

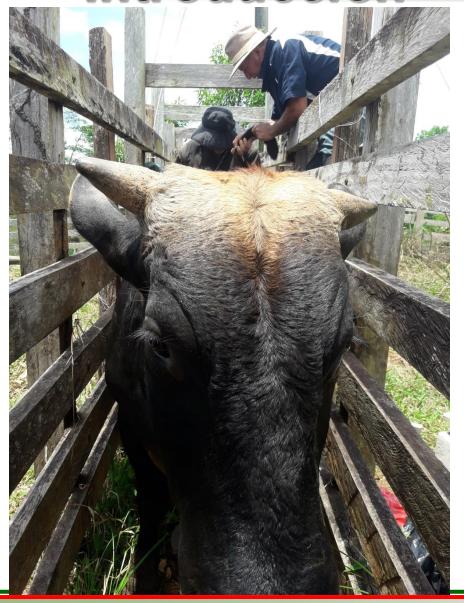
DEPARTAMENTO DE CIENCIAS DE LA VIDA Y LA AGRICULTURA

CARRERA DE INGENIERÍA AGROPECUARIA

TRABAJO DE INTEGRACIÓN CURRICULAR, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AGROPECUARIO

TEMA: FERTILIZACIÓN DE OVOCITOS MADUROS *IN VITRO* CON Y SIN ANTIOXIDANTES PARA LA OBTECIÓN DE

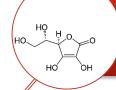
CIGOTOS ≥**AL** 40 %


AUTOR: LLANOS GAVILANES, ARMANDO JOSÉ

DIRECTOR: DR. CARRERA GARCÉS, FREDY PATRICIO, PH. D.

SANTO DOMINGO DE LOS TSÁSHILAS 2023

Introducción


Es uno de los subsectores de importancia establecido para el sector agropecuario, ambiental y social (Taipe et al., 2022).

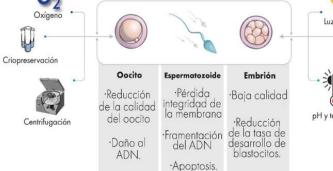
84 % de la población rural son propietarios de ganado (FAO, 2022).

Durante la última década, la PIV ha aumentado significativamente a nivel mundial (Gallegos et al., 2022).

Disminución de EROS, aumento de GSH intracelular, la tasa de clivaje, capacidad de maduración de los ovocitos y embriones (Escobar, 2021).

Planteamiento del problema

Algunas reses son sacrificadas prematuramente por diversos problemas, uno de ellos es la fertilidad; sin embargo, estos animales presentan un enorme potencial genético, que no es aprovechado.



Muestran varias dificultades, como ejemplo, están expuestas a una concentración de oxígeno, alta exposición a la luz, composición del medio de cultivo, cambios en el pH; procesos de centrifugación entre otros (Torres et al., 2019).

FUENTES DE ROS EN PIVE

pH y temperatura

Medio de

EFECTOS DE ROS EN PIVE

Justificación

Ecuador desde el 2012 ha incrementado la PIV a una tasa promedio de 15.8 % por año (Gallegos et al., 2022).

PIV permitirá utilizar hembras con problemas de fertilidad, que no sean congénitas, como última fuente para obtener embriones de alto potencial genético (Fernández et al., 2007).

PIV ha utilizado moléculas antioxidantes para complementar el medio de cultivo y así reducir la producción de ERO y la muerte embrionaria (Gallegos et al., 2022).

Uso de AA disminuye la producción de ERO, impidiendo el daño de biomoléculas en especial el ADN (Torres et al., 2019).

