

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE

TRABAJO DE INTEGRACIÓN CURRICULAR, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

Diseño de obras de protección para inundaciones de la parroquia Calderón del cantón Portoviejo provincia de Manabí

AUTORES: Beltrán Valarezo Jhoan Alexander

Cano Vera Daniela Fernanda

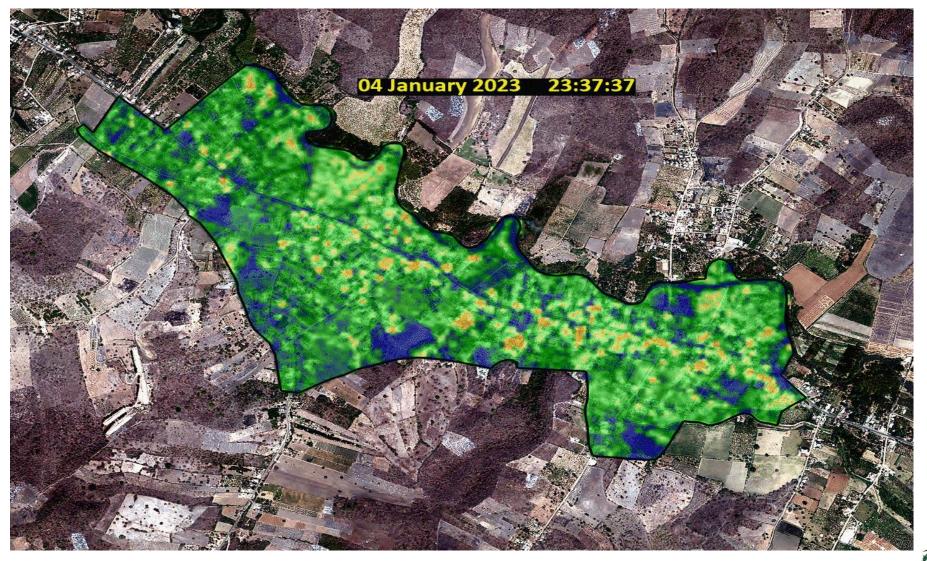
DIRECTOR: Ing. Bolaños Guerrón Darío Roberto Ph.D.

OBJETIVOS

UBICACIÓN

PROVINCIA DE MANABÍ

CANTÓN PORTOVIEJO

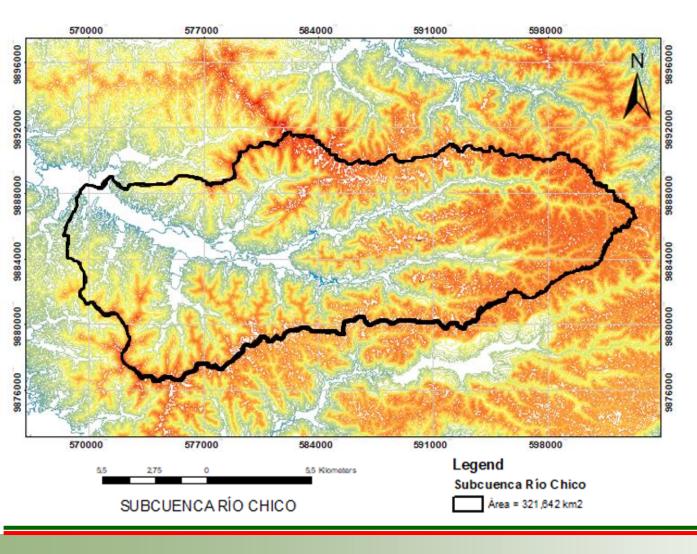


- La parroquia Abdón Calderón está ubicada en la provincia de Manabí, cantón Portoviejo.
- Población: 15388 habitantes.

