

TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECATRÓNICO

DEPARTAMENTO DE ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECATRÓNICA

TEMA:

"Prototipo de un espirómetro digital con sistema semiautomático de desinfección e interfaz de usuario y monitoreo remoto mediante IoMT para evaluar la función pulmonar en pacientes dentro del área de medicina interna y consulta externa del Hospital Andino de la ciudad de Riobamba."

AUTORES:

BONILLA ROBALINO, ANDRÉS SEBASTIÁN TOAQUIZA ÁVILA, KAREN TERESA

DIRECTOR:

DRA. GUERRÓN PAREDES, NANCY ENRIQUETA

LATACUNGA 2022

AGENDA

Introducción

Desarrollo e Implementación

Resultados

Conclusiones

Recomendaciones

Video

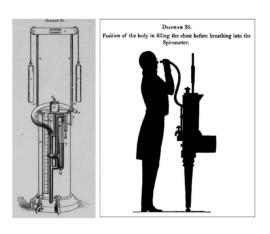
AGENDA

Introducción

Desarrollo e Implementación

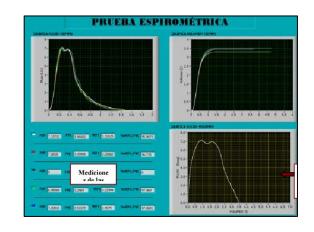
Resultados

Conclusiones


Video

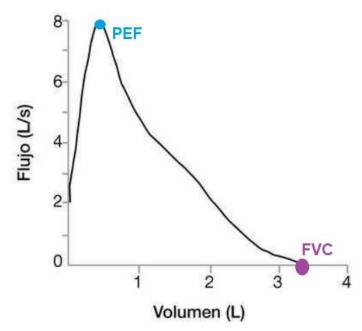
Recomendaciones

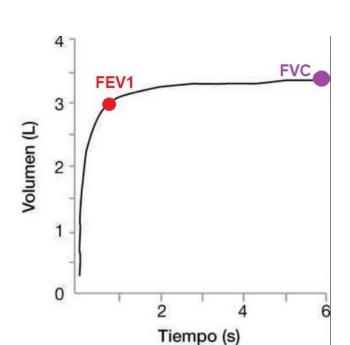
ANTECEDENTES


Espirómetro de Hutchinson

Electromedicina

Control y Automatización

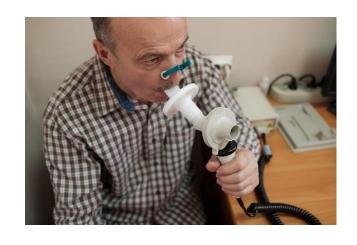

IoMT



RESUMEN

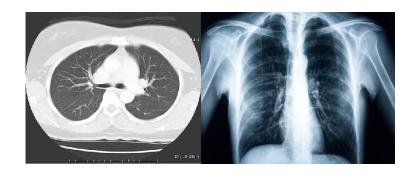
Capacidad Vital Forzada (FVC)

Cociente (FEV1/FVC)



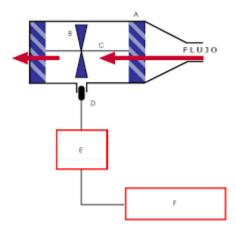
Volumen espiratorio máximo en el primer segundo (FEV1)

Flujo Espiratorio Máximo (PEF)

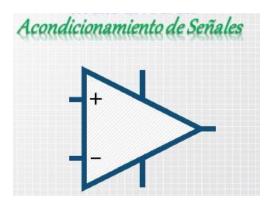

PLANTEAMIENTO DEL PROBLEMA

Perdida económica

Uso de imagenología


OBJETIVO GENERAL

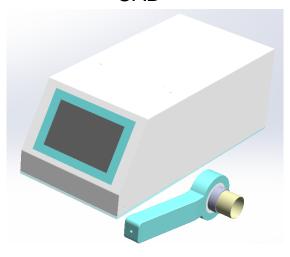
Prototipar un espirómetro digital con sistema semiautomático de desinfección e interfaz de usuario y monitoreo remoto mediante IoMT para evaluar la función pulmonar en pacientes dentro del área de medicina interna y consulta externa del Hospital Andino de la ciudad de Riobamba