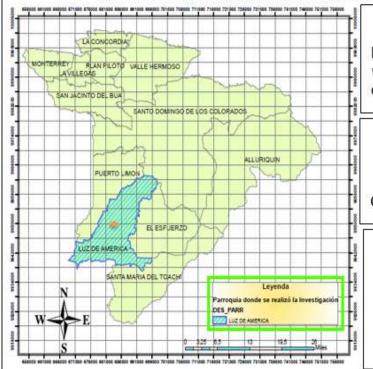
Objetivos


Seleccionar ovocitos maduros *in vitro* sin y con antioxidantes e incubados en cámara de CO₂ al 5%.

Fertilizar ovocitos maduros *in vitro* sin y con antioxidantes e incubar en cámara de CO₂ al 5%.

Fertilizar ovocitos maduros *in vitro* con y sin antioxidantes para la obtención de cigotos ≥ al 40%.

Madurar ovocitos fertilizados *in vitro* con y sin antioxidantes e incubar en cámara de CO₂ al 5%.



Ubicación del área de investigación

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y LA AGRICULTURA CARRERA DE INGENIERÍA AGROPECUARIA

MAPA DE UBICACIÓN DEL LUGAR DE INVESTIGACIÓN

TEMA DE INVESTIGACIÓN

Fertilización de ovocitos maduros *in* vitro con y sin antioxidantes para la obtención de cigotos ≥ al 40 %.

AUTOR

Llanos Gavilanes Armado José

DIRECTOR

Carrera Garcés Fredy Patricio PhD.

LUGAR DE LA INVESTIGACIÓN DE INTEGRACIÓN CURRICULAR

ESPE Km 24

Parroquia Luz de América Santo Domingo de los Tsáchilas Ecuador

Ubicación Política

País: Ecuador

Provincia: Santo Domingo de los Tsáchilas

Cantón: Santo Domingo

Parroquia: Luz de América

Propiedad: Hcda. Zoila Luz km 24 Vía Sto.

Dgo- Quevedo

Ubicación Geográfica

Latitud : 00° 24′ 46.36′′ S

Longitud : 79° 18′44.03′′ O

Altitud : 270 m.s.n.m.

Diseño experimental

Fase MIV.

Factores y niveles de prueba para la Fase de MIV.

Factores	Niveles
Medios de maduración	TCM 199 1X
	TCM MEN 10X
Vitamina C	0 μΜ
	40 µM
	50 μM

Tratamientos generados para evaluar la fase de MIV.

Tratamiento	Código	Descripción
1	TCM 199 1X	Medio de maduración TCM199
		1X sin Vitamina C
2	MEM 10X	Medio de maduración MEN
		10X sin Vitamina C
3	TCM 199 1X +	Medio de maduración TCM199
	40μMVitm. C	1X con 50μM Vitamina C
4	MEM 10 X +	Medio de maduración MEN
	40μMVitm. C	10X con 50µM Vitamina C
5	TCM 199 1X +	Medio de maduración TCM199
	50μMVitm. C	1X con 40μM Vitamina C
_		
6	MEM 10 X +	Medio de maduración MEN
	50μMVitm. C	10X con 40μM Vitamina C

Diseño experimental

Fase FIV.

Tratamientos generados para evaluar la fase de FIV.

Código

Tratamiento

Factores y nivel	es de	prueba	para la	a Fase	de	FIV.
------------------	-------	--------	---------	--------	----	------

Factores	Niveles
Vitamina C	0μΜ
	40μΜ
	50μΜ
Semen	S1: Semen no
	sexado
	S2: Semen sexado

1	S1+0µMVitm. C	Semen no sexado con FERT-
		TALP +Heparina
2	S1+40µMVitm. C	Semen no sexado con FERT- TALP +Heparina+40uM Vitm.C
3	S1+50µMVitm. C	Semen no sexado con FERT- TALP +Heparina+50uM Vitm.C
4	S2+0μMVitm. C	Semen sexado con FERT- TALP +Heparina
5	S2+40µMVitm. C	Semen sexado con FERT- TALP +Heparina+40uM Vitm.C
6	S2+50µMVitm. C	Semen sexado con FERT- TALP +Heparina+50uM Vitm.C

