

ESPE DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA

CONSTRUCCIÓN

CARRERA DE INGENIERÍA GEOGRÁFICA Y DEL MEDIO "Metodología para identificar la deformación del relieve topográfico AMBIENTE aplicando Interferometría Diferencial Radar (DInSAR) en el área del

Distrito Metropolitano de Quito."

Autoras:

Cruz Balseca Andrea Belén

Cruz Balseca Jessenia Belén

Director del proyecto:

Ing. Eduardo Kirby Powney, MSc.

Docente Evaluador:

Ing. Marco Luna, PhD.

Director de Carrera:

Ing. Alexander Robayo Nieto, MSc.

Secretaria Académica:

Abg. Michelle Benavides.

ANTECEDENTES

ÁREA DE INTERVENCIÓN

ÁREA DE INTERVENCIÓN (DMQ)

OBJETIVOS

Desarrollar una metodología para identificar las posibles zonas de deformación del relieve topográfico en el área del Distrito Metropolitano de Quito (DMQ), a partir de la aplicación de la técnica de interferometría diferencial Radar de apertura sintética (DInSAR) con imágenes Radar Sentinel-1, y por medio del uso de software copyleft y copyright.

Estandarizar la información secundaria satelital recopilada que cumpla con los requisitos para generar los interferogramas aplicados en el análisis de deformación por medio de la técnica DInSAR.

Corregistrar los distintos pares de imágenes SAR a partir del uso de software copyright y copyleft con la finalidad de generar el proceso interferométrico de pares de imágenes SAR.

Generar un análisis en series de tiempo a partir del desenrollo de la fase de los interferogramas con el objetivo de determinar las posibles zonas de deformación por hundimientos y/o levantamientos de la superficie terrestre.

Apilar los interferogramas diferenciales a través del promedio de las series temporales para la obtención de los mapas de deformación en línea de vista de satélite (LOS) dentro del período de investigación (2017-2018 y 2021-2022).

Evaluar las deformaciones del relieve topográfico obtenidas con DInSAR utilizando: las técnicas GNSS-GPS a través de los vértices de la red de control vertical del DMQ, y a partir de evidencias fotográficas.

Específicos

INNOVACIÓN PARA LA EXCELENCIA

VIIII

Coherencia

Desenrrollo de la Fase Interferométrica 🏈

Interferometría Diferencial de Radar de Apertura Sintética (DInSAR)

S III

Técnicas Multitemporales DInSAR

Apilamiento Diferencial SAR (Stacking DInSAR)

Estima el desplazamiento lineal de la superficie utilizando un conjunto de interferogramas diferenciales desenrollados.

Small Baseline Subset (SBAS)

Combinación eficaz de interferogramas diferenciales caracterizados por una pequeña línea base espacial y temporal

Objetivos Distribuidos

Temporal Baseline [d]

Decorrelación Espacial

Decorrelación Temporal

-Mayor densidad de puntos en terreno natural.

-Aplicable a grandes áreas.

-Dispersión (pasto, praderas, suelo desnudo).

-Coherencia como medida de calidad.

UNIVERSIDAD DE LAS ELIERZAS ARMADA INNOVACIÓN PARA LA EXCELENCIA

Características de Imágenes SAR: Sentinel-1

	Período 1	Período 2	
Тіро	SAR		
Sistema	Sentinel-1A y 1B		
Eacha da cantura	2017 - 03 - 03	2021 - 01 - 11	
recha de captura	2018 - 06 - 14	2022 - 01 - 30	
№ de Imágenes (ENVI)	40	54	
Nº de Imágenes (SNAP)	32	29	
Banda	С		
Modo de adquisición	IW TOPSAR		
Nivel de Procesamiento	Nivel 1 – SLC		
Polarización	VV		
Dirección	Descendente		
Resolución Geométrica	5 x 20 m		
Resolución Temporal	6-1	2 días	
Fuente	Agencia Espac	ial Europea (ESA)	