OBJETIVOS ESPECÍFICOS

Neumotacógrafo

Acondicionamiento


Sistema de Desinfección

Interfaz

CAD

Resultados

PARÁI	METROS E	SPIROMÉTR	icos
Dato	Valor	Predict.	%Error
FVC		K N	\rangle
FEV ₁	100		
PEF	- 15		
FEV1/FVC	//		7
FEV _{25-75%}			

AGENDA

Introducción Desarrollo e Implementación Resultados Conclusiones Recomendaciones

Video

DESARROLLO E IMPLEMENTACIÓN

DISEÑO DEL SISTEMA ELECTRÓNICO

Adquisición de Señales

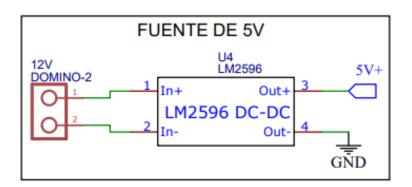
Sistema de Alimentación Activación de Actuadores

Sistema Electrónico

Etapa de Potencia Tarjeta DAQ e interfaz

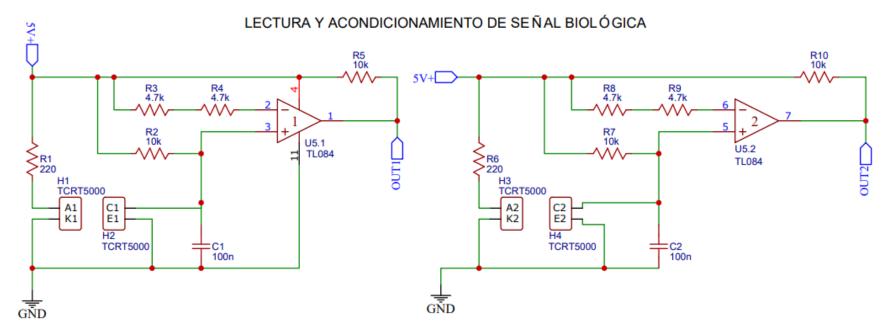
SISTEMA DE ALIMENTACIÓN

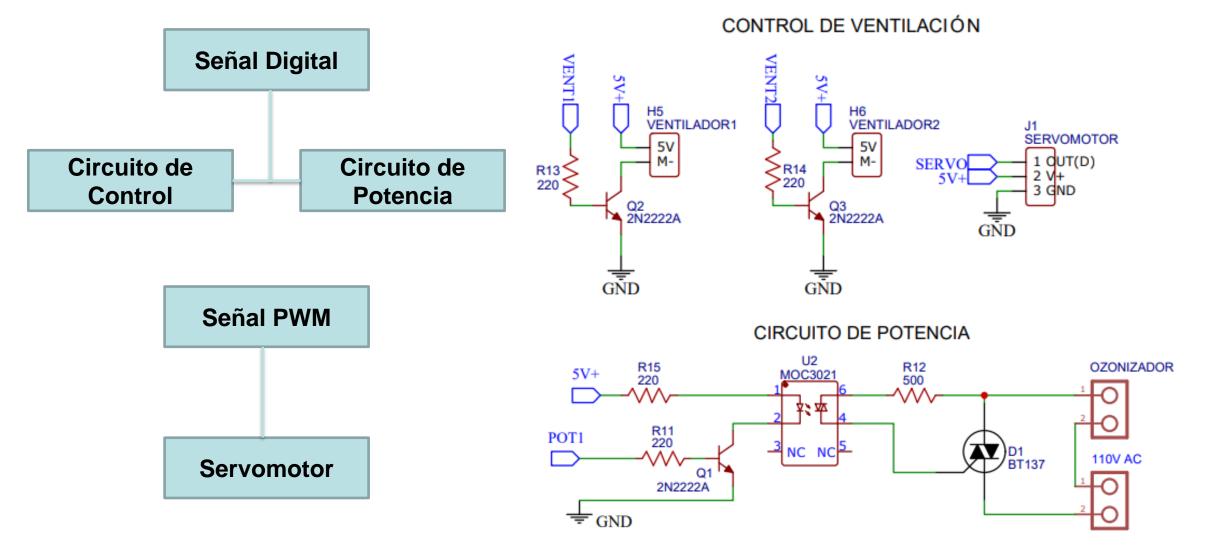