Descripción

Protocolo Fase 1:

Fase de Maduración *in vitr*o

Preparación de solución

Colección de ovocitos

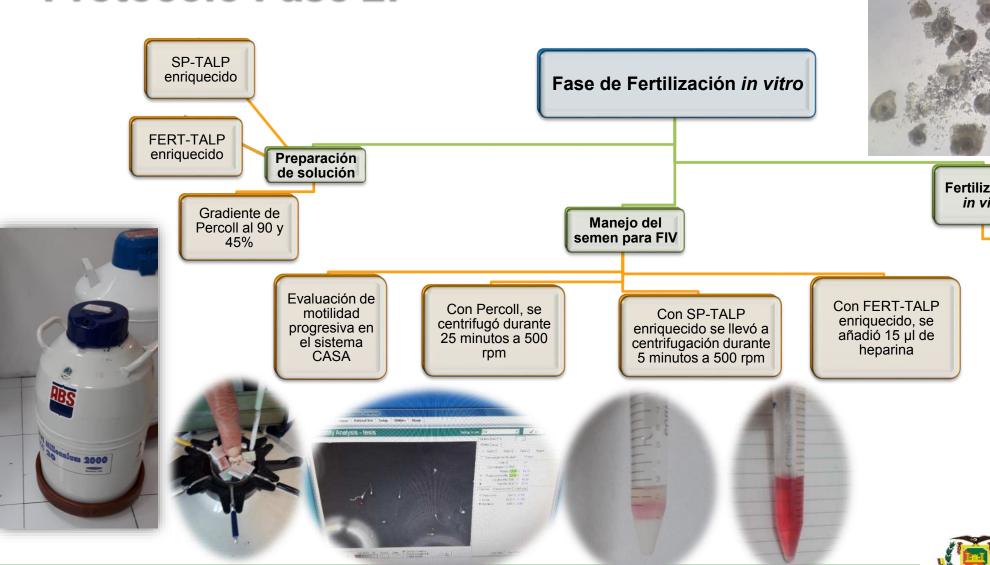
Lavado y selección Maduración in vitro

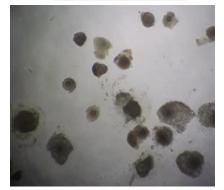
Lavado y transporte de los ovarios

Dulbecco enriquecido Medio de maduración de los ovocitos 10 X y 1X TCM 199

Aspiración folicular de 3 a 22 mm Selección según los grados I y II 13 a 45 oocitos por gota de solución a cada tratamiento

Incubar a 38.5°C con 5% de CO₂ y 90% de humedad relativa




Protocolo Fase 2:

Incubar a 38.5°C con 5% de CO₂ y 90% de humedad relativa

Fertilización in vitro

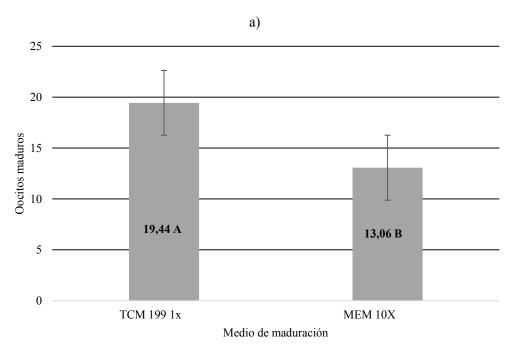
> Se observó y seleccionó los ovocitos que tenían mayor expansión de las células del cúmulos oophorus

