

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE UNIDAD DE GESTIÓN DE TECNOLOGÍAS

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CARRERA DE TECNOLOGÍA SUPERIOR EN MECÁNICA AUTOMOTRIZ

MONOGRAFÍA, PREVIO A LA OBTENCIÓN DEL TÍTULO DE TECNÓLOGO EN MECÁNICA AUTOMOTRIZ

TEMA: "Caracterización de los componentes sensores y actuadores de un sistema de inyección electrónica con riel común."

AUTORES: López Chicango, Estevan Javier Miño Moreno, Jefferson Gustavo

DIRECTORA: ING. Amaya Sandoval, Stefania Matilde

LATACUNGA - 2022

Resumen

Objetivo

 Realizar un banco de entrenamiento para el diagnóstico del sistema de inyección electrónica Common Rail (CRS) de un motor de combustión interna Diesel

Propósito

 Adquirir un motor Diesel CRDI para diseñar el chasis bajo el cual se asienta y evitar movimientos bruscos causados por el trabajo mientras está en funcionamiento

Antecedentes

Internacional

 "Descripción y mantenimiento del sistema common rail montado en el motor hyundai d4ea"

Nacional

 "Sistema experto para el diagnóstico de fallas en motores a inyección electrónica de vehículos"

Local

 "Análisis de la incidencia de los tiempos de inyección y opacidad en un sistema de inyección de riel común diesel crdi del vehículo mazda bt-50, cuando se generan códigos de fallas dtc"

Planteamiento del problema

Problema actual los motores de combustión interna a Diésel

Busca presentar estrategias para mejor el desempeño del motor a Diésel CRDI

Justificación

Enfoque

Estudio del funcionamiento

En que consiste en la inyección directa de combustible diésel para aumentar el rendimiento y potencia del motor

Funcionamiento

Más flexibilidad

Adaptabilidad del motor

Beneficiarios

Estudiantes de la carrea de Tecnología Superior en Mecánica Automotriz

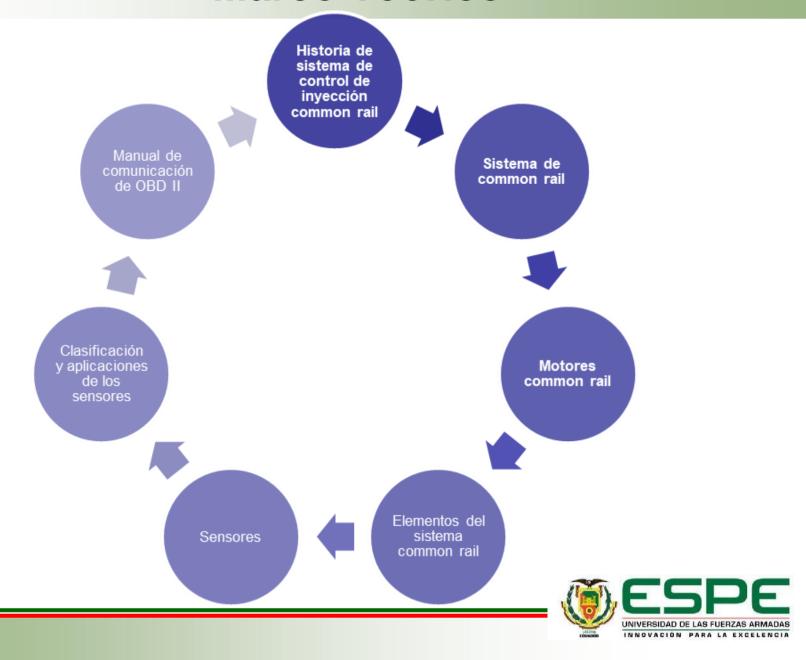
Futuros profesionales de la carrera de Mecánica Automotriz

