

Departamento de Ciencias de la Computación Carrera de Ingeniería de Software

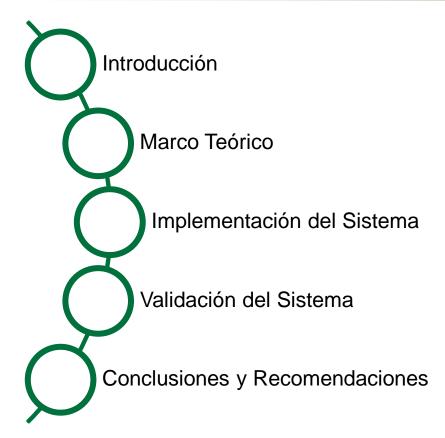
Trabajo de Integración Curricular, Previo a la Obtención del Título de Ingeniero de Software

Tema:

Sistema de Re-Identificación de personas a través de las características faciales y soft-biométricas la textura de la vestimenta utilizando algoritmos de Visión por Computadora y Machine Learning.

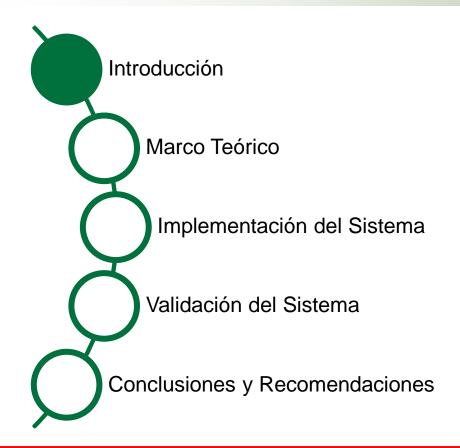
Autores:

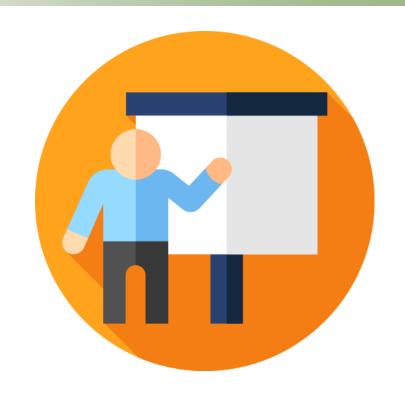
BETANCOURT ROJAS, DIEGO FERNANDO CARRILLO SANDOVAL JOSÉ GABRIEL


Directora:

ING. NANCY DEL PILAR JACHO GUANOLUISA

LATACUNGA FEBRERO, 2023




Contenido

Contenido

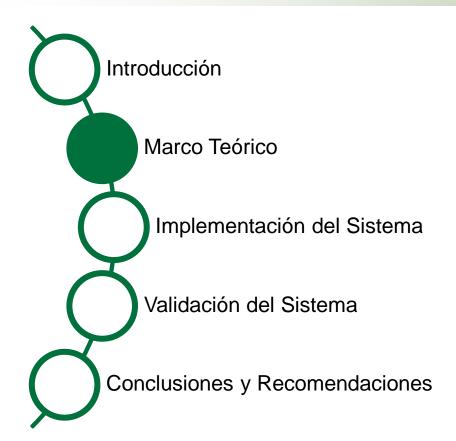
Problema

La videovigilancia por cámaras se ha vuelto cada vez más importante en la actualidad, debido a una serie de factores que han creado la necesidad de monitorear y controlar el entorno en el que vivimos, algunas de las razones más importantes incluyen: Prevención del delito, reducción de la tasa de criminalidad, protección de la propiedad privada, entre otras más.

Planteamiento de la solución

La idea del proyecto es crear un sistema de Re-Identificación de personas, usando técnicas y/o modelos de Visión por computadora y algoritmos de Machine Learning, para identificar características biométricas como el rostro y características soft-biométricas como la textura, dentro de un entorno cerrado de cámaras.

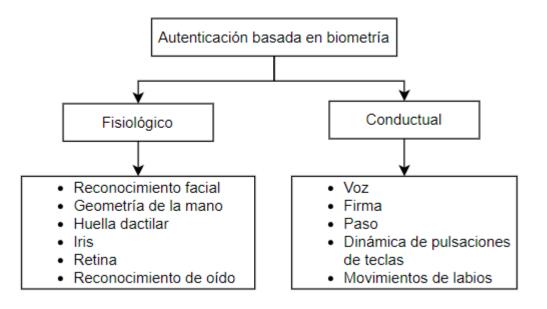
Objetivos


Objetivo General

Desarrollar un sistema de Re-Identificación de personas a través de las características faciales y soft-biométricas de textura en la vestimenta, utilizando algoritmos de visión por computadora y Machine Learning.

