

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE

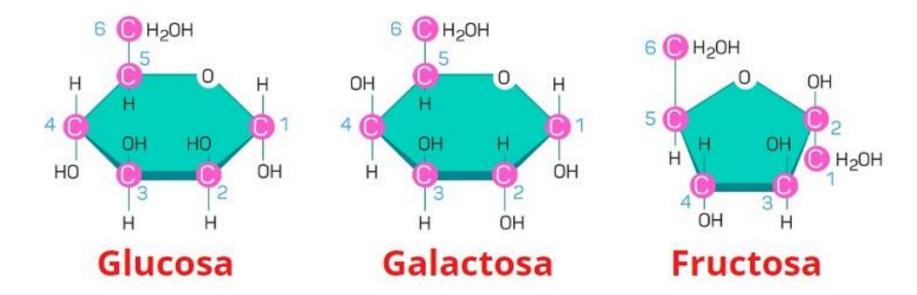
DEPARTAMENTO DE ENERGÍA Y MECÁNICA CARRERA DE PETROQUÍMICA

Optimización de propiedades fisicoquímicas de hidrogel obtenido a partir de quitosano y celulosa bacteriana mediante un diseño central compuesto

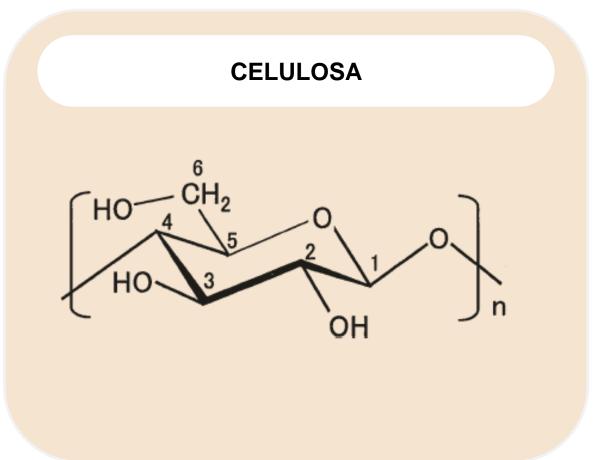
Autor: Pacheco Sarcos, Cristian David

Tutor: Ing. Jonathan Javier, Sayavedra Delgado. Msc

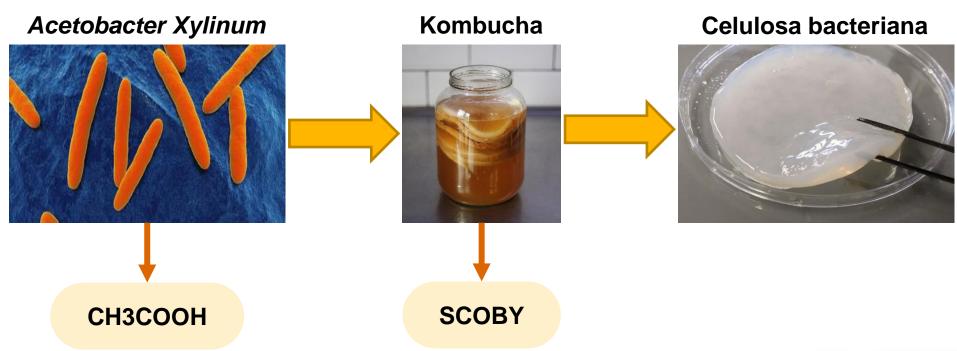
Latacunga, 2023



CONTENIDO


INTRODUCCIÓN 01 02 **OBJETIVOS METODOLOGÍA** 03 04 **RESULTADOS CONCLUSIONES Y** 05 **RECOMENDACIONES**

