	Característica	Imagen
POWERGRID HTD 3M	Perfil Curvilíneo Paso: 3mm Altura: 2.4mm Ancho: 15mm Velocidades hasta 2000orpm Potencia de transmisión max:10kW	
Polea Uxcell	Perfil Curvilíneo Dientes: 20 Diámetro del orificio: varios Paso: 3mm Diámetro exterior: 35mm Ancho: 20mm	
Polea Uxcell	Diámetro del orificio: 0.236 in Ancho: 20mm	

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Diseño del Prototipo Propuesto

Z = 5.25

Análisis de Volcamiento

F = 10N $W_c = 39.24N$ $W_b = 239.36N$ x = 0.205my = 0.666m $M_{est} = W_T * x = 57.11 Nm$ $M_{vol} = F * y = 6.66Nm$

$$fs = \frac{M_{est}}{M_{vol}} = \frac{57.11Nm}{6.66Nm} = 8.57$$

Espacio de Trabajo

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

H

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Mecánico del Brazo articulado

Cinemática Directa del Brazo Articulado

Parámetros de Denavit - Hartenberg de un manipulador PRRR

Articulación		θ	d	а	α
1	H_0^1	0	d1	0	0
2	H_{1}^{2}	q2	0	l1	0
3	H_{2}^{3}	q3	0	12	0
4	H_3^4	q4	0	13	0

Matriz de Transformación

4 _	$cos(q_{234})$ sen(q_{234})	$-sen(q_{234}) \\ \cos(q_{234})$	0 0	$l_1 \cos(q_2) + l_2 \cos(q_{23}) + l_3 \cos(q_{234}) + l_1 \sin(q_2) + l_2 \sin(q_{23}) + l_3 \sin(q_{234})$
) —	0	0	1	d_1
	L 0	0	0	1.

Matriz de Posición del efector final

 $\begin{bmatrix} px \\ py \\ pz \end{bmatrix} = \begin{bmatrix} l_1 \cos(q_2) + l_2 \cos(q_{23}) + l_3 \cos(q_{234}) \\ l_1 sen(q_2) + l_2 sen(q_{23}) + l_3 sen(q_{234}) \\ d_1 \end{bmatrix}$

Configuración PRRR

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Mecánico del Brazo articulado

Cinemática Inversa del Brazo Articulado

 $q_4 = \phi - q_2 - q_3$

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Mecánico del Brazo articulado

Cinemática Inversa del Brazo Articulado

 $v = J.\dot{q}$

Matriz Jacobiana

 $\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \omega_z \end{bmatrix} = \begin{bmatrix} 0 & -l_1 s_2 - l_2 s_{23} - l_3 s_{234} & -l_2 s_{23} - l_3 s_{234} & -l_3 s_{234} \\ 0 & l_1 c_2 + l_2 s_{23} + l_3 s_{234} & l_2 c_{23} + l_3 c_{234} & l_3 c_{234} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \dot{d}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{bmatrix}$

Singularidades

$$\begin{split} |J| &= l_1 l_2 sen(q_2 + q_3) * \cos(q_2) - l_1 l_2 \cos(q_2 + q_3) * sen(q_2) \\ 0 &= l_1 l_2 sen(q_2 + q_3) * \cos(q_2) - l_1 l_2 \cos(q_2 + q_3) * sen(q_2) \\ q_3 &= 0 \end{split}$$

Matriz de velocidades articulares

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultadós

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Mecánico del **Brazo articulado**

Dinámica del Brazo Articulado

Fuler - Lagrange	E 1 1 /	
Loici Eugrange	Eslabon	Valor
d al al	Lı	0.2172 M
$\frac{u}{d} \frac{\partial L}{\partial L} - \frac{\partial L}{\partial L} - \tau$	L2	0.14883 m
$dt \partial \dot{q}_i \partial q_i \stackrel{-}{=} \iota$	L3	0.2172 M
I - K - P	Eslabón	Masa
L = K - I	dı	1.814 kg
	q2	0.1873 kg
	q3	0.036 kg
	q4	0.1873 kg

Gripper & Payload	Masa
Gripper (Garra)	0.13 kg
Payload (Carga)	510.