Objetivos Específicos

- Estudiar el estado del arte sobre métodos y técnicas para la Re-Identificación de personas a través de características faciales y soft-biométricas en la textura de la vestimenta.
- Implementar un sistema de Re-Identificación de personas a través de las características faciales y soft-biométricas de textura en la vestimenta, utilizando algoritmos de Visión por Computadora y/o Machine Learning.
- Validar los resultados, analizar errores y ajustar los modelos del sistema de videovigilancia.
- Documentar la tesina de grado para evidenciar el proceso realizado en el sistema de Re-ID

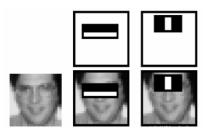


Características Biométricas

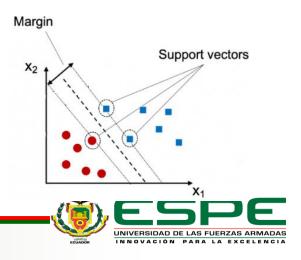
 El rostro es una característica muy utilizada en el reconocimiento de personas, por su alto porcentaje de exactitud (Mendoza et al., 2016).

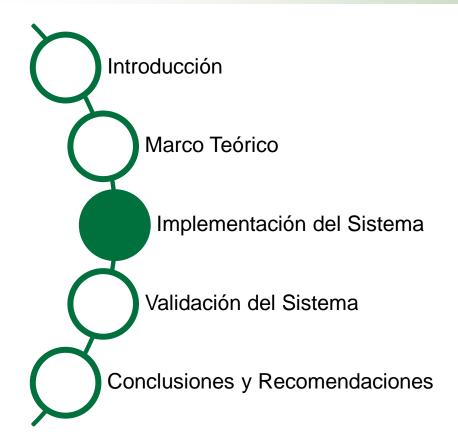
Características Soft-Biométricas

- Las características soft-biométricas son aquellas que hacen referencia a rasgos propios de la apariencia física y/o características complementarias
- La textura para la Re-ID de un individuo, es una de las características con mayor porcentaje de reconocimiento y de las más utilizadas para este tipo de sistemas (An et al., 2013).



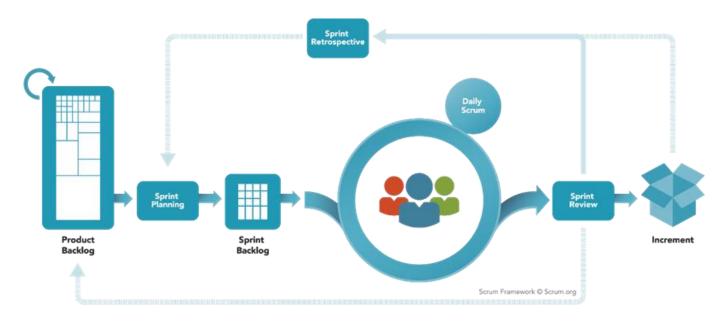
Técnicas y/o modelos de Visión por Computadora y algoritmos Machine Learning


LBPH – Viola Jones


La precisión máxima del 94% se alcanza en la identificación de rostros con el Descriptor y Algoritmo de Visión por Computadora.

LBPH - SVM

La identificación de la textura con una precisión máxima del 86% es posible con el "Descriptor y Clasificador de Visión por Computadora y/o Machine Learning".



Metodología para el desarrollo

SCRUM

Recuperado de (Foreman, 2018).

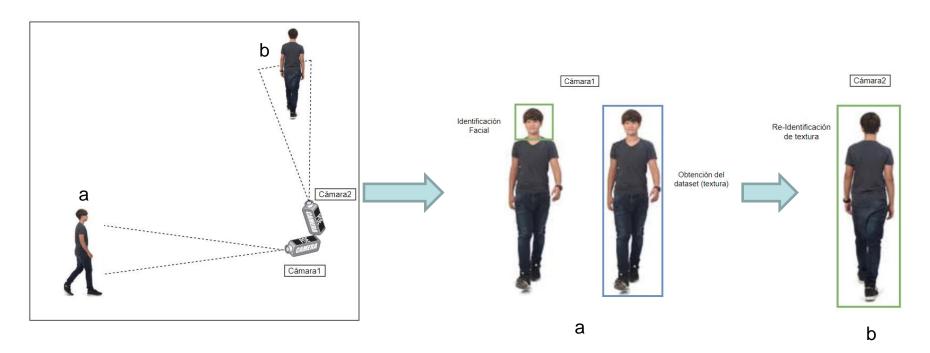
Product backlog

Historia	Nombre	Estimación	Fecha de inicio	Fecha de fin	<u>N</u> ° de Sprint
de		(días)			
usuario					
1	H.U. 01	3	24/10/2022	26/10/2022	01
2	H.U. 02	13	27/10/2022	14/11/2022	02
3	H.U. 03	3	15/11/2022	17/11/2022	03
4	H.U. 04 y	20	18/11/2022	15/12/2022	04
	H.U. 05				
5	H.U. 06	11	16/12/2022	9/01/2023	05