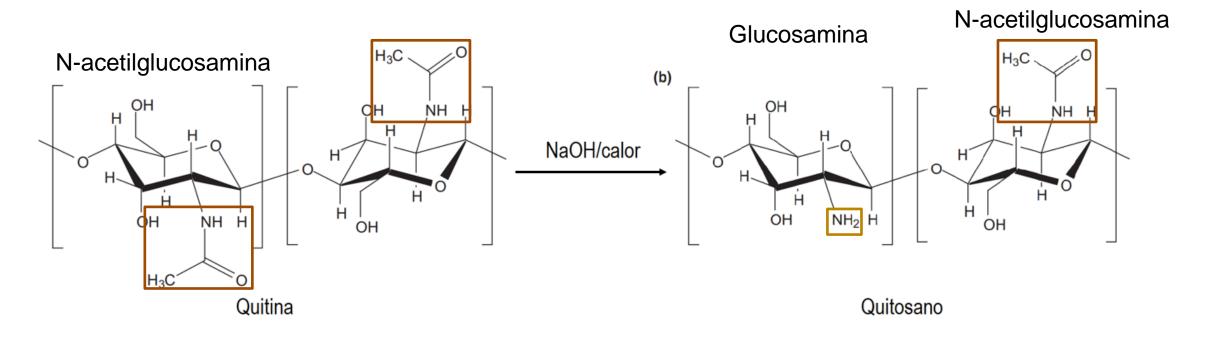
EJEMPLOS DE MONOSACÁRIDOS

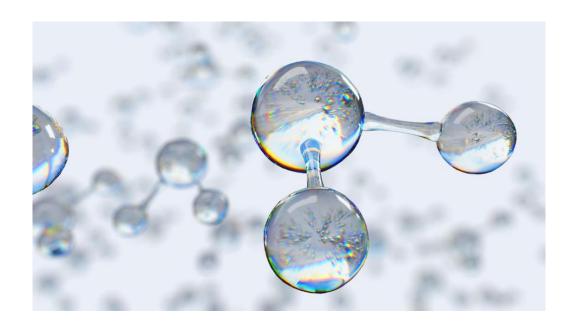




CELULOSA BACTERIANA

QUITINA





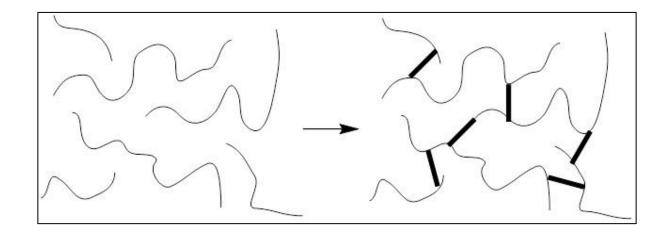
QUITOSANO

Hidrogel

Alta retención de agua en su estructura

Aplicaciones:

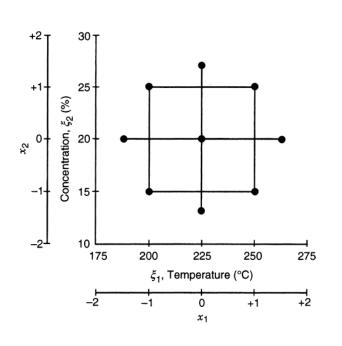
- Biomedicina
- Agricultura
- Alimentos
- Cosméticos
- Ingeniería

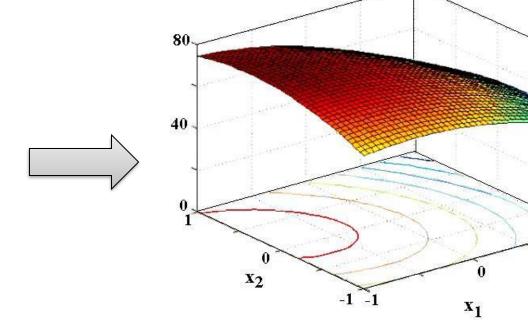


Agentes Reticulantes

Los agentes reticulantes son productos químicos que se utilizan para formar redes de polímeros a través de reacciones de reticulación.