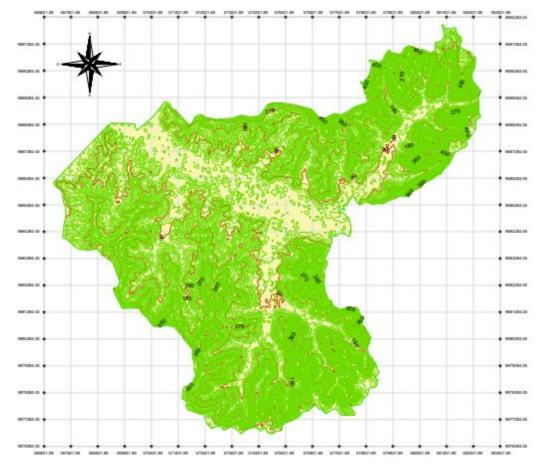
ANTECEDENTES

DATOS IMPORTANTES

Portoviejo



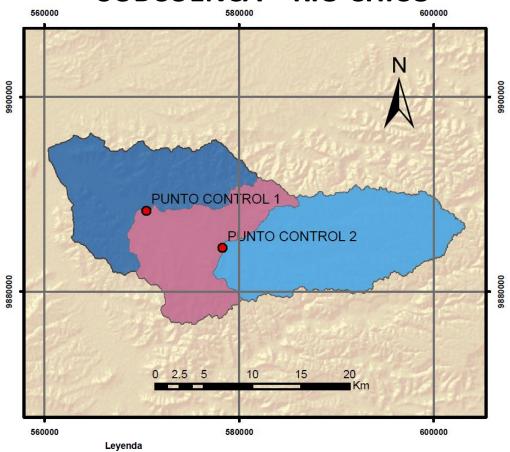
Abdón Calderón



ESTUDIO GEOMORFOLÓGICO

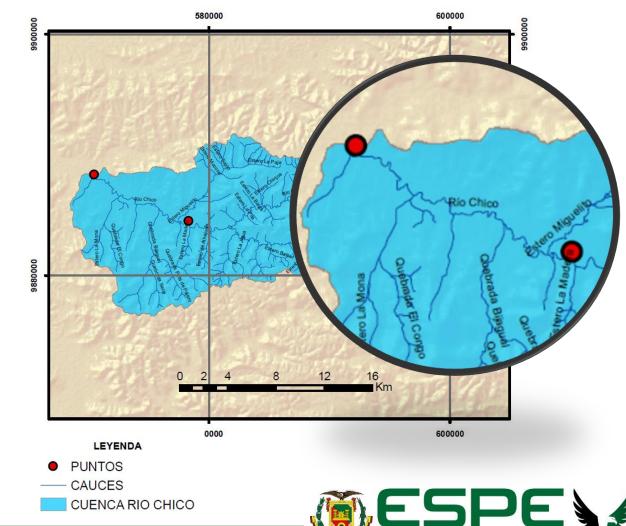
CARTOGRAFÍA – RÍO CHICO

TOPOGRAFÍA – ABDÓN CALDERÓN



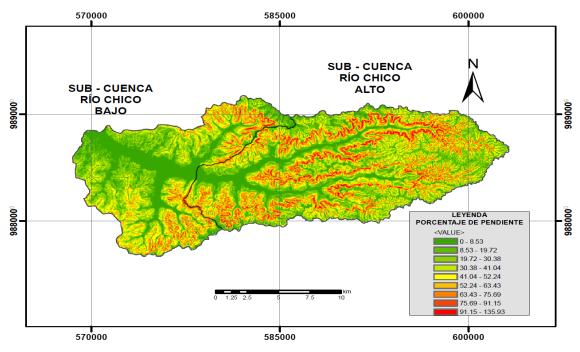
ESTUDIO GEOMORFOLÓGICO

SUBCUENCA – RÍO CHICO

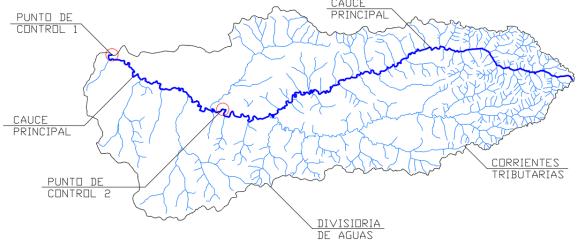


PUNTOS
 SUB CUENCA RIO CHICO ALTO

SUB CUENCA RIO CHICO BAJO


CUENCA PORTOVIEJO

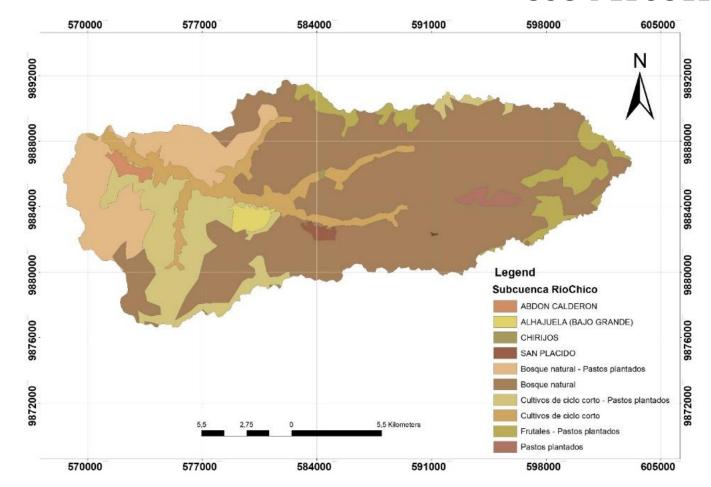
CONDICIÓN HIDROGRÁFICA SUBCUENCA RÍO CHICO