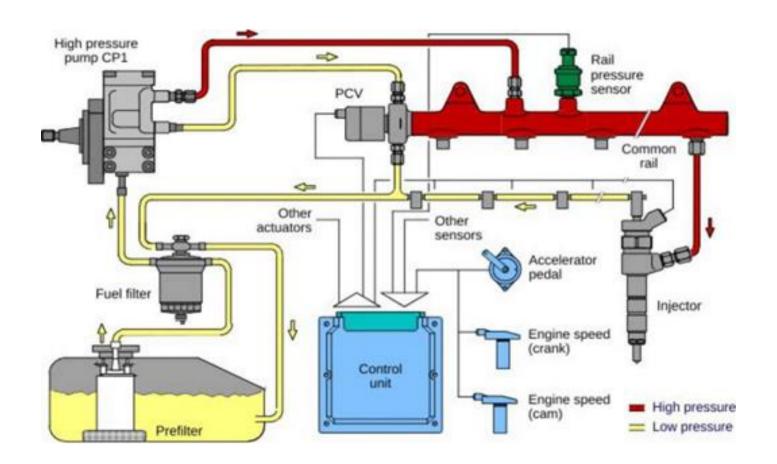
Objetivo General

Investigar sobre las características de los componentes sensores y actuadores de un sistema de inyección electrónica con el riel común.

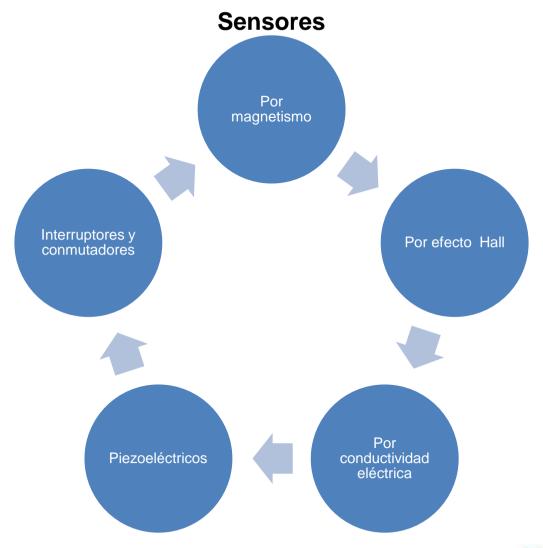
Objetivos Específicos

 Recopilar la información mediante fuentes bibliográficas sobre los sistemas OBD (On Board Diagnostic).

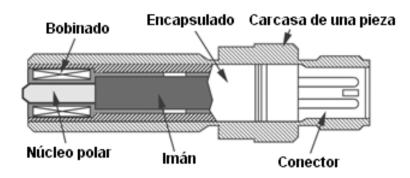



 Identificar el funcionamiento de los diferentes sistemas OBD (On Board Diagnostic).

 Describir de los DTC´s obtenidos en los sistemas
 OBD (On Board Diagnostic).

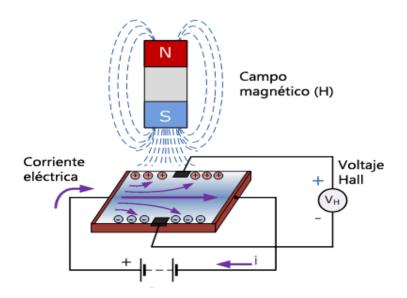


Marco Teórico



Por magnetismo

Funcionan de manera electromagnética, con una relación entre el magnetismo y la electricidad



Por efecto Hall

Un semiconductor y someterlo a un campo magnético se produce el denominado efecto hall.

Conductividad eléctrica

Depende del numero de electrones libres y metales en función inversa a la temperatura.

Piezoeléctricos

Al someter a una acción de fuerza a un material este tiende a deformarse y esto se lo conoce como efecto piezoeléctrico.

Interruptores y conmutadores

Sensor de posición del cigüeñal (CKP) Sensor de Sensor de temperatura posición del del Caracterización acelerador refrigerante del motor (TPS) de los sensores (ECT). de un motor diésel con sistema de inyección electrónica Sensor de Sensor de posición de Posición del Common rail. pedal de Árbol de acelerador levas (CMP) (APP) Sensor de flujo de aire

(MAF)

Sensor de posición del cigüeñal (CKP).

Sensor	Numero de	Color	Parámetro	Voltajes	
	cables				
CKP	3	YEL	Señal	5.02 V.	
		GRN	Masa	22 mV.	
		BLU	Referencia	5.01 V.	

Acelerador electrónico (TAC)

Sensor	Numero de	Color	Parámetro	Voltajes
	cables			
TPS	5	WHT	Señal 1	5 V.
		RED	Señal 2	4.3 V.
		BLU	Referencia	5,01 V.
		GRN	Señal 3	4.4 V.
		ORG	Masa	0.00 V.