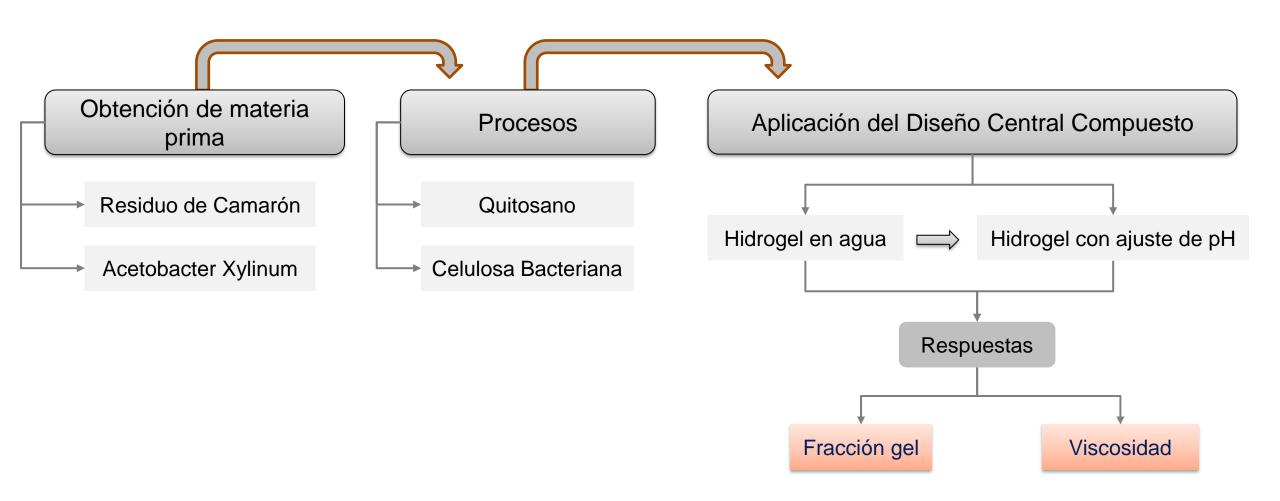
Agente reticulante bifuncional


Agente reticulante multifuncional



Diseño Experimental

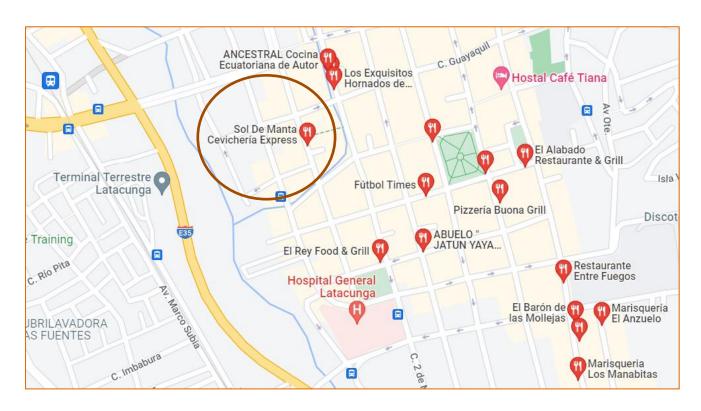
Diseño Central Compuesto


Optimizar las propiedades
fisicoquímicas del
hidrogel de quitosano y
celulosa bacteriana
mediante un diseño
central compuesto

Extraer quitosano a partir de exoesqueletos de camarón con un alto grado de desacetilación.

Identificar celulosa bacteriana obtenida a partir del cultivo de Acetobacter Xylinum

Determinar los efectos de la proporción de quitosano y celulosa bacteriana en las propiedades fisicoquímicas del hidrogel.



Obtención de Materia Prima

Obtención de Residuo de Camarón

Obtención de Acetobacter Xylinum

Quitosano

Celulosa bacteriana

Aplicación del Diseño Central Compuesto

Tabla 1.	Orden de	Contenido de	Contenido de gelatina en la	Respuesta A: Fracción Gel	Respuesta B:	
	corrida	quitosno (%)	mezcla QCB (%)	(%)	Viscosidad (%)	
	7	58.99	11.59	RA 01	RB 01	
	9	58.99	32.45	RA 02	RB 02	
	12	58.99	53.30	RA 03	RB 03	
	5	17.99	9.89	RA 04	RB 04	
	3	30.00	24.00	RA 05	RB 05	
	1	30.00	9.00	RA 06	RB 06	
	10	0	100	RA 07	RB 07	
	6	100	55.00	RA 08	RB 08	
	4	100	85.00	RA 09	RB 09	
	11	0	100	RA 10	RB 10	
	2	17.99	55.00	RA 11	RB 11	N. S.
15	8	58.99	53.30	RA 12	RB 12	100
10	13	58.99	32.45	RA 13	RB 13	