ESTUDIO GEOMORFOLÓGICO

CARACTERÍSTICAS DE LA SUBCUENCA RÍO CHICO

- Pendiente media = 33,61%
- Longitud del cauce principal = 51,04 km

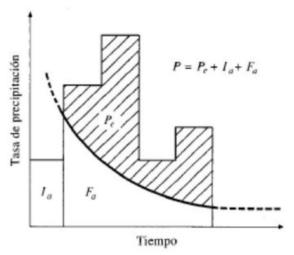
- Área total = 321,64 km2.
- Perímetro = 102,96 km.
- Cota máxima: 460 msnm.
- Cota mínima: 50 msnm.



USO DEL SUELO

USO DEL SUELO	ÁREA (KM²)		
Bosque Natural	192,84		
Bosque Natural - Pastos plantados	40,47		
Cultivos de ciclo corto	24,83		
Cultivos de ciclo corto - Pastos plantados	43,02		
Frutales - Pastos plantados	17,78		
Pastos plantados	2,70		
Áreas Urbanas	7,09		

NÚMERO DE CURVA


USO DEL SUELO	DESCRIPCIÓN USO DE	ÁREA	B al 70%		C al 30%	
	SUELO	(KM2)	CN	CN*A	CN	CN*A
Bosque Natural	Bosques	192,84	55	7424,46	70	4049,71
Bosque Natural - Pastos plantados	Bosques	40,47	66	1869,80	77	934,90
Cultivos de ciclo corto	Área Cult.	24,83	71	1233,93	78	580,96
Cultivos de ciclo corto - Pastos plantados	Área Cult.	43,02	61	1836,99	74	955,06
Frutales - Pastos plantados	Área Cult.	17,78	81	1008,12	88	469,39
Pastos plantados	Pastizales	2,70	79	149,22	86	69,62
Área urbana	Concreto/techo	7,09	85	422,06	90	191,52
TOTAL		328,73		13944,57		7251,16

$$CN = \frac{\sum (A_i * CN_i)}{A_T}$$

$$I = \frac{13944,57 + 7251,16}{328,73} = 64,48$$

ABSTRACCIÓN INICIAL

$$S = \frac{1000}{CN} - 10$$

$$Ia = 0,2 * S$$

Donde:

la: Abstracción inicial

S: Retención potencial máxima

$$S = \frac{1000}{64,48} - 10 = 5,508 \text{ plg} = 139,90 \text{ mm}$$

$$Ia = 0.2 * 139.90 = 27.98 mm$$

TIEMPO DE CONCENTRACIÓN

$$t_c = \frac{L^{0.8} \left(\frac{1000}{CN} - 9\right)^{0.7}}{1140 * S^{0.5}}$$

Donde:

Tc: Tiempo de concentración

$$t_c = \frac{167463,9^{0.8} \left(\frac{1000}{64,48} - 9\right)^{0.7}}{1140 * 33,61^{0.5}}$$

$$t_c = 8,48 \ h = 508,8 \ min$$

CURVAS IDF

EST		INTERVALO DE TIEMPO (minutos)	ECUACIONES	R	R2
CÓDIGO	NOMBRE				
M0005	PORTOVIEJO	5 < 120	$i = 175.897 * T^{0.2692} * tc^{-0.5042}$	0,9901	0,9802
IVIOUUS	PORTOVIEJO	120 < 1440	$i = 891.120 * T^{0.2424} * tc^{-0.8418}$	0,9975	0,9950

Ecuación a utilizar:

$$i = 891,120 * T^{0,2424} * tc^{-0,8418}$$

Donde:

i = Intensidad, en mm/h

T = Periodo de retorno, en años

tc = Tiempo de concentración, en mm

INTENSIDAD

$$i = \frac{P}{t}$$

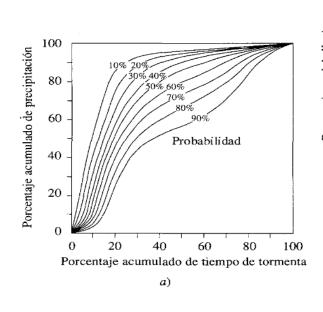
Donde:

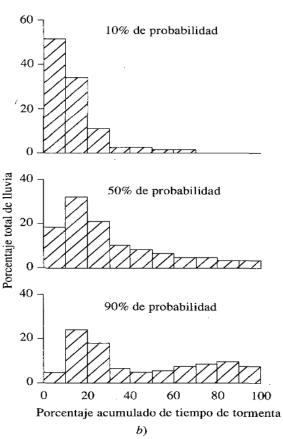
i = Intensidad (mm/h)

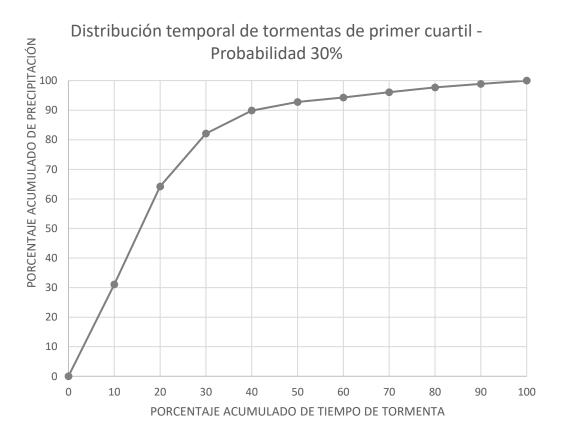
P = Precipitación (mm)

t = Duración (h)

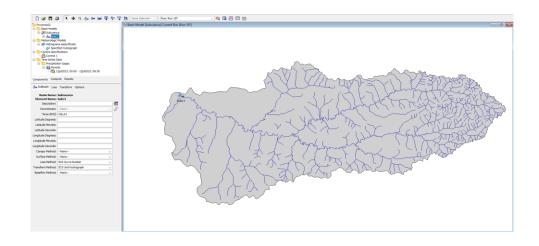
PRECIPITACIÓN


Tc Ecuación de retardo SCS (min)	TR (años)	i (mm/H)	PRECIPITACIÓN (mm)
	10	8,20	39,81
E00 00	25	10,24	86,86
508,80	50	12,12	102,75
	100	14,33	121,55

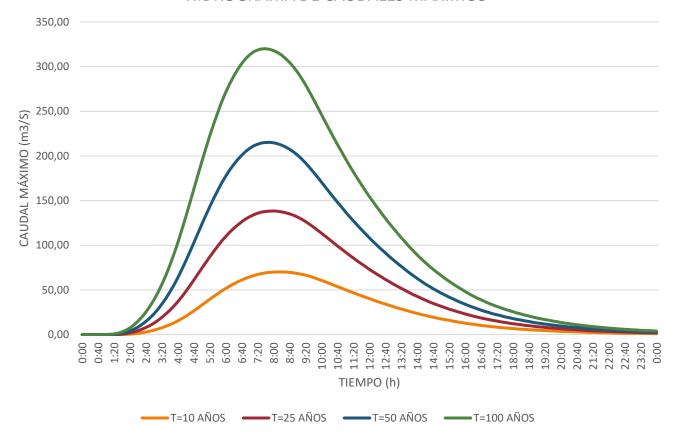

FACTOR DE REDUCCIÓN


PRECIPITACIÓN PUNTUAL (mm)	FACTOR DE REDUCCIÓN	PRECIPITACIÓN (mm)
39,81	0,88	35,03
86,86	0,88	76,44
102,75	0,88	90,42
121,55	0,88	106,97

MÉTODO DE HUFF


HIETOGRAMAS

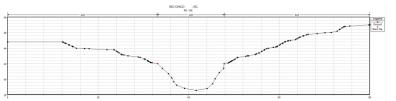
Tiempo de retorno(T) = 100 años; tc = 8,48 h							
PRECIPITACIÓN	Tiempo	Precipitación					
(mm)	TIEMPO	PRECIPITACIÓN	(h)	(mm)			
	0,00	0,00	0,00	0,000			
	0,10	0,29	2,46	31,020			
	0,20	0,66	5,55	70,062			
	0,30	0,82	6,97	87,926			
	0,40	0,89	7,55	95,199			
106.97	0,50	0,93	7,87	99,264			
	0,60	0,95	8,10	102,152			
	0,70	0,97	8,24	103,970			
	0,80	0,99	8,36	105,468			
	0,90	0,99	8,40	105,896			
	1,00	1,00	8,48	106,965			