Articulación	Centro de masa (m)		
	х	У	Z
1	0	0	0.1645
2	0.1086	-0.0000434	0.00085831
3	0.07441308	0	-0.0007572
4	0.1086	-0.0000434	0.00085831

Eslabón 1 Prismático			
0.07918	0.00005	0.01852	0.044098
0.00005	0.09138	0.00003	0.000145
0.01852	0.00003	0.04658	0.172022
0.04409834	0.00014512	0.17202162	1.814

Eslabón 2 Revoluta				
0.00019 0 0.				
0	0.00922	0	0	
0	0	0.00914	0	
0.02032205	0	0	0.1873	

Eslabón 3 Revoluta				
0.00014 0 0.00				
0	0.00183	0	0	
0	0	0.00174	0	
0.00271446	0	0	0.036063	

Eslabón 4 Revoluta & Gripper & Object			
0.00115	-0.00041	-0.00057	0.168132
-0.00041	0.05993	0.00001	-0.00106
-0.00057	0.00001	0.05956	-0.00146
0.16813218	-0.00105894	-0.001456	0.8273

Resolución matricial Euler-Lagrange (Barrientos, Cruz 2007)

 $\tau = D\ddot{q} + H + C$

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultadós

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Mecánico del **Brazo articulado**

Dinámica Inversa del Brazo Articulado

FS: 1.6 = 60%

Torque Máx	Valor
F1	26.26 Nm
T2	0.8392 Nm
T3	0.5963 Nm
Τ4	0.4550 Nm

Fuerzas y torques con objeto de carga (payload) Fuerzas y torques con carga aplicado factor de seguridad

Torque Máx	Valor
Tı	42.01 Nm
Τ2	1.3427 Nm
Т3	0.9540 Nm
Τ4	0.7280 Nm

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Electrónico

Actuador Prismático

Motor a Pasos NEMA23 Gearbox STEPPERONLINE

6oNm	
24V	
2.8A	
1.6kg	
158x6ox6omm	

Actuador para juntas rotacionales

Unidad de Procesamiento para el sistema

LewanSoul Hiwonder LX-16
17 Kg-cm
7.4 V
3 A
52 gr.

Jetson Nano Developer Kit
Quad-core ARM A57 @ 1.43 GHz
128-core Maxwell
4GB 64-bit
5V 3A
Gigabit Ethernet, M.2 Key E
119x97x36mm

Investigación previa **Otros Componentes**

Electrónicos

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Electrónico

	Componente	Características	Imagen
ſ	Arduino Uno	Microcontrolador: ATMega328P.	
		Velocidad de reloj: 16 MHz.	
		Voltaje de trabajo: 5V.	
		Pinout: 14 pines digitales (6 PWM) y	
		6 pines analógicos.	
		1 puerto serie por hardware.	
		Memoria: 32 KB Flash (0,5 para bootloader),	
		2KB RAM y 1KB Eeprom.	
	Digital	Controlador de motor DM542T (V4)	
	Stepper Driver	Selector de voltaje lógico de 5 V/24 V	
		Corriente de salida: 1,0 ~ 4,2 A,	
		Voltaje de Alimentación: 20 ~ 50 VCC,	A DECEMBER OF THE OWNER
		Resolución de micropasos: 1/128	
		Frecuencia entrada de pulsos: 200kHz	
	Bus Linker	Conector de servomotor de bus serial.	
		Protocolo de comunicación serial asíncrona	
		UART	ALL SED
		Dos modos de trabajo: modo Servo y modo	A CONTRACT OF
		de motor de engranaje.	Burr .
		Retroalimentación de posición, temperatura y voltaje.	auditikar V22

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Visión Artificial

Sensor para visión artificial

Características	Datos
Resolución de video	640*320
Pixeles efectivos	720p
Velocidad de fotogramas de video	30 fps
Formato de codificación de video	MJPEG
Distancia efectiva de recogida	16.4 ft
Tipo cámara	RGB

<u>SIFT</u>

- Extrae características invariantes distintivas de imágenes .
- Coincidencias confiables entre distintas vistas de un objeto o escena.

Algoritmo de visión artificial

Aspectos de robustez

- Variaciones de iluminación
- Variaciones de escala
- Cambios de rotación y oclusión

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Visión Artificial

Algoritmo de visión artificial

Objetos de detección

Modelo 1

Modelo 2

Modelo 3

Características del objeto modelo determinado

CARACTERÍSTICAS	VALORES
Altura	24 CM
Ancho	6 cm
Radio	3 cm
Peso (lleno)	510 gr
Peso (vacío)	10 gr

Características	Modelo 1	Modelo 2	Modelo 3
Pixeles	122 X 397	119 X 382	126*455
Formato	jpeg	jpeg	jpeg
Bits por pixel	24-bit color	24-bit color	24-bit color
Keypoints detectados	207	189	275

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Visión Artificial

Algoritmo de visión artificial

img3

Identificación de puntos coincidentes del modelo con el objeto en video

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Orientación de distancias del objeto con respecto a la cámara