METODOLOGÍA

Aplicación del Diseño Central Compuesto

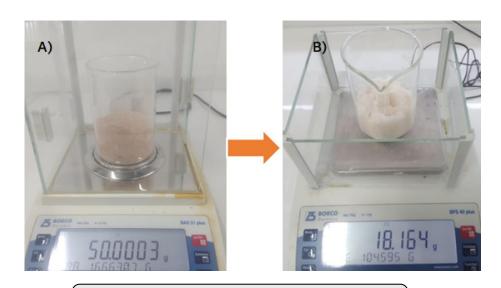
0.3245

1.2600

2.5845

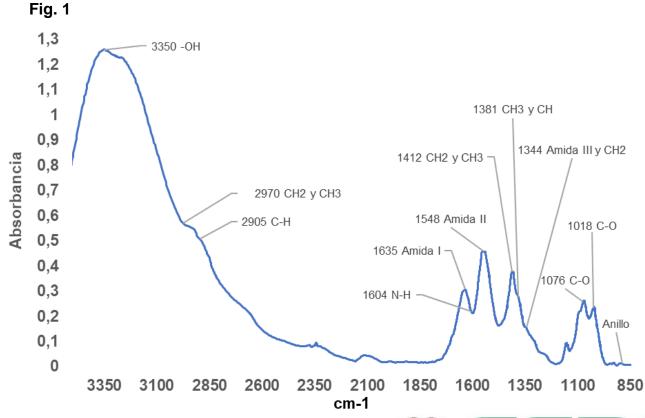
Tabla 2.	N° Muestra	Masa de quitosano (g)	Masa de celulosa (g)	Contenido de gelatina (g)	Masa de glicerina (g)	Total (g)
	1	0.5899	0.4100	0.1158	1.2600	2.3759
	2	0.5899	0.4100	0.3245	1.2600	2.5845
	3	0.5899	0.4100	0.5330	1.2600	2.7930
	4	0.1798	0.8201	0.0989	1.2600	2.3589
	5	0.3000	0.7000	0.2400	1.2600	2.5000
	6	0.3000	0.7000	0.0900	1.2600	2.3500
	7	0	0	1.0000	1.2600	2.2600
	8	1.0000	0	0.5500	1.2600	2.8100
	9	1.0000	0	0.8500	1.2600	3.1100
	10	0	0	1.0000	1.2600	2.2600
	11	0.1798	0.8201	0.5500	1.2600	2.8100
10	12	0.5899	0.4100	0.5330	1.2600	2.7930