Fuente Conmutada

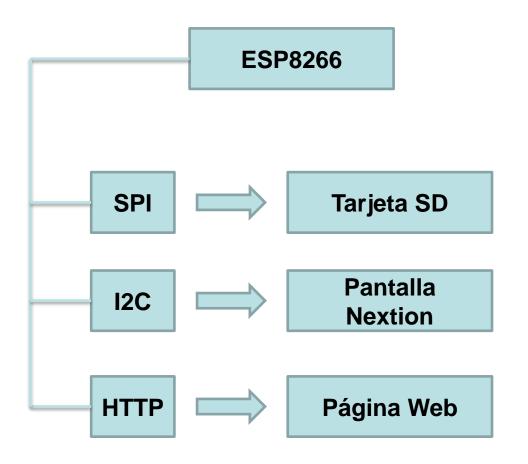


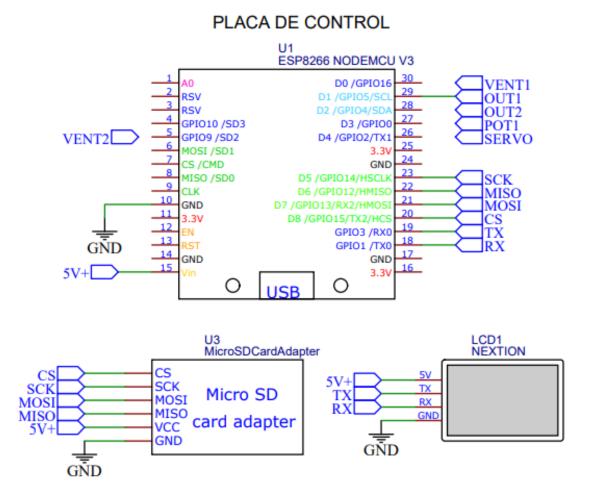
Reductor Buck

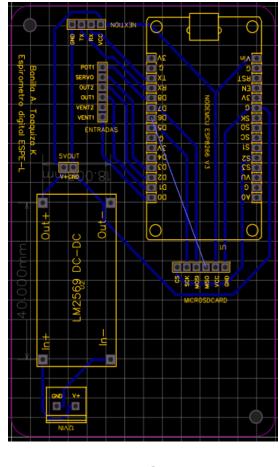
Componentes Electrónicos



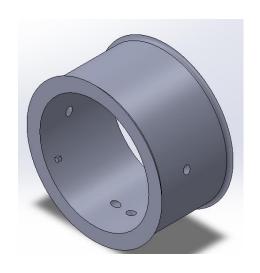

Adquisición de Señales

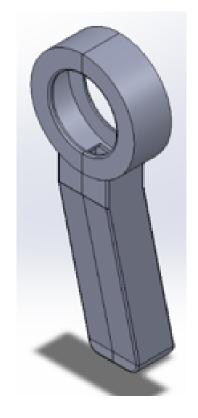


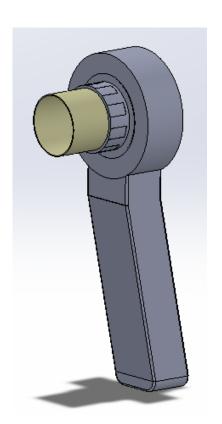

Activación de Actuadores y Etapa de Potencia


Tarjeta de Adquisición de Datos

Diseño del Circuito Impreso

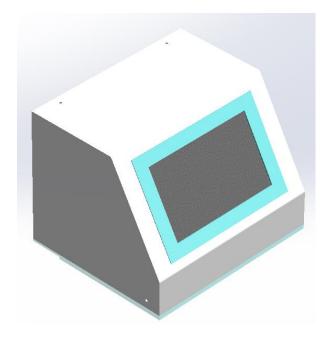

PCB1 PCB2

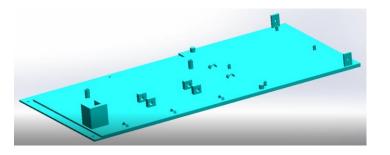



DISEÑO CAD

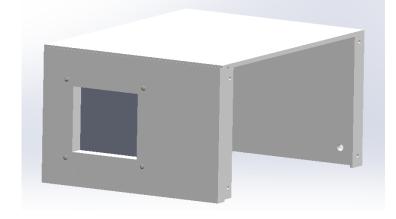
Neumotacógrafo

Parte del sistema que recibe la señal biológica y la transforma en una eléctrica.