HIDROGRAMA

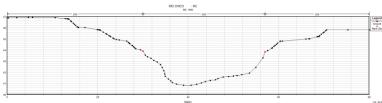
CAUDALES MÁXIMOS								
T (años) Tc (horas) I (mm/h) Caudal Máximo (m3/s								
10		4,69	70,10					
25	8,48	10,24	138,40					
50		12,12	215,20					
100		14,33	320,00					

HIDROGRAMA DE CAUDALES MÁXIMOS

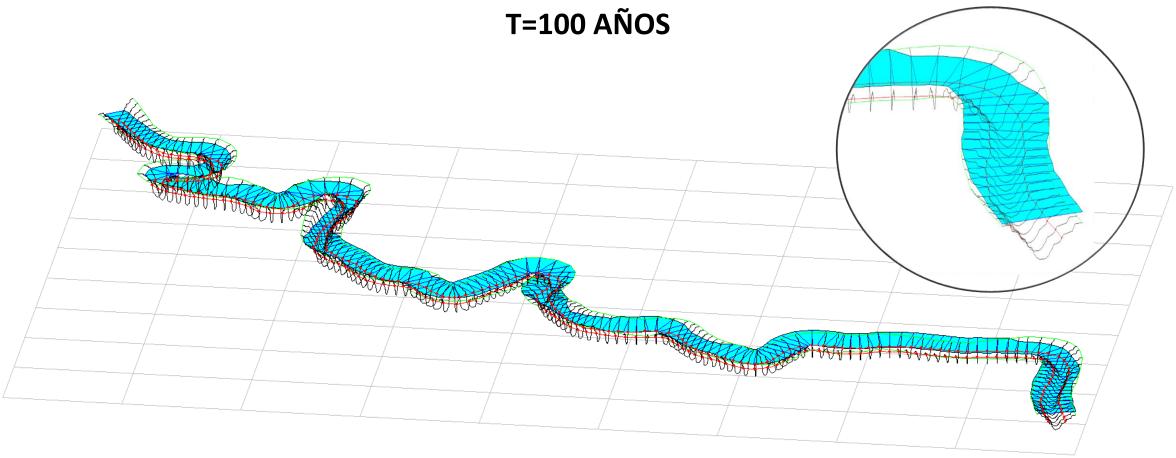


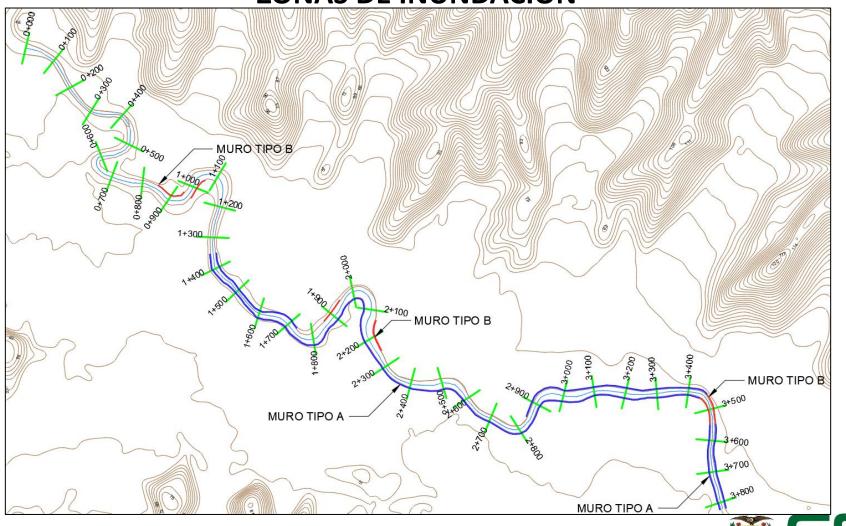
SECCIONES TRANSVERSALES

Parámetros iniciales del modelo hidráulico:


- Tramo de 3,8 km del río Chico.
- Pendiente aguas abajo del 1,4%.
- Valores sugeridos para el coeficiente de Manning entre 0,029 a 0,045.