0.4100

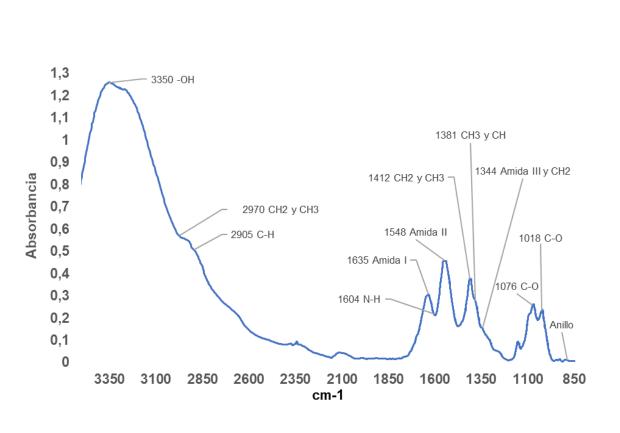


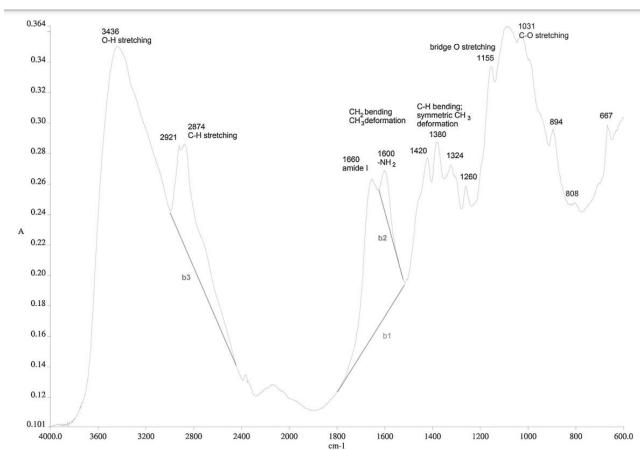
13

0.5899


Quitosano

Obtención de Quitosano


Rendimiento:36.33 %


Espectroscopia Infrarroja (IR) de Quitosano

Quitosano

Quitosano

Grado de desacetilación del quitosano

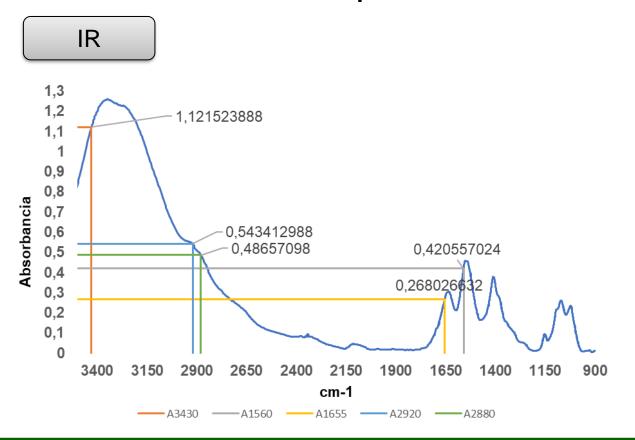
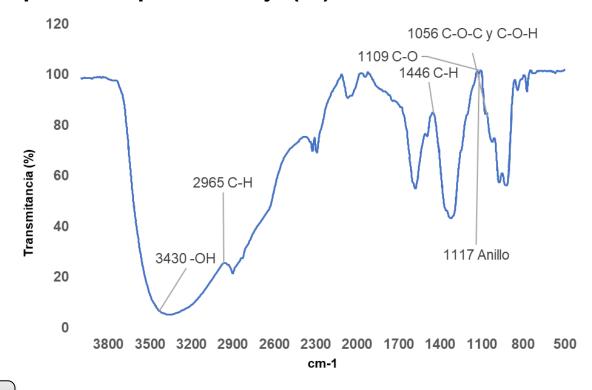


Tabla 3.

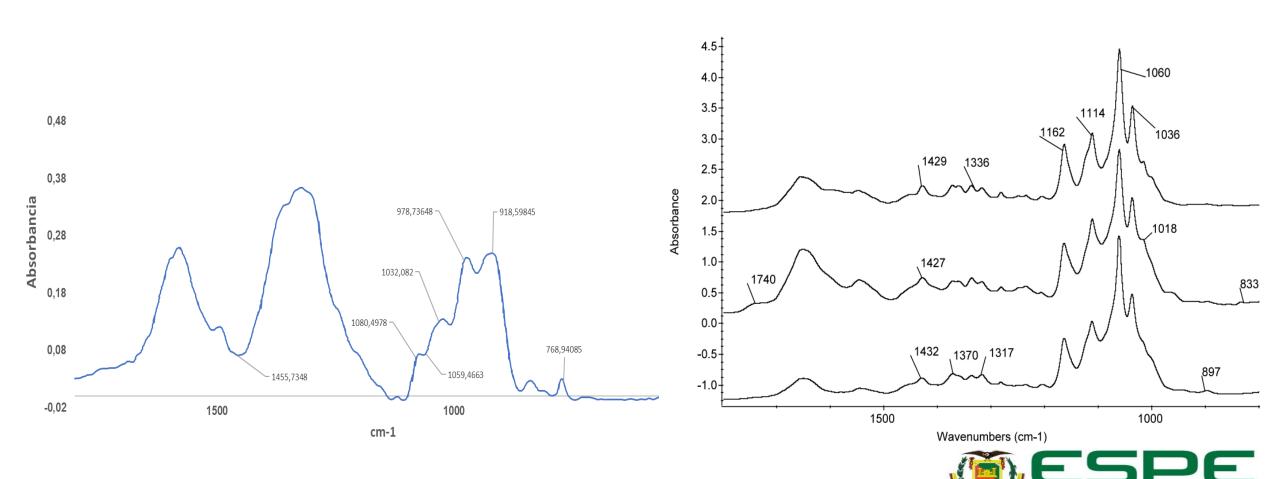
Fórmula	Grado de desacetilación (%)	Grado de desacetilación promedio (%)
$\%DD = \frac{\left(\frac{A_{1560}}{A_{3430}} - 0.7375\right)}{-0.0057}$	63.5987	
$\%DD = \frac{\left(\frac{A_{1655}}{A_{2920}} - 1.9239\right)}{-0.0144}$	99.5750	86,4960
$\%DD = \frac{\left(\frac{A_{1655}}{A_{2880}} - 1.8833\right)}{-0.0139}$	96.3143	

$$DD\% = (2.03) \frac{9.78}{0.2 + 0.0042(9.78)} = 82.3532 \%$$

Celulosa bacteriana


Obtención De Celulosa Bacteriana

5.090 gramos


0.17 gramos de celulosa bacteriana por día

Espectroscopía Infrarroja (IR) De Celulosa Bacteriana

Celulosa bacteriana

UNIVERSIDAD DE LAS FUERZAS ARMADAS
INNOVACIÓN PARA LA EXCELENCIA

Contenido De Humedad

Tabla 4.