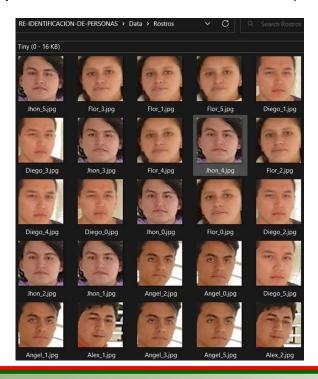
Sprint Planning

Historia de Usuario	ROL	Característica/Funcionalidad	Resultado/Razón
	Como Usuario	Quiero un dataset que abarque	Para entrenar el
H.U. 01	Como osuano	características biométricas (rostro)	modelo de Machine
		Quiero un sistema de Re-ID de	Para identificar la
		personas que realice la	identidad de un
	Como Usuario	identificación del rostro de una	individuo mediante las
		persona utilizando los algoritmos	características
H.U. 02		de Visión por Computadora.	biométricas (rostro).
		Quiero un dataset que abarque	Para entrenar el
	Como Usuario	características soft-biométricas	modelo de Machine
H.U. 03		(textura)	Learning.
		Quiero un sistema de Re-ID de	Para identificar a la
		personas, que realice la	persona que pasa por
	Como Usuario	identificación de individuos por sus	el foco de una cámara,
	Como osuano	características soft-biométricas	cuando no se pueda
		(textura)	reconocer mediante
H.U. 04			su rostro
		Quiero que el sistema utilice	Para que el algoritmo
		modelos y/o algoritmos de Machine	de Machine Learning
	Como Usuario	Learning (SVM) para que la Re-	pueda realizar la
		Identificación de la persona tenga	clasificación de las
H.U. 05		un clasificador.	imágenes
		Quiero que el sistema de Re-	Para ver cómo está
		Identificación de personas efectúe	trabajando la Re-ID de
	Como Usuario	un reconocimiento de textura de	personas luego de ser
		personas pasando por la cámara 2	entrenado en la
H.U. 06			primera cámara.

Sprint backlog

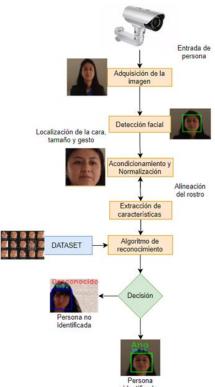

Sprint

Sprint	Descripción del Sprint
1	Creación del dataset que contendrá las características biométricas (rostro).
2	Desarrollo de un sistema de Re-ID de personas que realice la identificación del rostro.
3	Crear un dataset que abarque características softbiométricas (textura).
4	Desarrollo del sistema de Re-Identificación de personas mediante características soft-biométricas (textura).
5	Re-Identificación de personas mediante características soft- biométricas (textura) al pasar por la cámara II.


Diseño del sistema

Arquitectura Lógica

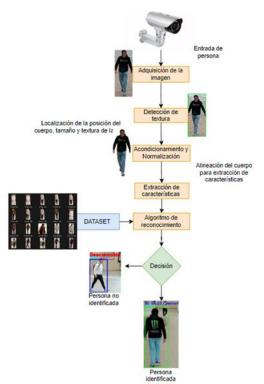
a) Sprint 1: Obtención del dataset (Facial)



b) Sprint 3: Obtención del dataset (Textura)

Diseño del sistema

Esquema funcional de Re-Identificación facial de una persona



Elaboración propia

Diseño del sistema

Esquema funcional de Re-Identificación de personas por textura

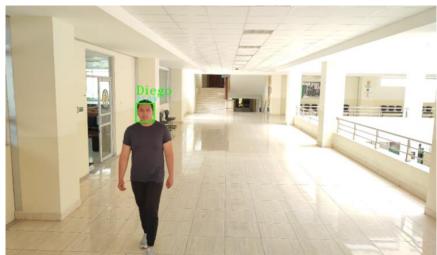
Elaboración propia

Arquitectura del modelo Base de datos Entrada Fusión de textura Extracción de Procesamiento Normalización de las dos de datos textura entradas Generación de vectores de textura Entrada de video Coincidencia de características Clasificador SVM modelo Predicción Salida