Fase 1: Pre DInSAR

Generación modelos de deformación de la superficie terrestre en software ENVI

2) Flujo de Trabajo Interferométrico

Corregistro y generación del Interferograma Diferencial Estándar

Fase 2: Procesamiento DInSAR

Generación modelos de deformación de la superficie terrestre en software SNAP

3) Fase a Deformación

COPERCISE Europe's eyes on Earth SNAPHU

Cambio deplacemente formasiséries temporal code de forme de forme de la composition de la compositione

Create Stack		X	Band Maths Expression Editor			
1-ProductSet-Reader 2-CreateStack 3-W	rite		~	Data sources:		Expression:
				displacement_VV_slv39_02Feb2018	0 + 0	(displacement_VV +
File Name	Туре	Acquisition		coherence_VV_slv40_02Feb2018	0 - 0	displacement_VV_slv1_19Jun2017 +
subset_20170607_20170619_unw_dsp_TC	Unknown Sensor Type	07Jun2017		displacement_VV_slv41_14Feb2018	6 - 6	displacement_VV_slv3_01Ju12017 +
subset_20170619_20170701_unw_dsp_TC	Unknown Sensor Type	19Jun2017		coherence VV slv42 14Feb2018	0 * 0	displacement_VV_slv5_13Ju12017 +
subset_20170701_20170713_unw_dsp_TC	Unknown Sensor Type	01Jul2017		displacement VV slv43 26Feb2018	Q / Q	displacement_VV_slv7_25Jul2017 +
subset_20170713_20170725_unw_dsp_TC	Unknown Sensor Type	13Jul2017		coherence WV slu44 26Feb2018	e / e	displacement_VV_s1v9_06Aug2017 +
subset_20170725_20170806_unw_dsp_TC	Unknown Sensor Type	25Jul2017			(@)	displacement_VV_sivil_18Aug2017 +
subset_20170806_20170818_unw_dsp_TC	Unknown Sensor Type	06Aug2017		displacement_VV_s1V45_10Mar2018	Constants	displacement_VV_sIVI3_30Aug2017 +
subset_20170818_20170830_unw_dsp_TC	Unknown Sensor Type	18Aug2017		coherence_VV_s1v46_10Mar2018	Operators	displacement_VV_sivi5_lisep2017 +
subset_20170830_20170911_unw_dsp_TC	Unknown Sensor Type	30Aug2017		displacement_VV_slv47_03Apr2018	operators	displacement_VV_slv19_050ct2017_t
subset_20170911_20170923_unw_dsp_TC	Unknown Sensor Type	11Sep2017		coherence_VV_s1v48_03Apr2018	Functions	displacement VV slv21 170ct2017 +
subset_20170923_20171005_unw_dsp_TC	Unknown Sensor Type	23Sep2017		displacement_VV_slv49_15Apr2018		displacement VV slv23 290ct2017 +
subset_20171005_20171017_unw_dsp_TC	Unknown Sensor Type	05Oct2017		coherence_VV_s1v50_15Apr2018		displacement VV slv25 10Nov2017 +
ubset_20171017_20171029_unw_dsp_TC	Unknown Sensor Type	17Oct2017		displacement VV slv51 27Apr2018		displacement VV slv27 22Nov2017 +
ubset_20171029_20171110_unw_dsp_TC	Unknown Sensor Type	29Oct2017		coherence VV slv52 27Apr2018		displacement VV slv29 04Dec2017 +
ubset_20171110_20171122_unw_dsp_TC	Unknown Sensor Type	10Nov2017		dignlagement MU clu52 09Mau2019		displacement_VV_slv31_16Dec2017 +
ubset_20171122_20171204_unw_dsp_TC	Unknown Sensor Type	22Nov2017		displacement_vv_sivss_osnay2010		displacement_VV_slv33_28Dec2017 +
ubset_20171204_20171216_unw_dsp_TC	Unknown Sensor Type	04Dec2017	- 11	coherence_VV_s1v54_09May2018		displacement_VV_slv35_09Jan2018 +
ubset_20171216_20171228_unw_dsp_TC	Unknown Sensor Type	16Dec2017		displacement_VV_slv55_21May2018		displacement_VV_slv37_21Jan2018 +
ubset_20171228_20180109_unw_dsp_TC	Unknown Sensor Type	28Dec2017	- 11	coherence_VV_s1v56_21May2018		displacement_VV_slv39_02Feb2018 +
ubset_20180109_20180121_unw_dsp_TC	Unknown Sensor Type	09Jan2018		displacement_VV_s1v57_02Jun2018		displacement_VV_slv41_14Feb2018 +
subset_20180121_20180202_unw_dsp_TC	Unknown Sensor Type	21Jan2018		coherence_VV_s1v58_02Jun2018		displacement_VV_slv43_26Feb2018 +
subset_20180202_20180214_unw_dsp_TC	Unknown Sensor Type	02Feb2018		displacement VV slv59 14Jun2018		displacement_VV_slv45_10Mar2018 +
subset_20180214_20180226_unw_dsp_TC	Unknown Sensor Type	14Feb2018		coherence VV sly60 14Jun2018		displacement_VV_slv47_03Apr2018 +
ubset_20180226_20180310_unw_dsp_TC	Unknown Sensor Type	26Feb2018	- 11			displacement_VV_slv49_15Apr2018 +
ubset_20180310_20180403_unw_dsp_TC	Unknown Sensor Type	10Mar 2018		displacement_avg_sum		displacement_VV_slv51_27Apr2018 +
ubset_20180403_20180415_unw_dsp_TC	Unknown Sensor Type	03Apr 2018	-	coherence_avg v		displacement_VV_slv53_09May2018 +
subset_20180415_20180427_unw_dsp_TC	Unknown Sensor Type	15Apr 2018		Show bands		displacement_VV_s1v55_21May2018 +
subset_20180427_20180509_unw_dsp_TC	Unknown Sensor Type	27Apr 2018		Show masks		displacement_VV_SIV57_02Jun2018 +
ubset_20180509_20180521_unw_dsp_TC	Unknown Sensor Type	09May2018		Show tie-point arids		displacement_vv_s1v59_14Jun2018)/31
ubset_20180521_20180602_unw_dsp_TC	Unknown Sensor Type	21May2018		Show de-point grus		🚍 🛅 🕤 🜆 💷 🛛 Ok merror
subset_20180602_20180614_unw_dsp_TC	Unknown Sensor Type	02Jun2018		Show single flags		
subset_20180614_20180626_unw_dsp_TC	Unknown Sensor Type	14Jun2018				