Polisacárido	Peso inicial	Peso luego de secado (70°C)	Contenido de humedad (%)
Quitosano	1 gramo	0.9170	8.30
Celulosa bacteriana	1 gramo	0.9995	0.05
Celulosa bacteriana sin tratamiento	3 gramos	0.137	95.43 %

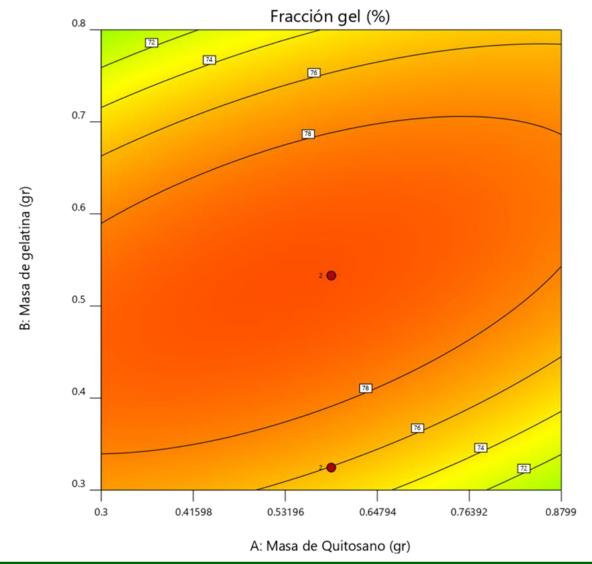
Obtención De Biopelícula De Quitosano-Celulosa Bacteriana

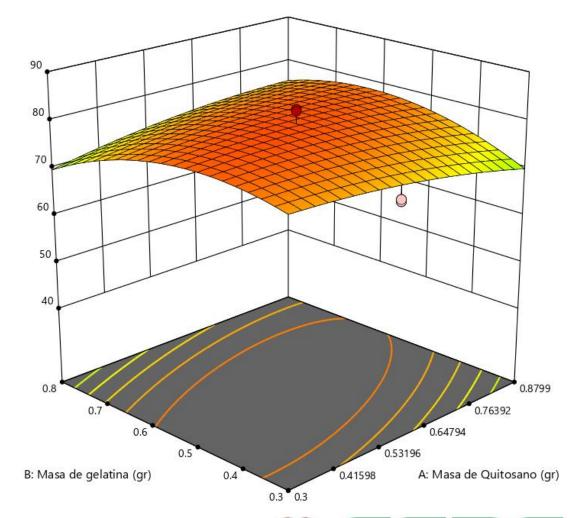
Análisis del Diseño Central Compuesto

Fracción gel para cada matriz de QCB y gelatina

Fracción gel después del ajuste de pH de películas de QCB y gelatina

Гаb	la	5.	
			_

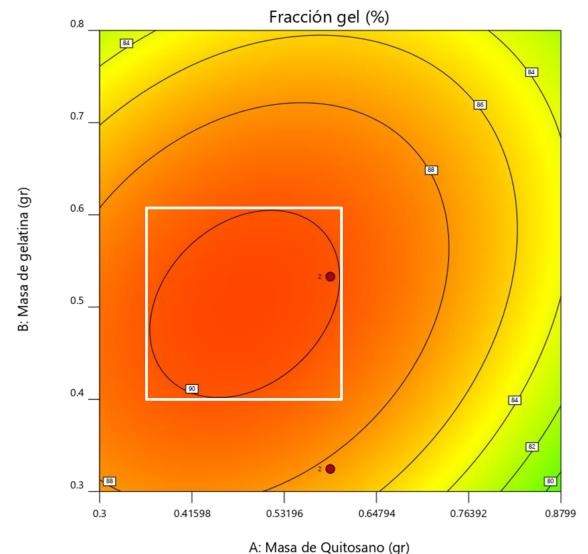

N° Muestra	Peso total inicial (g)	Peso de película gelificada (g)	Fracción Gel (%)	Tabla 6.
1	2.3759	1.5820	66.5855	
2	2.5845	1.8210	70.4593	
3	2.7931	2.3030	82.4546	
4	2.3589	1.5750	66.7672	
5	2.5000	2.0070	80.2800	
6	2.3500	1.6130	68.6383	
7	2.2600	1.0190	45.0885	
8	2.8100	2.2050	78.4698	
9	3.1100	2.2510	72.3794	
10	2.2600	1.0150	44.9115	
11	2.8100	2.1250	75.6228	
12	2.7931	2.3150	82.8843	
13	2.5845	1.8320	70.8849	