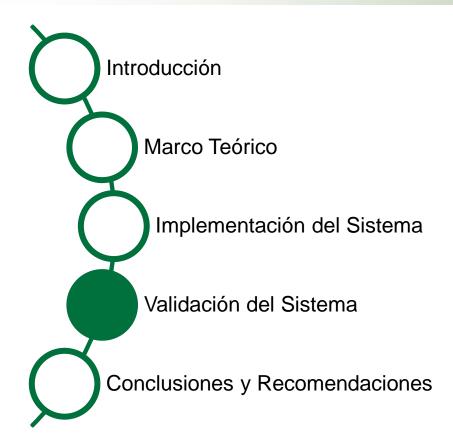
Imágenes filtradas mediante LBPU y LBPH

a) Facial

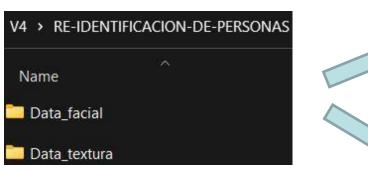
b) Textura



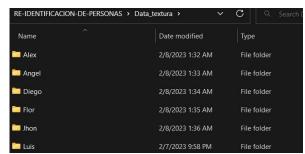



a) Sprint 2: Sistema de Re-ID de personas (Facial)

b) Sprint 5: Sistema de Re-ID de personas (textura)



Clases utilizadas para identificación facial y Re-Identificación de textura



Facial

Textura

Obtención de datos para validar el sistema

Matriz de confusión

	Positivos	Negativos
Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)
Negativos	Falsos Positivos (VP)	Verdaderos Negativos (VN)

Métrica de evaluación

Accuracy (Exactitud)

$$EXACTITUD = \frac{VP + VN}{VP + FP + FN + VN}$$

Resultados de la persona Diego

a) Facial

Video	Clasificador	Accuracy
1	Haar Cascade	1
2	Haar Cascade	0.9873
3	Haar Cascade	0.9668
Promedio de	0.9822	
Desviación Estándar		± 0.02347

Video Clasificador		Accuracy
1	SVM Clasificador	0.8824
2	SVM Clasificador	0.9343
3	SVM Clasificador	0.9007
Promedio	0.9058	
Desviac	± 0.02632	

Resultados de la persona Flor

a) Facial

Video	Clasificador	Accuracy
1	Haar Cascade	1
2	Haar Cascade	0.9590
3	Haar Cascade	0.9773
Promedio de	0.9787	
Desviación Estándar		± 0.02053

Video Clasificador		Accuracy
1	SVM Clasificador	0.8923
2	SVM Clasificador	0.9028
3	SVM Clasificador	0.9323
Promedio	0.9091	
Desviac	± 0.02073	

Resultados de la persona Jhon

a) Facial

Video	Clasificador	Accuracy
1	Haar Cascade	1
2	Haar Cascade	0.9724
3	Haar Cascade	0.9259
Promedio de	0.9661	
Desviación Estándar		± 0.03744

Video	Clasificador	Accuracy
1	SVM Clasificador	0.9324
2	SVM Clasificador	0.9130
3	SVM Clasificador	0.9184
Promedio	0.9212	
Desviac	± 0.0100	

Resultados de la persona Alex

a) Facial

Video	Clasificador	Accuracy
1	Haar Cascade	0.9836
2	Haar Cascade	1
3	Haar Cascade	0.9101
Promedio o	0.9645	
Desviación Estándar		± 0.04787

Video	Clasificador	Accuracy
1	SVM <u>Clasificator</u>	0.8806
2	SVM Clasificator	0.9205
3	SVM Clasificator	0.8409
Promedio d	0.8806	
Desviació	± 0.03980	

Resultados de la persona Ángel

a) Facial

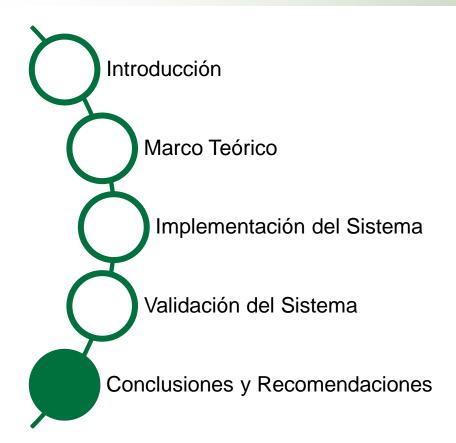
Video	Clasificador	Accuracy	
1	Haar Cascade	1	
2	Haar Cascade	0.9807	
3	Haar Cascade	0.9560	
Promedio de la exactitud		0.9806	
Desviación Estándar		± 0.01705	