Fase 3: Validación DInSAR

Línea de nivelación

METODOLOGÍA

Línea de nivelación geométrica compuesta

Trabajo de Campo

Nivelación en el punto de idgreso

Trabajo de Gabinete

Línea de nivelación geométrica compuesta

Entidad Ejecutora: Registro en el IG CARTA NACIONAL Proyecto: Nombre del Punto: IX-L3-1A-AJ LOCALIZACIÓN DEL PUNTO País: Provincia: Cantón: Parroquia. ECUADOR PICHINCHA QUITO VILLA FLORA CONTROL HORIZONTAL SIRGAS 95 1995.4 Datum Horizontal: Epoca de referencia: Coordenadas Geográficas Coordenadas UTM: S 00 14 38.420 17 S Latitud (° ' "): Zona: 9973004.573 W 078 31 08.0517 Norte (m). Longitud (° ' "): 776168.365 2838.534 Este (m): Altura Elipsoidal (m) CONTROL VERTICAL: NIVEL MEDIO DEL MAR LA LIBER Datum Vertical Mareógrafo: Coorc Línea Nivelación Código de la Línea: Fecha de determinación QUITO - LATACUNGA IX-L3 05-07-2008 Zona: Elevación (m Tipo Nivelación: Orden: Norte (m) 2810.8264 GEOMETRICA PRIMERO Este (m):