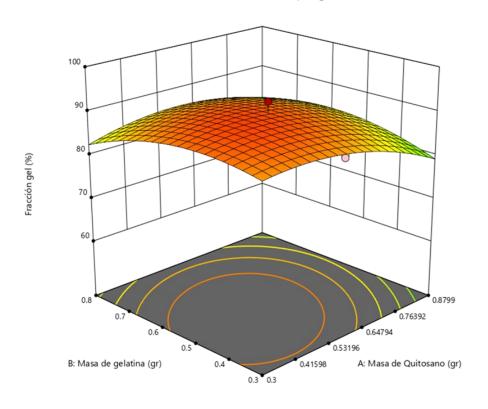

~~ <i>y</i> g			
N° Muestra	Peso total inicial (g)	Peso de película gelificada (g)	Fracción Gel (%)
1	2.3759	1.8080	76.0977
2	2.5845	2.2180	85.8202
3	2.7931	2.5870	92.6227
4	2.3589	1.8350	77.7890
5	2.5000	2.1950	87.8000
6	2.3500	2.0720	88.1702
7	2.2600	1.3650	60.3982
8	2.8100	2.3260	82.7758
9	3.1100	2.3290	74.8875
10	2.2600	1.3600	60.1770
11	2.8100	2.3170	82.4555
12	2.7931	2.5900	92.7301
13	2.5845	2.2050	85.3172

Fracción Gel

Gráfico de superficie de respuesta de fracción gel de películas de QC y gelatina

Fracción gel (%)





Fracción Gel

Gráfico de superficie de respuesta después de ajuste de pH en las películas de QCB y gelatina

36% a 60% de quitosano y de 40% a 60% de gelatina en la mezcla total

Viscosidad

Resultados de viscosidad para cada película de QCB y gelatina.

Tabla 8.

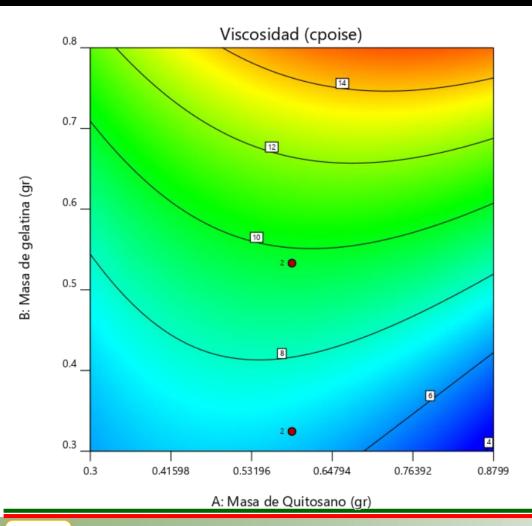
N° Muestra	1	2	3	4	5	6	7
Viscosidad (cP)	6,35	6,46	9,15	4,32	7,68	5,29	6,82
N° Muestra	8	9	10	11	12	13	
Viscosidad (cP)	6,84	16,32	6,88	7,12	9,2	6,45	