Sensor de Posición del Árbol de levas (CMP)

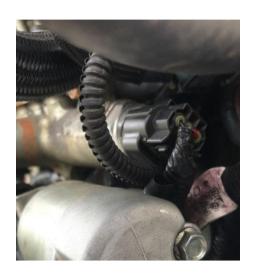
Sensor	Numero de	Color	Parámetros	Voltajes
	cables			
СМР	3	BLK	Masa	22 mV.
		WHT	Señal	5.05 V.
		RED	Referencia	5.02 V.

Sensor de flujo de aire (MAF)

Sensor	Numero de	Color	Parámetros	Voltajes
	cables			
MAF	3	BLK	Masa	20 a 80 mV.
		RED	Referencia	5.02 V.
		WHT	Señal	0.03 V.

Sensor de posición de pedal de acelerador (APP)

Se encuentra integrado en el pedal del acelerador



	Numero de	Parámetros	Voltajes	
	cables			
APP	6	Referencia	5,00 V.	
		Señal	0,50 V.	
		Masa	23 mV.	
		Referencia 2	5,02 V.	
		Señal 2	4.2 V.	
		Masa 2	20 mV.	

Sensor de presión del riel de combustible (FRP)

Se encuentra ubicado en el riel

Sensor	Numero de	Color	Parámetros	Voltajes	
	cables				
FRP	3	RED	Alimentación	5,02 V.	
		BLK	Masa	32 mV.	
		WHT	Señal	1.64 V.	

Inyectores

Válvula de recirculación de los gases de escape (EGR)

Inyectores

se encuentran ubicados en la cabeza de cada cilindro

Elemento	Numero de cables	Parámetros	Voltajes
inyector 1	2	Alimentación	12.09 v
		Control de masa	0 v
Inyector 2	2	Alimentación	12.09 v
		Control de masa	0 v
Inyector 3	2	Alimentación	12.09 v
		Control de masa	0 v
Inyector 4	2	Alimentación	12.09 v
		Control de masa	0 v

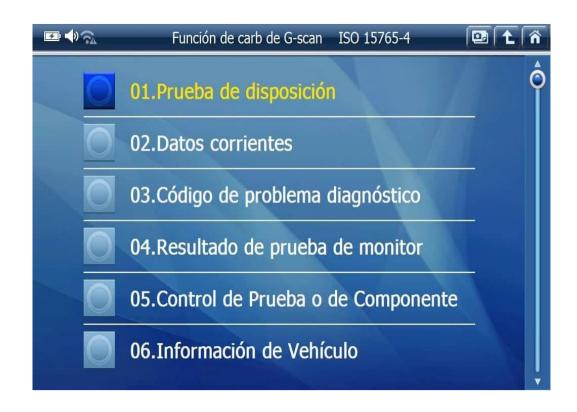
Válvula de recirculación de los gases de escape (EGR)

Se encuentra entre el colector de admisión y el de escape

Elemento	Numero de	Color	Parámetros	Voltajes
	cables			
	4	RED/BLU	Can+	2,43 V.
Válvula EGR		YEL	Can-	2.62 V.
		BLU	Referencia	5.01 V.
		BLK	Masa	0,00 V.