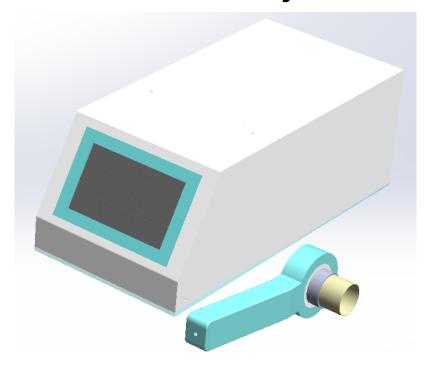


ESPIRÓMETRO


Parte Frontal

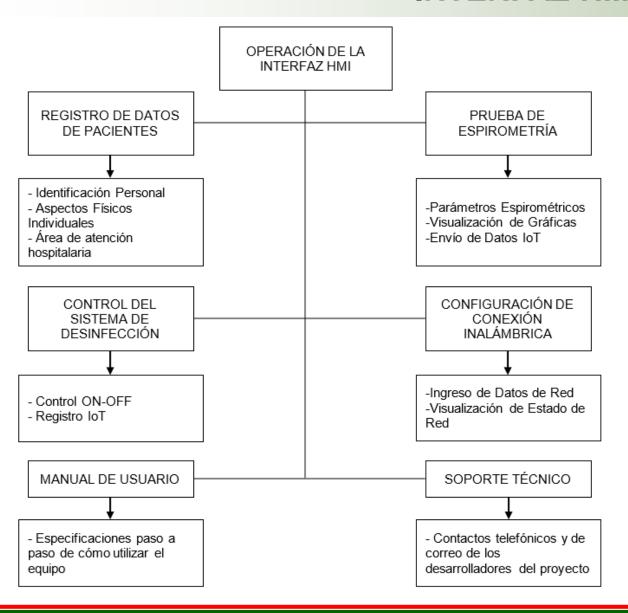
Base

Cubierta Superior y **Posterior**


Sistema de Ventilación

PROTOTIPO FINAL

CAD Ensamblaje Final

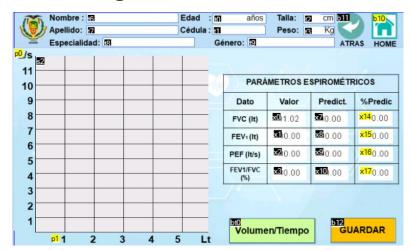


Prototipo Construido

INTERFAZ HMI

El entorno HMI se diseña en el programa Nextion Editor y toda la lista de sus elementos táctiles son distribuidas acorde al diseño de la interfaz para el usuario.