Distancia x : distancia frontal con respecto a la cámara Distancia y : distancia lateral horizontal respecto a la cámara Distancia z : distancia lateral vertical con respecto a la cámara

Distancia x

Subsistema de Visión Artificial

Estimación de posición (Distancia X)

Valor h (pixels)	Distancia de la botella (cm)
580	10
300	15
205	20
160	25
135	30
106	35
100	40
90	45
80	50
75	55

 $R^2 = 0.9965$

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Visión Artificial

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Energía y Alimentación

Consumo energético del sistema y selección de batería

Componente	Cantida d	Voltaje	Consumo Energético [A]	Consumo Energético Total [A]
Motor Prismático	1	24V	2.8	2.80
Controlador Motor	1	20-50V	0.7	0.70
Actuador rotacional	3	7.4V	1.0	3.00
Actuador Efector Final	1	6V	1.1	1.10
			SUMA	7.60
			FACTOR 10%	0.76
			TOTAL	8.36

Alternativa	Voltaj e	Capacida d	Peso	Cost o	Tiempo de carga	SUMA	Pond.
Batería Powest Plomo-Ácido	0.092	0.117	0.083	0.117	0.090	0.499	2
Batería Lipo Tcbworth	0.092	0.083	0.117	0.083	0.126	0.501	1

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultadós

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Energía y Alimentación

Autonomía

Limitada capacidad de amperaje

Para la Batería de 11.1V 5000mAH:

Para la Batería de 7.4V 3500mAH:

 $t1 = \frac{5000mAH}{(2800 + 700)mA} = 1,42Horas = 1H25min \qquad t2 = \frac{3500mAH}{(3000 + 1100)mA} = 0.85H = 51min$

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Energía y Alimentación

Reguladores de Voltaje

Componente	Característica	Imagen
Regulador DC Step Up	Voltaje entrada: 10 V-32 V. Tensión de salida: 12V-35V Corriente de salida: 10A Corriente de entrada: 16A Potencia de salida: 100 W Eficacia de conversión: 94%	
Regulador DC Step Down	Voltaje entrada: 8 V a 36 V, Voltaje salida: 1.25 V a 32 V Corriente 5 A 180 kHz, eficiencia 96%.	CONTRACTOR OF

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Subsistema de Control ROS

Modelo estructural URDF

Trabajos futuros

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Control ROS

Configuración Movelt ROS

Lineamientos del modelo URDF del robot

Parámetros de movimiento	Configuración
Articulación 1 Prismática	Límites de movimiento:o a 0.615 [m]
Articulación 1 Revolución	Límites de movimiento: -1.5708 a o [rad]
Articulación 2 Revolución	Límites de movimiento: -0.785 a 1.5708 [rad]
Articulación 3 Revolución	Límites de movimiento: -0.785 a 1.5708 [rad]

Juntas virtuales	Configuración
virtual_joint	Tipo de junta: Planar
	Trama parental: world (plataforma base)
	Eslabón hijo: base_link (base movil)
Grupos de panificación	Configuración
Atom_arm	Joints: Prismatic_joint
	Revolute_joint1
	Revolute_joint2
	Revolute_joint3
Atom_hand	Joints: Hand_joint
	R_finger_joint
	L_finger_joint

Posiciones	Configuración
Home	Prismatic joint: o mm
	Revolute joint1: o grados
	Revolute joint2: 90 grados
	Revolute joint3: 90 grados
Efectores Finales	Configuración
atom_eef	Grupo: atom_hand
	eslabón parental: Revolute_link3
Control ROS	Configuración
Atom_arm_controller	Controladores de
	posición/controlador de posición de
	articulaciones
Atom_hand_controller	Controladores de
	posición/controlador de posición de
	articulaciones

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Subsistema de Control ROS

Sistema TF y configuración de trayectoria en ROS

Sistema TF del robot manipulador

Trabajos futuros

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Subsistema de Control ROS

Nodos y tópicos desarrollados para el control Pick and Place

Trabajos futuros

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema de Control ROS

Aplicación de Pick and Place en ROS

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Subsistema Interfaz HMI Diseño y Distribución

Automatic Teleoperated Object Manipulator

|∎● 0 |* ♥彡| = 1= 6 0

s: 16612 FPS: 62.54 Reset Time

... False

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options.