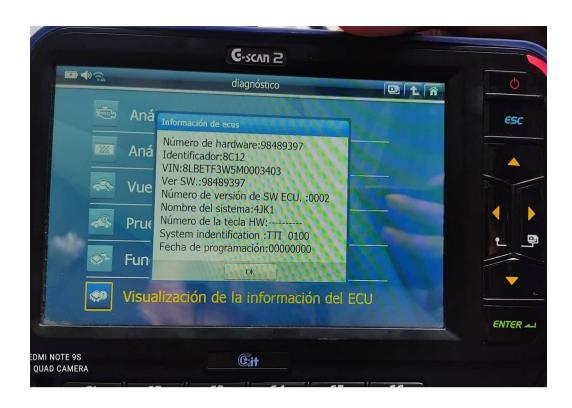
Manual de comunicación de OBD II

Paso 1 conexión del scanner



Paso 2 interfaz del escáner automotriz

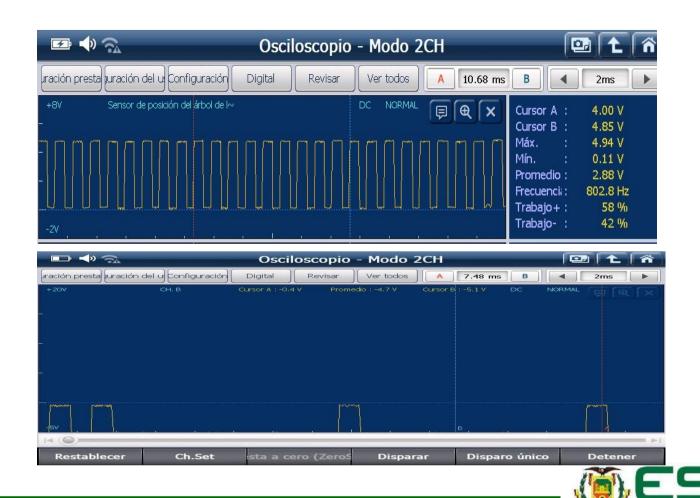
Paso 3 para el análisis de comunicación del OBD II



Revisión de Parámetros generalizados del motor

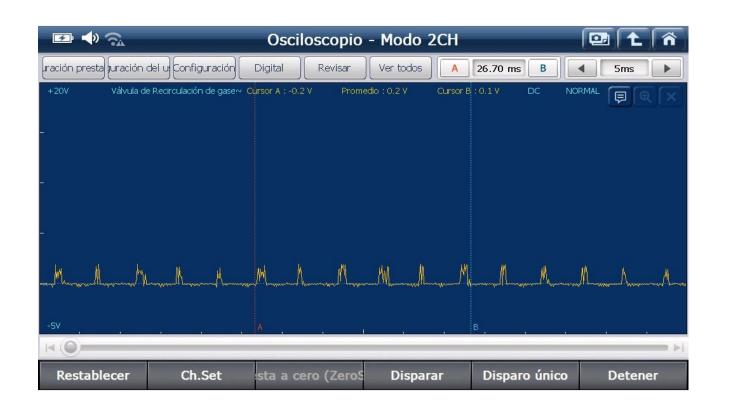
artículo(P.1/5)		unidad	todos los Artículos)	valor unidad	
Interruptor del freno 1	OFF	inidad	artículo(P.2/5) Presión barométrica	valor unidad 75 kPa	ES
Carga del motor	0.0	%	Sensor de presión barométrica	0.0 V	
Interruptor de encendido	ON		Sensor de presión de impulso	2 V	
Posición del pedal acelerador	13	%	Distancia con MIL	0 km	
Aplicación Sensor 1	3.8	٧	Velocidad del vehículo	0 km/h	4
APP Sensor 1 and 2	Disagree		Posición deseada EGR	0 %	•
Aplicación Sensor 2	0.4	V	Interruptor de arranque	ON	2
Motor de tiempo de ejecución	0	sec	Interruptor del freno 2	ON	
Sensor de temperatura de combusti ble	4.9	٧	Temperatura del aire de admisión	10 C	-
Distancia desde despejó DTC	0	km	Temperatura de combustible	10 C	
función Detalles			registro	leccionar elemen	ENTE
				TOTAL COMME	
		(6	Sit		