Página de Inicio

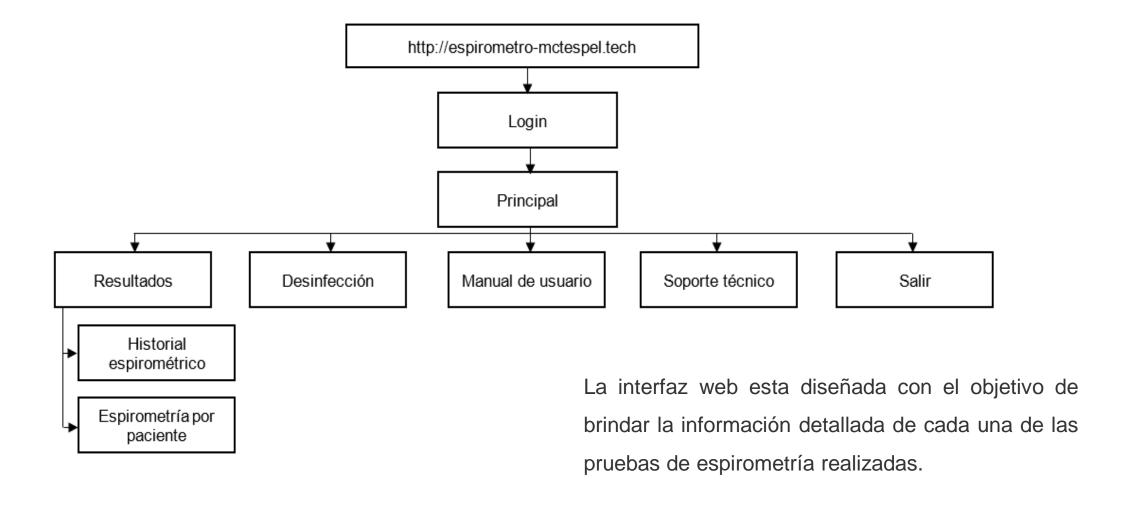

Prueba de Espirometría

Registro de Datos

Página de Resultados

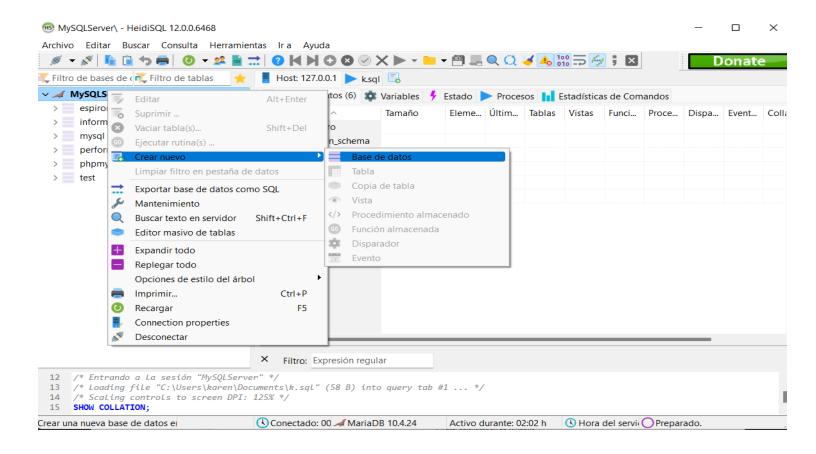
LIBRERÍAS ARDUINO

La librería oficial para Arduino es "Nextion.h", misma que incluye un comando específico para cada elemento que se emplea dentro de la interfaz tales como:

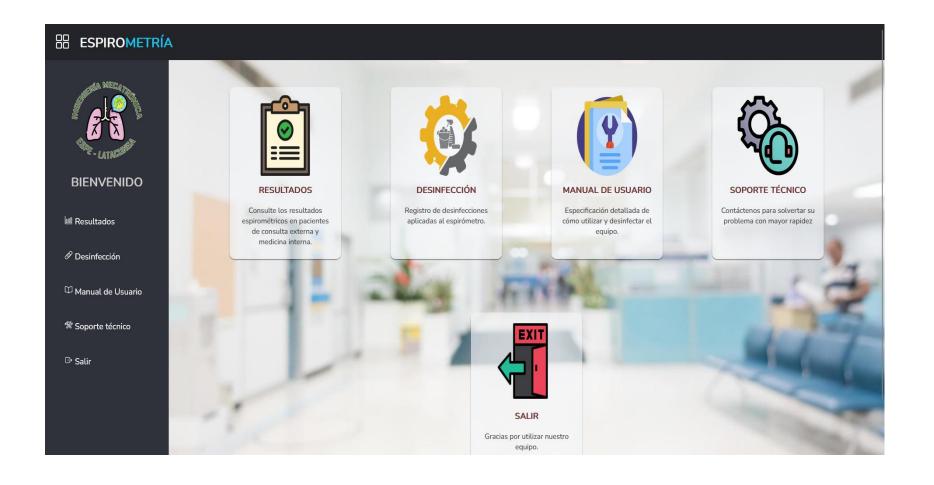

- NexButton: Botón de simple retorno
- NexText: Casilla de datos tipo string.
- NexNumber: Casilla de valores tipo entero o flotante
- NexTouch: Panel de lectura de elementos táctiles
- Nexinit: Inicialización de interfaz programada
- Nexloop: Bucle de identificación de elementos de estado variable.