Entidad Ejecuto	ra:				Registro en el IC
Proyecto:	CARTA NACIO	NAL Non	nbre del Pui	nto: IX-L3-2A-AJ	
LOCALIZACIÓ	N DEL PUNTO				
País: ECUADOR	Pi Pi	r ovincia: CHINCHA		Cantón: QUITO	Parroquia: VILLA FLORA
CONTROL HO	RIZONTAL				
Datum Horizon	tal:		E	poca de referencia:	
	Coordenadas G	Geográficas:		Coordenad	as UTM:
Latitud (° ' "):			Z	ona:	
Longitud (° ' ").			N	orte (m):	
Altura Elipsoid	al (m):		E	ste (m):	
CONTROL VE	RTICAL:				
Datum Vertical:	NI	VEL MEDIO DEL MAR		Mareógrafo:	LA LIBER
L	ínea Nivelación:	Código de	e la Línea:	Fecha de determinación	coor
QUI	TO - LATACUNGA	IX-L3		05-07-2008	Zona:
	Elevación (m):	Tipo Niv	elación:	Orden:	Norte (m):
	2816.3502	GEOME	ETRICA	PRIMERO	Este (m):

Desnivel de las líneas de nivelación

Diferencia entre la sumatoria de las lecturas de los hilos medios corregidos atrás y adelante.

Promedio Desniveles líneas nivelación

Nivelación realizada en el proyecto (2022) y del IGM (2008), para poder comparar con la deformación que se produjo entre ambos.

$$\Delta_{AB} = \sum l_{AT} - \sum l_{AD}$$

$$Promedio Desnivel 2022 = \frac{\Delta_{AB} + \Delta'_{AB}}{2}$$

Deformación in situ de la placa de control vertical IX-L3-2A-AJ

 $\Delta Desnivel = Promedio Desnivel Trabajo de Investigación - Promedio Desnivel IGM$

Diferencia deformación SNAP vs ENVI = Deformación LOS SNAP – Deformación LOS ENVI

Proceso interferométrico SBAS de imágenes Sentinel-1 en ENVI

Modelos de deformación de la superficie terrestre (LOS) en ENVI

I Período 2017-2018 Período 2021-2022 770000 770000 780000 790000 780000 790000 lombre Satélite : S1B lombre Sensor : SENTINEL-olarización : VV ombre Satélite : S1B Nombre Sensor : SENTINEL Polarización : VV Unidad : Deformación mm idad : Deformación mm 🐁 0000666 0000666 0000666 -7.15 mm La Gasca 9980000 9980000 -11.82 mm -35 mm Solanda La Armenia 7 mm 9970000 000 000 9970000 Sur Sur -31.38 mm Pucará Pucará Club -8 mm Armada Deformación LOS (mm) Deformación LOS (mm) 0000966 0000966 9960000 0000966 -5.726 -0.975 ≥3.814 ≤-5.274 ≥ 6.707 ARMADAS ELENCIA 770000 780000 790000 780000 770000 790000

Proceso interferométrico SBAS de imágenes Sentinel-1 en ENVI

Modelos de deformación de la superficie terrestre (Vertical) en ENVI

Series temporales Stacking DInSAR en SNAP

Interferogramas diferenciales

Modelos de deformación de la superficie terrestre (LOS) en SNAP

Fase 3: Validación DInSAR

Nivelación geométrica compuesta

Comparación de nivelación IGM vs Trabajo de Investigación

IGM (2008)		Trabajo de Investiga	ción (2022)
Desnivel Ida (m)	5.5242	Desnivel Ida (m)	5.5115
Desnivel Regreso (m)	-5.5233	Desnivel Regreso (m)	-5.5144
Promedio Desnivel Ida-	5.5238	Promedio Desnivel Ida-	5.5130
Regreso (m)		Regreso (m)	
Precisión (mm)	4	Precisión (mm)	4
Distancia Ida (km)	1.34	Distancia Ida (km)	1.35
Distancia Regreso (km)	1.35	Distancia Regreso (km)	1.44
Error Cierre (mm)	2.70	Error Cierre (mm)	2.90
Tolerancia (mm)	4.63	Tolerancia (mm)	4.65
Deformación (dif	erencia desr	nivel) obtenida de la nivel	ación
	geométrica	compuesta	
	geomotio		
Nivelación		Promedio Desn	ivel
Trabajo de Invest	igación	5513.0	mm
IGM		5523.8	mm
Diferencia/Deform	mación	-10.8	

Comparación de las deformaciones DInSAR en base a la nivelación geométrica

Comparación de las series temporales de deformación en las distintas plataformas de procesamiento

Nivel de Confianza

A partir de la estadística descriptiva estándar, se pudo analizar la distribución de los datos a un nivel de confianza del 95% de la muestra, tanto en ENVI como SNAP, en el período de investigación 2021-2022.