Frame Rate

Update Interval Alpha Robot Description TF Prefix Links MotionPlaceboo

 MotionPlanning
 ✓ Status: Ok Move Group Namesp Robot Description Planning Scene Topic Scene Geometry

Scene Robot Planning Requ Planning Metri Planned Path

Add

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Implementación

Impresión 3D

Armado de Base Diferencial

Proceso de Taladrado

Desmontaje de componentes del prototipo anterior

Investigación previa

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Implementación

Ensamble y Montaje de tracción

Diferencial

Acople Ruedas

Nueva estructura para el sistema de Telepresencia

Investigación previa

Metodología

<u>Diseño y</u> <u>construcción</u>

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Implementación

Brazo Manipulador Armado

Diagrama de Conexión

previa

Investigación

Introducción

Metodología

<u>Diseño y</u> construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

previa

Trabajos futuros

Diagrama de Conexión

Diagrama de conexión de todo el sistema robótico

Prueba del Sistema

Introducción

Investigación previa

Metodología

Diseño y construcción

<u>Pruebas y</u> Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Dist 1

9.0

Desv Me Error 9.6

10.2

Dist1_x

10.8

11.4

Histograma de Dist1_x Normal

		Distancia Frontal a la Cámara (Eje X)							
Distancia real	10	15	20	25	30	35	40	45	50
Desviación estándar	0.7273	0.186584	0.403362	0.132247	0.8252	0.211536	1.14428	0.457321	0.4978
Media	10.42849	15.83201	20.19224	24.47981	29.72225	33.89132	40.18813	45.28377	49.78504
Error Absoluto	0.338486	0.832009	0.192241	0.520191	0.247746	1.108678	0.188132	0.283771	0.143964

	Dis	tancia La	teral Horiz	zontal (Eje	Y)		Distancia I	_ateral Vertic	al (Eje Z)
	-10	-5	ο	5	10		о	5	10
. Est	0.096602	0.117861	0.123689	0.024382	0.329026	Desv. Est.	0.057964	0.132593	0.118591
dia	-9.14442	-5.39855	-0.8644	4.745122	9.925943	Media	0.286246	4.195612	9.853701
Abs	0.855584	0.398554	0.8644	0.254878	0.074057	Error Abs.	0.286246	0.804388	0.146299

Dist 2

Media 29.72 Desv.Est. 0.8252 N 30

31.2

30.4

Eje X	Error %
Dist 1	4.2 %
Dist 2	0.93 %
Dist 3	0.44 %
Eje Y	Error %
Dist 1	8.54 %
Dist 2	0.08 %
Dist 3	0.67 %
Eje Z	Error %
Dist 1	4.2 %
Dist 2	16.06 %
Dist 3	1.48 %

Prueba del Sistema

Introducción

Investigación previa

Metodología

Diseño y construcción

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Identificación de puntos característicos o "keypoints" en: Dist 1: 25 cm Dist 2: 40 cm Dist 3: 50 cm

Keypoints						
Prueba N	Dist 1	Dist 2	Dist 3			
1	12	12	6			
2	10	9	6			
3	11	13	6			
4	12	7	8			
5	12	10	8			
6	14	10	7			
7	13	9	6			
8	9	11	6			
9	12	9	6			
10	9	11	6			
11	9	9	6			
12	10	7	6			
13	13	10	6			
14	9	10	7			
15	10	12	6			
Media	11	9.933	6.4			
Desv. Est.	1.69	1.71	0.7368			

Dist 1

Dist 2

Dist 3

Investigación previa

Metodología

Diseño y construcción

<u>Pruebas y</u> <u>Resultados</u>

Conclusiones

Recomendaciones

Trabajos futuros

Resultados de asertividad en la aplicación Pick

and Place

	PICK	(Agarre de d	objeto)	PLACE (Des	plazamiento	del objeto)
PRUEBA	pos 1	pos 2	pos 3	pos 1	pos 2	pos 3
1	1	1	1	0	1	1
2	0	1	1	0	1	1
3	0	1	1	0	1	1
4	1	1	1	1	1	1
5	1	0	1	1	0	1
6	0	1	0	0	1	1
7	0	0	1	1	1	1
8	1	0	1	0	0	0
9	0	1	0	0	1	1
10	1	1	1	0	1	1

	Posición 1	Posición 2	Posición 3
Media	0.5	0.7	0.8
Desv. Est.	0.527	0.483	0.4216

Video Funcionamiento

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Conclusiones

- El sistema robótico detecta cierto objeto mediante una estimación de distancia con un sensor visual y lo toma para posicionarlo en otro lugar. La configuración de sus grados de libertad permite un alcance máximo del brazo manipulador de 50cm y su desplazamiento vertical es de 40cm a 100cm con respecto al piso.
- Torques y fuerzas máximas de 1.6 que son F1 = 42.01 Nm, T2 = 1.34 Nm, T3 = 0.954 Nm y T4 = 0.728 Nm que permitieron identificar los motores que necesita . La cinemática inversa permitió realizar un algoritmo que ayude a la identificación de los ángulos necesarios para llegar a la posición requerida donde se encuentre el objeto.
- La rigidez estructural aumentó. El equilibrio del robot es adecuado debido a la configuración inicial de posición de los eslabones y articulaciones en la base móvil superior.