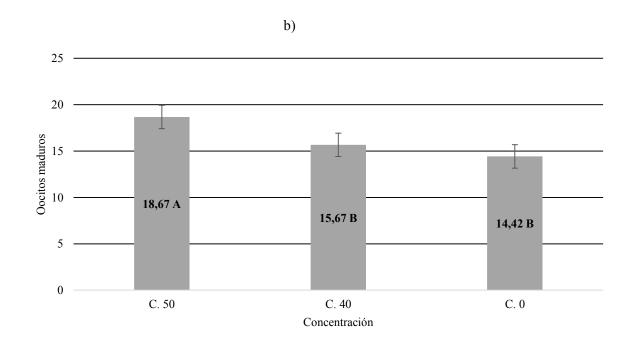
Resultados y Discusión

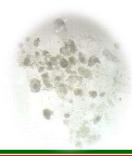
Maduración de los ovocitos

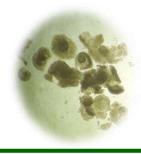
Número de oocitos extraídos, seleccionados y madurados.

Repetición	N° Ovarios	N° oocitos recolectados	N° oocitos seleccionados	N° oocitos madurados
1	120	162	108	72
II	120	296	270	134
Ш	96	113	78	48
IV	100	182	150	92
V	114	201	180	112
VI	80	189	168	127


Análisis de varianza, para la variable número de Oocitos maduros.


Fuentes de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	F calculado	p-valor
A=Medio de					
maduración	1	367,36	367,36	43,41	<0,0001
B=Concentración					
de Vitamina C					
(μM)	2	114,5	57,25	6,76	0,0045
Tratamiento(5)	5	923,92	184,78	21,83	<0,0001
AxB	2	23,39	11,69	1,38	0,2697
Error	25	211,58	8,46		
Total	35	1640,75			
CV %	17,9				




Maduración de los ovocitos

Estimación de la prueba de Tukey al 95% sobre las medias correspondientes al número de oocitos maduros.

Como consecuencia de una mayor concentración del medio de maduración, lo que permite mayor exposición de nutrientes y antioxidantes disponibles (Lino y Chasi, 2021).

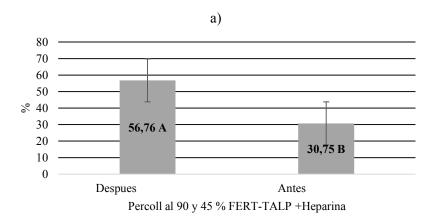
Fertilización in vitro

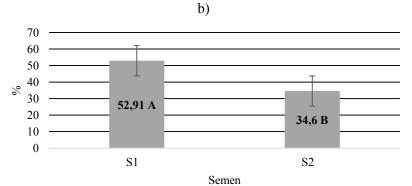
Número de Ovocitos maduros a fertilizar

Análisis de varianza, para la variable número de Ovocitos maduros a fertilizar.

Fuentes de variación	Grados de		Cuadrados medios	F calculado	p-valor
Concentración	iibertau		medios		
de Vitamina C	2	112,33	56,17	1,39	0,2925
(µM)					
Tratamiento(1)	5	1723,17	344,63	8,55	0,0022
Error	10	403	40,3		
Total	17	2238,5			
CV %	19,53				

Chauhan et al. (2015) mencionan, que la vitamina C, en concentraciones bajas tiene la facultad de actuar como un antioxidante y mejorar la fertilización, mientras que las dosis elevadas de vitamina C, pasan a generar un efecto pro-oxidante (Maldonado et al., 2019).


Porcentaje de Motilidad espermática


Análisis de varianza, para la variable porcentaje de motilidad.

	Grados de	Suma de	Cuadrados	F	
Fuentes de variación	libertad	cuadrados	medios	calculado	p-valor
A= Percoll al 90 y 45			,		
% - FERT-TALP	1	2029,56	2029,56	33,02	0,0012
+Heparina					
B= Semen no sexado	1	1006,13	1006,13	16,37	0,0068
Tratamiento(1)	2	198,07	99,03	1,61	0,2753
AxB	1	48,32	48,32	0,79	0,4094
Error	6	368,76	61,46		
Total	11	3650,84			
CV %	17,92				

- Favorece las condiciones adecuadas para el desarrollo y fertilización de los espermatozoides.
- Permite penetrar al espermatozoide con mayor facilidad a la zona pelúcida (Pérez et al., 2021).