Información de la ECU

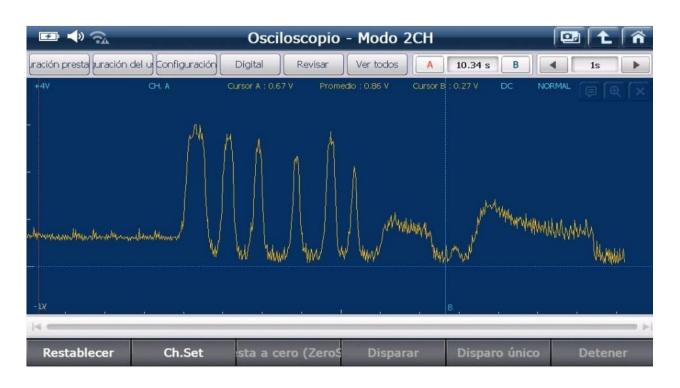


DTC de diferentes sensores y actuadores

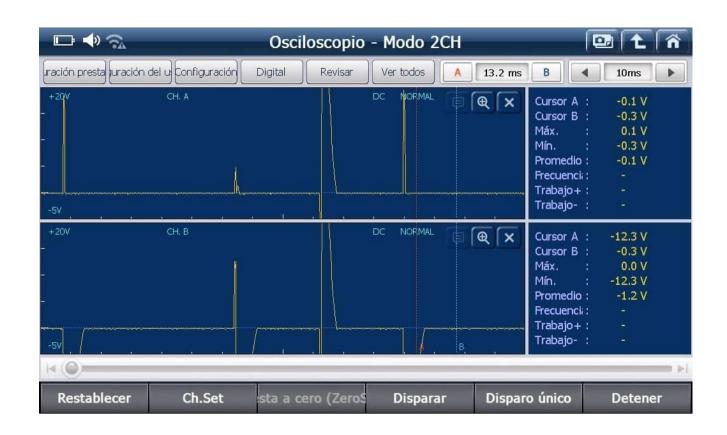
_ ভ ♦ ୬ର	Código de problema diagnóstico		1 1	ñ
	Descripción(16/16)	MID	Estado	
P2138	Throttle/Pedal Position Sensor/Switch 'D'/'E' Voltage Correlation	E8	Confirmado	A
P2123	Throttle/Pedal Position Sensor/Switch 'D' Circuit High	E8	Confirmado	A
P2122	Throttle/Pedal Position Sensor/Switch 'D' Circuit Low	E8	Confirmado	
P2228	Barometric Pressure Sensor 'A' Circuit Low	E8	Confirmado	<u>A</u>
P0335	Crankshaft Position Sensor 'A' Circuit	E8	Confirmado	
P0183	Fuel Temperature Sensor 'A' Circuit High	E8	Confirmado	
P0113	Intake Air Temperature Sensor 1 Circuit High - Bank 1	E8	Confirmado	~
P0201	Injector Circuit/Open - Cylinder 1	E8	Confirmado	
P0202	Injector Circuit/Open - Cylinder 2	Confirmado	*	
P0102	Mass or Volume Air Flow 'A' Circuit Low	E8	Confirmado	_
	Borrar arco de congelaci			



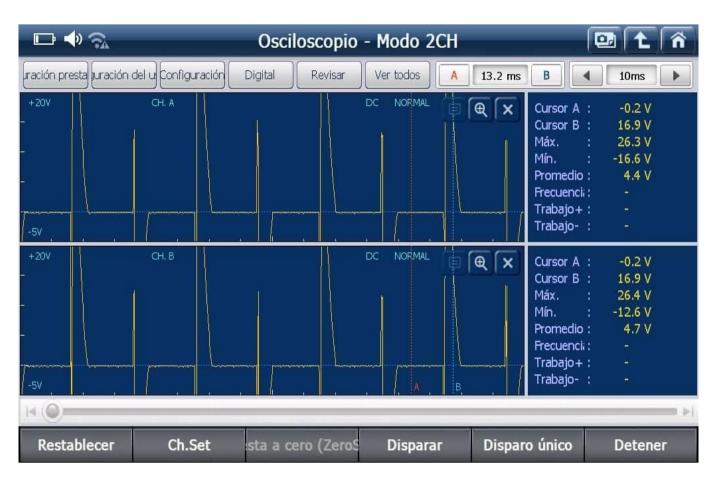
Sensor de Posición del Árbol de levas (CMP) y sensor de Posición del Ciqüeñal (CKP)


INNOVACIÓN PARA LA EXCELENCIA

Válvula de recirculación de los gases de escape (EGR)



Sensor de flujo de aire (MAF)



Invectores 1 y 2

Inyectores 3 y 4

Conclusiones

Conclusión 1

Se pudo recopilar la suficiente información sobre el sistema OBD

Conclusión 2

Al buscar en fuentes bibliográficas se logró obtener suficiente información acerca del funcionamiento y se pudo identificar los diferentes sistemas OBD.

Conclusión 3

Una vez identificado los funcionamiento s se logrará describir los DTC obtenidos en el sistema OBD.

Conclusión 4

Se implemento un banco didáctico que permite al estudiante tener claro sobre la manipulación de los componentes que intervienen en el control de inyección electrónico CRDI, al igual que el uso de herramientas modernas para un diagnostico adecuado en el sistema del motor Dmax 2.5.

Recomendaciones

Recomendación 1

Tomar en cuenta los niveles de aceite y combustible y comprobar el voltaje antes de usar el banco de pruebas.

Recomendación 2

Tener presente que para evitar problemas internos en el motor se debe realizar el funcionamiento del banco de pruebas después de un prolongado de tiempo.

Recomendación 3

Después de utilizar el banco de pruebas, desconectar el borne de la batería, para esta manera evitar la descarga de la misma.

Recomendación 3

Tener el manual para poder verificar el diagrama de conexión eléctrico del motor.

GRA(IAS)