	ENVI LOS 2021-20)22		I
	IX-L3-ZA-AJ			
	Media	-0.6925926		M
	Error típico	0.13826953		Erro
	Mediana	-0.5		Me
	Moda	-0.5		N
De	esviación estándar	1.01606935		Desviacio
Var	ianza de la muestra	1.03239693		Varianza d
	Curtosis	1.5588236		Cu
Coe	ficiente de asimetría	-1.0514553		Coeficiente
	Rango	4.8		R
	Mínimo	-3.7		Mi
	Máximo	1.1		Ma
	Suma	-37.4		S
	Cuenta	54	_	C
Nivel	de confianza (95.0%)	0.27733355		Nivel de cor

ENVI VD 2021-2022				
IX-L3-2A-AJ				
Media	-0.985185185			
Error típico	0.1954301			
Mediana	-0.75			
Moda	-0.7			
Desviación estándar	1.436112074			
Varianza de la muestra	2.06241789			
Curtosis	1.621088301			
Coeficiente de asimetría	-1.071257313			
Rango	6.9			
Mínimo	-5.3			
Máximo	1.6			
Suma	-53.2			
Cuenta	54			
Nivel de confianza (95.0%)	0.39198314			

Fase 3: Validación DInSAR

Valaraa		
cercanos 0	a C Rango de datos distribuida de fo	se encuentra rma uniforme.
Valores cercanos 1	a Oistribución de l coherente ni	os datos no es equiparada
-	SNAP LOS IX-L3-2A-AJ	1
	Media	3.784285714
	Error típico	2.309345886
	Mediana	4.195
	Desviación estándar	12.21990981
	Varianza de la muestra	149.3261958
	Curtosis	0.383574332
	Coeficiente de asimetría	0.101027815
	Rango	54.6
	Mínimo	-20,44
	Máximo	34.16
	Suma	105.96
	Cuenta	28
	Nivel de confianza	
	(95,0%)	4.738386362

Otra forma de analizar la variabilidad de un conjunto de datos es, observando los valores de la moda, mediana y media; si estos valores son semejantes, indicarán que hay menor incertidumbre al empleo de esos datos, y mejor distribución en la variabilidad de los muestreos de la población.

Solanda

Solanda

En Solanda, 233 casas tienen daños estructurales (grietas, hundimientos, inundaciones). Otras 43 viviendas están totalmente destruidas. Sus moradores dicen que todo inició con la construcción de la parada Solanda del Metro de Quito, en julio de 2017.

Deform	ación Vertica	al (mm)
≤-8.422	-1.447	≥5.583

Google Earth

Deformación Vertical período 2017-2018

Pucará

Ubicado en el sur de la ciudad, se observa que algunas casas de esta zona presentan daños estructurales como grietas y paredes cuarteadas.

Defor	nación Vertica	al (mm)
≤-8.422	-1.447	≥5.583

Pucará

ADAX

Club de Tripulación de la Armada-Valle de Los Chillos

Un tramo de la vía E35 quedó destruido en Sangolquí, cantón Rumiñahui, debido a las Iluvias ocurridas el 17 de febrero del 2022. Las precipitaciones elevaron la creciente un río y se partió un tramo de la vía a la altura del redondel de ingreso a Selva Alegre.

Google Earth

Deformación Vertical período 2021-2022 [mm] Club Armada -10 -12 FEB 10 MAR 11 APR 10 MAY 9 JUN 8 JUL 7 AUG 6 DEC 31 JAN 30 JAN 11 SEP 4 OCT 4 NOV 2 DEC 2 Fecha Series Temporales

Club de Tripulación de la Armada

La Gasca

Las fuertes lluvias que cayeron la tarde del lunes, 31 de enero de 2022, en Quito; ocasionaron un aluvión en el sector de La Gasca, que inundó calles, dañó viviendas, vehículos y ocasionó pérdidas humanas.