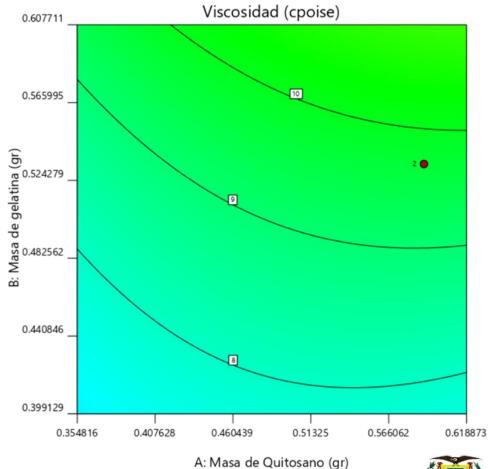
Factores que afectan la viscosidad

Neutralización con secado

Disminución del 82%

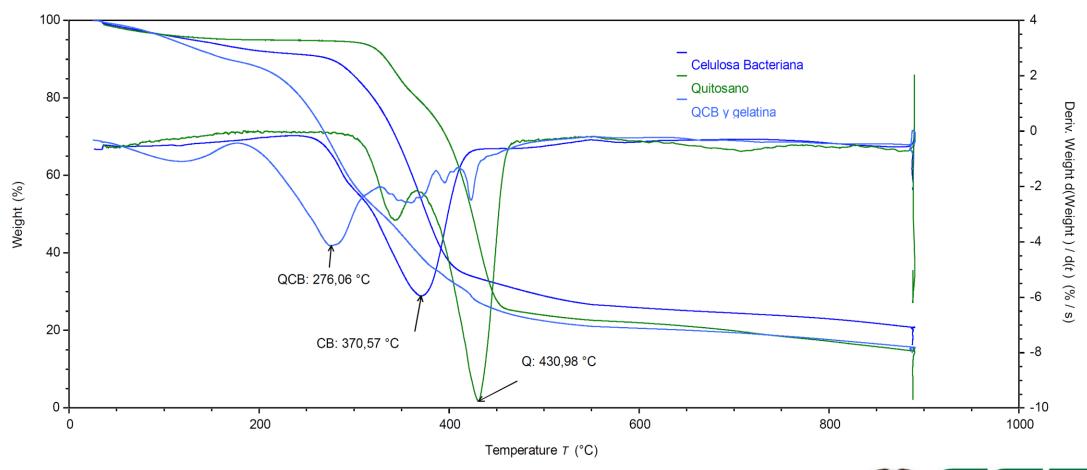
Muestra 5 sin neutralizar						
Viscosidad	42,66 cP					
Viscosidad	41,33 cP					
Viscosidad	42,13 cP					
Promedio	42,04 cP					


Tabla 9.	Secado a	70°C


Repet	ibilidad = 3	Repeti	bilidad = 3		
·		-		Dismin	ución de la
Muestra N°8 sin		Muestra N°8 sin neutralizar		viscosidad	
neutralizar sin secar		con	secado		
287.4500 cP		93.37 cP		67.	5178%
285.2500 cP		91	.06 cP	68.	0771%
286.3600 cP		92	.74 cP	67.	6142%
Promedio	286.3533 cP	Promedio	92.39 cP	Promedio	67.7364%

Disminución total promedio de 97.6113%.

Viscosidad


Muestra 12

58.995% de quitosano en la mezcla de QCB y un 53.3050% de gelatina de la mezcla total

Análisis Termogravimétrico

05 CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- Se logró producir quitosano a partir de exoesqueletos de camarón con un rendimiento del 36.33% a través de las condiciones experimentales empleadas. La desacetilación alcalina de la quitina resultó en quitosano de un alto grado de desacetilación, con un 85.46% de desacetilación.
- A través del cultivo de Acetobacter Xylinum, se produjo celulosa bacteriana rica en carbono, con una tasa de producción de 0.17
 gramos al día en condiciones normales. Durante el proceso de purificación y secado, se observó una disminución significativa
 en el contenido de humedad y peso de la celulosa bacteriana.
- En la producción de hidrogel a base de película de quitosano-celulosa bacteriana, se demostró que ajustar el pH resultó en un aumento en la fracción gel, con un incremento del 10.98% del valor medio. Además, se demostró una disminución significativa de viscosidad del 97.61 %, cuando el proceso incluía calentar la muestra a temperatura igual o superior a 70°C y se encontraba en presencia de sales.

05 CONCLUSIONES Y RECOMENDACIONES

Conclusiones

Se estableció un rango óptimo de composición para la producción de películas de quitosano-celulosa bacteriana con valores altos de fracción gel y viscosidad, Dentro de este rango óptimo se logró demostrar que le mejor muestra fue la que contenía 58.995 % de quitosano en la mezcla de quitosano-celulosa bacteriana y un 53.310 % de gelatina de la mezcla total. Dentro de este rango óptimo se logró demostrar una degradación térmica en menor temperatura, en comparación al quitosano y celulosa bacteriana puros.

Recomendaciones

- En los procesos de lavado continuo, verificar que el pH de la muestra indique la completa neutralización, dado que la presencia de sales tiene un efecto significativo en las propiedades fisicoquímicas.
- Para una mayor producción de celulosa bacteriana es importante tener en cuenta la temperatura y fuente de carbono.
- Para lograr una producción de hidrogel de quitosano y celulosa bacteriana con altos valores de viscosidad, se recomienda la neutralización mediante lavado continuo y omitir el proceso de secado a 70°C, dado que este proceso solo era necesario para determinar la fracción gel y se sugiere realizar secado al vació.

MUCHAS GRACIAS!