#include "Nextion.h"

```
PANTALLA NEXTION
 /---Datos del paciente
                        (4,22,"t6"); //Nombre
NexText t6
            = NexText
                       (4,32,"t7"); //Apellido
NexText t7
            = NexText
            = NexText (4,36,"t8"); //Especialidad
NexText t8
            = NexText (4,37,"t9"); //Género
NexText t9
NexText t0
            = NexText (4,31,"t0"); //Edad
NexText t1 = NexText (4,32,"t1"); //Cédula
NexText t2
            = NexText (4,33,"t2"); //Talla
NexText t3
            = NexText
                      (4,34,"t3"); //Peso
NexVariable correo1 = NexVariable(4,21, "correo");
NexVariable telef = NexVariable(4,29,"telef");
NexVariable histo = NexVariable(4,30,"hist"); //H
```



INTERFAZ WEB


Base de Datos

El software Heidi SQL facilita la creación e interacción de la base de datos con phpMyAdmin.

Ventana Principal Página Web

Se observa un menú de navegación tanto a la izquierda en forma de slide-bar como en el centro de la página en forma de tarjetas.

AGENDA

Introducción

Desarrollo e Implementación

Resultados

Conclusiones

Recomendaciones

Video

RESULTADOS

Datos Obtenidos

N°Paciente	F	VC (L	t)	FE	V1 (Lt	/s)	ı	PEF(Lt) FEV			V1/FVC (%)	
	P	С	% E	P	С	% E	Р	C %E P			С	% E
1	4.08	4.22	3.32	3.28	3.2	2.5	7.32	7.01 4.42 73.9			76.7	3.65
2	4.59	4.6	0.22	4.07	3.89	4.63	9.01	8.58 5.01 81.11			84.71	4.25
3	3.54	3.41	3.81	3.02	2.9	4.14	6.18	6.1	6.1 1.31 86.38			1.25
4	3.05	2.93	4.10	2.48	2.39	3.77	5.46	5.43 0.55 82.86			81.61	1.53
5	2.97	2.86	3.85	2.68	2.56	4.69	5.24	4 5.05 3.76 85.7			89.51	4.22

N°Paciente	F	VC (L	t)	FE	V1 (Lt	/s)	ı	PEF(Lt) FEV1/FV			1/FVC (C (%)	
	P	С	%E	P	С	% E	Р	C %E P			С	%E	
6	2.91	2.82	3.19	2.30	2.24	2.68	5.28	3 5.31 0.56 78.86			79.87	1.26	
7	3.41	3.26	4.60	2.78	2.67	4.12	5.82	2 5.8 0.34 83.60 82			82.22	1.68	
8	4.15	4.17	0.48	3.63	3.48	4.31	8.22	2 7.86 4.58 78.63 80			80.23	2.10	
9	4.04	3.89	3.86	3.1	3.01	3.32	7.16	6 7.53 4.91 73.82			77.49	4.74	
10	3.62	3.45	4.93	3.06	2.92	4.79	6.19	6.11	1.31	85.95	84.98	1.14	

Número de Ensayos: 10

Parámetros Medidos por Ensayo: 4

Porcentaje de Error Admisible: 5%

Validación de Hipótesis

Cálculo de la Desviación Estándar

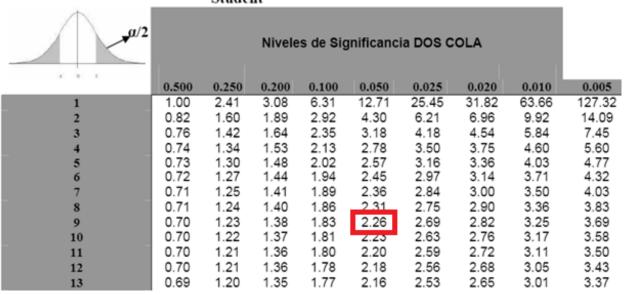
χ_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
3.32	0.09	0.0081
0.22	-3.01	9.0601
3.81	0.58	0.3364
4.10	0.87	0.7569
3.85	0.62	0.3844
3.19	-0.04	0.0016
4.60	1.37	1.8769
0.48	-2.75	7.5625
3.86	0.63	0.3969
4.93	1.70	2.89