Video	Clasificador	Accuracy	
1	SVM <u>Clasificator</u>	0.8626	
2	SVM <u>Clasificator</u>	0.9071	
3	SVM <u>Clasificator</u>	0.8387	
Promedio de la exactitud		0.8694	
Desviación Estándar		± 0.03471	

Promedio de las métricas de evaluación

a) Facial

Nombre de	Escenario	Clasificador/	Resultado	Resultado	Porcentaje
la persona		Descriptor	Esperado	Obtenido	de Exactitud
Diego Cámara	Cámara 1	Haar	Diego	Diego	0,9822
	camara 1	Cascade/LBPH			± 0,02344
Flor Cár	Cámara 1	Haar	Flor	Flor	0,9787
	Camara 1	Cascade/LBPH			± 0,02053
Jhon Cámai	Cámara 1	Haar	Jhon	Jhon	0,9661
	Calliala 1	Cascade/LBPH			± 0,03744
Alex Cámara 1	Cámara 1	Haar	BPH Alex	Alex	0,9645
	Calliala 1	Cascade/LBPH			± 0,04787
Ángel Cám	Cámara 1	Cámara 1 Haar	Ángel	Ángel	0,9806
	Calliara 1	Cascade/LBPH			± 0,01705
	0,97442				
	± 0,029306				


Nombre de	Escenario	Clasificador/	Resultado	Resultado	Porcentaje	
la persona		Descriptor	Esperado	Obtenido	de Exactitud	
Diego	Cámara 2	SVM /LBPH	Diego	Diego	0,9058	
					± 0,02632	
Flor	Cámara 2	SVM /LBPH	Flor	Flor	0,9091	
					± 0,02073	
Jhon	Cámara 2	SVM /LBPH	Ihon	Jhon	0,9212	
Jnon	Camara 2	20MI/LBPH	Jnon		± 0,01000	
Alex	Cámara 2	SVM /LBPH	Alex	Alex	0,8806	
Alex	Camara 2	20MI/LBPH	Alex		± 0,03980	
Ángel	Cámara 2	SVM /LBPH	Ángel	Ángel	0,8694	
					± 0,03471	
	0,89722					
Promedio de exactitud de las 5 personas					± 0,026312	

Análisis de resultados

- El promedio obtenido en la identificación facial es del 97.44 ± 2.93, esto se define: de cada 100 personas se reconocen 97. Dentro literatura científica el porcentaje de Re-Identificación facial oscila entre el 96% como mínimo y el 99% como máximo.
- El promedio de identificación de la textura es del **89.72 ± 2.63**, esto se define: de cada 100 personas se reconocen 89. Dentro literatura científica el porcentaje de Re-Identificación de textura oscila entre el 88% como mínimo y el 93% como máximo.

Conclusiones

 El estudio del estado del arte sobre métodos y técnicas para la Re-Identificación de personas a través de características biométricas y soft-biométricas, ha demostrado la importancia y el potencial en los ámbitos de seguridad y análisis de datos.

 La aplicación de la metodología Scrum en el proyecto de Re-Identificación de personas a través de las características biométricas como faciales y soft-biométricas como textura, ha demostrado ser altamente ventajosa en términos de eficiencia, calidad y flexibilidad en la gestión del proyecto.

Conclusiones

• Se propuso un sistema de Re-Identificación de personas que funciona correctamente con resultados de exactitud dentro del rango establecido por la literatura, aunque se presentaron inconvenientes en las imágenes almacenadas en el dataset, debido al entorno demasiado iluminado y reflejo de las baldosas y los ventanales. Sin embargo, después de realizar algunos cambios, como ajustar el umbral, mejorar el conjunto de datos almacenados y obtener un mayor número de imágenes para el entrenamiento del sistema, se logró reducir los fallos y mejorar la precisión del sistema.

• Se ha determinado que, durante las primeras pruebas, el sistema de Re-Identificación presentaba falencias en la detección de verdaderos positivos al trabajar con una sola clase y un total de 350 imágenes. Esto pudo ser resultado de un dataset poco claro o de la incapacidad del sistema para detectar características biométricas o soft-biométricas.

Gracias por su atención