	Deform	ación Vertica	al (mm)
≤ -7 .	.688	1.041	≥9.839

La Armenia 1

La Armenia 1- Valle de Los Chillos

En la urbanización de La Armenia 1, un pequeño tramo de la calle quedó destruido debido al levantamiento de la superficie ocurrido durante 2021-2022. Como consecuencia en la infraestructura, es posible visualizar que en las paredes de la casa aledaña se muestran grietas en la fachada. Deformación Vertical (mm)

≤-7.688 1.041 ≥9.839

Deformación Vertical período 2021-2022

CONCLUSIONES

5

Con una resolución de 5x20 m en rango y acimut, respectivamente; permitieron obtener mapas de deformación de la superficie terrestre LOS y en proyección vertical con una precisión milimétrica.

logrando abarcar una gran capacidad de cobertura espacial a una resolución decamétrica.

En función de la finalidad del estudio

La posibilidad de visualizar zonas extensas, con alta precisión, hace que la técnica DInSAR sea preferible a otras técnicas terrestres tradicionales (como nivelación o GNSS) sin poder sustituirlas por completo.

Metodología para identificar zonas con

Presentándose una afectación directa a las infraestructuras, a la comunidad y al entorno.

Siendo de alto impacto, y permitiendo que las autoridades correspondientes puedan empezar a realizar estudios puntuales en este tipo de zonas con esta misma técnica.

Control de Calidad (2 Técnicas in-situ)

La deformación obtenida a través del procesamiento interferométrico diferencial fue muy similar a la obtenida en campo.

Basándose en la validación de los datos, el método DInSAR puede utilizarse en la supervisión de la deformación del terreno en zonas urbanas con una buena precisión, en cualquier momento y con un coste moderado.

RECOMENDACIONES

- Para mejorar la calidad de las series temporales de deformación generadas, es recomendable utilizar las órbitas ascendente y descendente del satélite con el objetivo de descomponer el desplazamiento tanto en vertical como horizontal; con el fin de tener resultados de acuerdo la dirección de los movimientos.
- Se sugiere realizar un análisis interferométrico seguido de períodos de investigación largos (donde la imagen cero o 'super máster' sea una), para conseguir un análisis de deformación más preciso en cuanto a los valores matemáticos de deformación).

• Con los métodos de control de evaluación, hacer líneas de nivelación en las zonas de estudio para mejorar la calidad de la comprobación, o implementar redes de monitoreo continuo para obtener alta precisión de los cambios producidos en la componente vertical

• De acuerdo al archivo fotográfico y gráficas de la deformación vertical en ambos períodos de investigación, se cree necesario seguir monitoreando de cerca las zonas que presentaron mayores hundimientos o levantamientos. Esta nueva tecnología podría ser usada por los gobiernos autónomos descentralizados con el objeto de poder implementarse en el campo de gestión de riesgos y desastres.

• La técnica DInSAR podría utilizarse para establecer un servicio de seguimiento mensual o anual de las deformaciones de la superficie terrestre a un coste moderado, en conjunto con los datos de apoyo en la observación sobre el terreno (gravedad, GPS, etc.); así como para el monitoreo volcánico, deshielo glaciar, etc.

GRACIAS POR SU

ATENCIÓN

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA

CONSTRUCCIÓN

CARRERA DE INGENIERÍA GEOGRÁFICA Y DEL MEDIO "Metodología para identificar la deformación del relieve topográfico AMBIENTE aplicando Interferometría Diferencial Radar (DInSAR) en el área del

Distrito Metropolitano de Quito."

Autoras:

Cruz Balseca Andrea Belén

Cruz Balseca Jessenia Belén

Director del proyecto:

Ing. Eduardo Kirby Powney, MSc.

Docente Evaluador:

Ing. Marco Luna, PhD.

Director de Carrera:

Ing. Alexander Robayo Nieto, MSc.

Secretaria Académica:

Abg. Michelle Benavides.