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

<u>Conclusiones</u>

Recomendaciones

Trabajos futuros

Conclusiones

- El diseño electrónico ha permitido la selección de los motores/servos acordes a los torques identificados que darán lugar al movimiento de las articulaciones del robot manipulador, además se seleccionó la tarjeta Jetson Nano como el controlador más adecuado conforme a sus especificaciones y que sea capaz de trabajar con los drivers de control para sus motores como el BusLinker y el Digital Stepper Driver.
- Carcasa del robot diferencial es impresa en 3D al igual que todo el brazo manipulador. Buena calidad de impresión y tolerancias consideradas en el diseño por lo cual no hubo necesidad de post procesado más que la eliminación de soportes de impresión.
- En el diseño de reconocimiento del objeto se logró una buena detección del objeto con un mínimo de 5 keypoints de coincidencia ya que normalmente se consigue de 13 a 21 keypoints del objeto a distancias razonables de 25cm con respecto al sensor "cámara" con un rango escalable de 0.8 del modelo configurado. Además, el sistema Pick and Place fue realizado por medio de nodos y tópicos generados en ROS con la paquetería de Movelt que permite un control adecuado con robots manipuladores.
- El diseño de una interfaz gráfica ha sido desarrollado en Python con la ayuda de la librería KivyMD que es una interfaz visual gráfica muy adaptable a distintos sistemas operativos como versiones. Esta librería tiene funciones específicas para un desarrollo sencillo de diseño y este fue conectado por scripts publicadores en ROS para su control.

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

<u>Recomendaciones</u>

Trabajos futuros

Recomendaciones

- Se recomienda en el desarrollo el modelo dinámico realizarlo por el método matricial con el uso de formulaciones recursivas basadas en dinámica de Newton-Euler que reduce el número de adiciones y multiplicaciones matriciales que varían por el número de articulaciones en comparación con formulaciones de dinámica anteriores con dependencia n4, que es el aproximadamente el 80% menos de operaciones que con el método dinámico Uicker.
- Se recomienda realizar un rediseño con un mayor ajuste en las articulaciones rotacionales de los eslabones del brazo para que el diseño mecánico del manipulador obtenga un menor ángulo de inclinación cuando se extienda completamente, ya que actualmente posee 2 grados de inclinación en la posición más crítica cuando llega a su alcance límite.

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Recomendaciones

 Se recomienda cargar la batería Tcbworth y procurar que no baje de los 9V debido a que esta batería pasa por un regulador boost que aumenta la tensión a 24V necesarios para la alimentación al Digital stepper driver que permite el movimiento al motor Nema23, caso el voltaje baje demasiado el convertidor no conseguirá aumentar la tensión necesaria.

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultados

Conclusiones

Recomendaciones

Trabajos futuros

Recomendaciones

- La cubierta tipo domo se imprimió en 5 piezas debido al área limitante de la impresora utilizada. Se recomienda reducir el número de piezas e imprimir una nueva carcasa para la base diferencial del robot en otra maquina con mayor área de impresión para otorgar una mejor apariencia al robot en su parte inferior.
- Para lograr una estimación de distancia de objetos más precisa, se recomienda un entrenamiento de un modelo con la utilización de algoritmos más robustos como SURF que posee un mejor rendimiento o incluso la utilización de ORB un método open source que cualquiera puede acceder sin restricciones, ya que SIFT o SURF requieren de paquetes adicionales.
- Para la utilización de la Interfaz gráfica se recomienda inicializar todos los nodos en ROS dado que la interfaz solo publica tópicos a los nodos, caso no se encuentre inicializado los nodos de control el robot no ejecutará ningún movimiento al usar la HMI.

Entorno inteligente.

Más sensores de visión

Etiquetas de distintas áreas a

distintos lugares para que facilite la

localización y navegación del robot de

Tomar un objeto y llevarlo a otra

de un entorno cerrado

telepresencia

Investigación previa

Metodología

Diseño y construcción

Pruebas y Resultadós

Conclusiones

Recomendaciones

Trabajos futuros

Trabajos Futuros

GRACIAS POR SU ATENCIÓN