Comparación de la prueba de Tukey al 95% sobre las medias correspondientes al porcentaje de motilidad.

Maduración de los Presuntos Cigotos

Número de presuntos Cigotos maduros

Análisis de varianza, para la variable número de presuntos Cigotos maduros

Fuentes de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	F calculado	p-valor
A=Concentración de Vitamina C (μM)	2	336,33	168,17	3,85	0,0574
B=Semen	1	98	98	2,25	0,1648
Réplica(2)	2	523	261,5	5,99	0,0195
AxB	2	16,33	8,17	0,19	0,8321
Error	10	436,33	43,63		
Total	17	1410			
CV %	34,77				

Réplica	Concentración de AA. (µM)	Semen	N° Presuntos cigotos madurados
2	0	S1	21
2	50	S1	36
2	40	S1	29
2	0	S2	16
2	50	S2	26
2	40	S2	29

Conclusiones

En la Maduración *in vitro*, el medio TCM 199 1X proporcionó un mayor número de oocito maduros 19,44; siendo la mejor concentración 50 µM al presentar el valor más alto de las medias 18,67.

Existe mayor motilidad del esperma al utilizar la gradiente de Percoll al 90 y 45%, generando la gota de solución con FERT-TALP +Heparina (6,76%; logrando elevar la motilidad en un 30,75%.

Al comparar la motilidad del semen sexado con el no sexado este último presentó mayor motilidad de 52,91% en la evaluación, y en la fertilización.

En cuanto al número de ovocitos fertilizados y presuntos cigotos maduros, no se encontró diferencia al comparar tanto las dosis de vitamina C, como el tipo de semen; la dosis de la vitamina C no fue adecuada para cubrir los requerimientos necesarios de los ovocitos y cigotos bovinos; en la actualidad no se conoce sobre datos que corroboren resultados en estudios *in vitro;* sin embargo, en condiciones de campo para mejorar y asegurar la tasa de preñez se debe utilizar a la par, 3 000 mg de Vitamina C y 3 000 UI de Vitamina E.

En la Fase de Fertilización *in vitro* estadísticamente no existió diferencia significativa, tanto en los factores evaluados (A=Concentración de Vitamina C y B=Semen sexado),se podría mencionar que las dosis aplicadas no fueron óptimas o posiblemente por la pequeña cantidad de los ovocitos madurados son referentes que no se hayan dado diferencias entre los tratamientos.

Recomendaciones

Se podría utilizar como medio de maduración TCM 199 1X en la fase de Maduración *in vitro*, porque surgió resultados favorables e incluso suplementando con 50 µM de Vitamina C en esa fase, la fase de Fertilización se deberá hacer otras investigaciones para descifrar la cantidad óptima.

Generar en nuevas investigaciones sobre el uso de Vitamina C con diferentes concentraciones para determinar dosis óptima en el uso i*n vitro* en bovinos, tomando de referencia de esta investigación; como mencionan en la literatura en el desarrollo de los ovocitos no sobrepasar de los 750 μΜ[ml]^(-1) y del embrión >200 μΜ lo que podría ocasionar un efecto pro-oxidante de este producto.

Evaluar nuevas combinaciones con otros antioxidantes uno de ellos la Vitamina E para comprobar si con la interacción de dos productos ayuda mejorar en la producción *in vitro* realizando varias repeticiones y con mayor cantidad de ovocitos, con esto posiblemente se podría conseguir alguna diferencia significativa entre los tratamientos que sean planteados a futuro.

Reducir el tiempo de manipulación del protocolo Producción *in vitro* para tener gametos de mayor vida útil, empezando en el trayecto de la colección de los ovarios, la aspiración folicular y los otros procesos para la maduración, fertilización y cultivo *in vitro*.

Muchas gracias