Grados de Libertad

Nivel de Confianza

$$GL = n - 1$$

$$\alpha = 0.05$$


$$GL = 10 - 1$$

$$GL = 9$$

Valor Crítico

$$t_{vc} = 2.26$$

Tabla de valores críticos de la distribución t de Student

Cálculo de la prueba t-student

$$s\bar{x} = \frac{s}{\sqrt{n}}$$

$$s\bar{x} = \frac{1.61}{\sqrt{9}}$$

$$s\bar{x} = 0.54$$

$$t = \frac{\bar{x} - \mu}{s\bar{x}}$$

$$t = \frac{3.23 - 5}{0.54}$$

$$t = 3.27$$

$$t > t_{vc}$$
, Rechaza H_o $t > t_{vc}$
 $t < t_{vc}$, Acepta H_o 3.27 > 2.26

Se acepta la hipótesis alternativa ya que el valor de t que se calculo es mayor a la t_{vc} critica por lo tanto se rechaza la hipótesis nula. Una vez analizado los datos y la información obtenida de todos los ensayos realizados, se puede afirmar que el prototipo de espirómetro digital puede ser empleado para realizar una impresión diagnostica de la función pulmonar de un paciente.

AGENDA

Introducción

Desarrollo e Implementación

Resultados

Conclusiones

Recomendaciones

Video

CONCLUSIONES

Se implemento de manera exitosa un prototipo de espirómetro digital con sistema semiautomático de desinfección e interfaz de usuario y monitoreo remoto mediante IoMT para evaluar la función pulmonar en paciente dentro del área de medicina interna y consulta externa del hospital andino de la ciudad de Riobamba.

Considerando la información obtenida por medio de la investigación bibliográfica se puede desarrollar distintos tipos de espirómetros con mayores grados de exactitud y que no requieran ningún sistema de calibración o comparación para asegurar una correcta obtención de datos.

Es importante entender los procedimientos fisiológicos que suceden durante la inhalación y exhalación pulmonar para comprender a que hace referencia cada uno de los parámetros espirométricos y que procedimiento es necesario realizar para su correcta obtención a través de instrumentos electrónicos.

Al diseñar un sistema de descontaminación es fundamental estudiar el efecto directo sobre la salud de los seres vivos que tienen todas aquellas substancias que funcionen como agentes descontaminantes pues muchos de ellos pueden ser no aptos para el uso prolongado dentro de dispositivos médicos o sus efectos en área pueden ser nocivos tanto para las personas como para ciertos tipos de instrumentación.

El uso de un dominio web y un servicio de host para hospedar páginas web es de mucha ayuda para proyectos que necesiten IOT, debido a que el control y monitoreo de algún equipo se lo puede realizar por medio de cualquier dispositivo móvil con acceso a internet, por lo cual no es necesario tener encendida alguna computadora en específico como host, ya que el alojamiento web cuenta con sus propios servidores.

AGENDA

Introducción

Desarrollo e Implementación

Resultados

Conclusiones

Recomendaciones

Video

RECOMENDACIONES

Para escoger el tipo de neumotacógrafo que se desea diseñar es necesario considerar aquellas variables que estos emplean para poder interpretar una señal biológica como señal eléctrica y de esa manera poder escoger la instrumentación apropiada para su debida implementación.

Para la implementación de componentes electrónicos en diseño de PCB se aconseja revisar apropiadamente la distribución de los componentes con el fin de otorgar compactibilidad, eficiencia y reducción de costes a la hora de su construcción.

Es recomendable antes de modelar piezas en un software CAD tener conocimiento de las limitaciones que los fabricantes pueden ofrecer, esto con el fin de evitar problemas como sobredimensionamiento de piezas, material no apto para procesos de mecanizado, impresión de material excedente, entre otras.

RECOMENDACIONES

Para la creación de paginas web se recomienda realizar una web responsive, esto con el fin de que se pueda adaptar a cualquier dispositivo, ya sea computadora, Tablet o celular.

Se aconseja dar una pequeña capacitación al personal médico que manipulará el dispositivo con el fin de garantizar su correcto uso y detallar sus limitaciones para evitar daños al mismo.

Se recomienda adquirir un hosting o alojamiento web de paga debido a que ofrece mejores servicios que los gratuitos, además son más seguros en cuanto a conectividad de servidores, ya que la probabilidad una caída es casi nula.

AGENDA

Introducción

Desarrollo e Implementación

Resultados

Conclusiones

Recomendaciones

Video

GRACIAS