Abscisa 0+500


Abscisa 3+200



RESULTADOS DEL MODELO HIDRÁULICO UNIDIMENSIONAL

ZONAS DE INUNDACIÓN

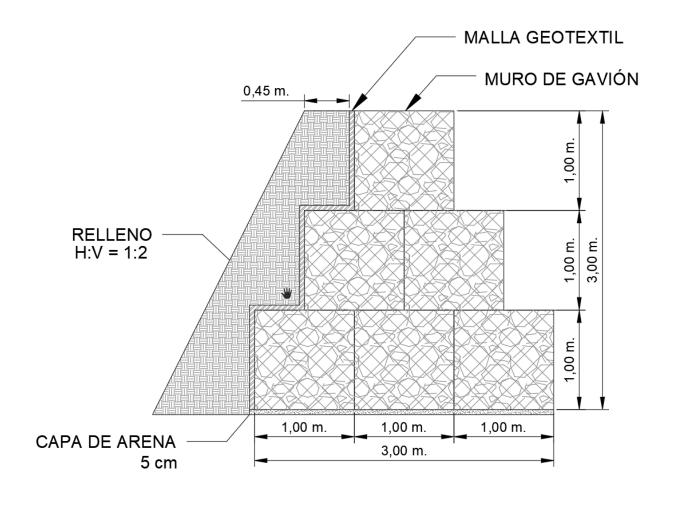
DATOS GENERALES:

Peso del terreno: $\gamma_s = 1.89 \frac{tn}{m^3}$

Peso de la piedra (caliza): $\gamma_r = 2,70 \frac{tn}{m^3}$

Ángulo de fricción del suelo: $\emptyset = 28,0^{\circ}$

Capacidad portante del suelo: $\sigma_s = 0.85 \frac{kg}{cm^2}$


Ángulo que forma el relleno: $\beta=0.00^\circ$

GEOMETRÍA DEL MURO:

Altura de cada bloque: $h_B = 1,00 m$

Ancho de cada bloque: $B_B = 1,00 m$

Altura total del muro: $H_T = 3,00 m$

- Verificación por deslizamiento (FSD = 1,50):

$$\frac{f * P}{E_A} \ge FSD$$

$$2,37 \ge 1,50$$
 OK

- Verificación por volteo (FSV = 2,00):

$$\frac{M_r}{M_A} \ge FSD$$

$$7,91 \ge 2,00$$
 OK

- Verificación de presiones sobre el terreno:

Se debe cumplir que:

$$e < \frac{B}{6}$$
 0,19 < 0,50 **OK**

- Verificar las presiones de contacto entre el suelo y el muro:

$$\sigma_1 = 0.74 \frac{kg}{cm^2} < 0.85 \frac{kg}{cm^2}$$
 OK

$$\sigma_2 = 0.34 \frac{kg}{cm^2} < 0.85 \frac{kg}{cm^2}$$
 OK

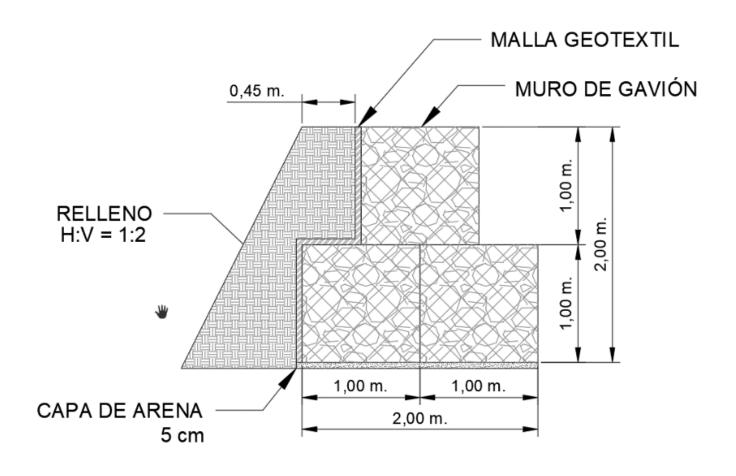
DATOS GENERALES:

Peso del terreno: $\gamma_s = 1.89 \frac{tn}{m^3}$

Peso de la piedra (caliza): $\gamma_r = 2,70 \frac{tn}{m^3}$

Ángulo de fricción del suelo: $\emptyset = 28,0^{\circ}$

Capacidad portante del suelo: $\sigma_s = 0.85 \frac{kg}{cm^2}$


Ángulo que forma el relleno: $\beta=0.00^\circ$

GEOMETRÍA DEL MURO:

Altura de cada bloque: $h_B = 1,00 m$

Ancho de cada bloque: $B_B = 1,00 m$

Altura total del muro: $H_T = 2,00 m$

- Verificación por deslizamiento (FSD = 1,50):

$$\frac{f * P}{E_A} \ge FSD$$

$$2,67 \ge 1,50$$
 OK

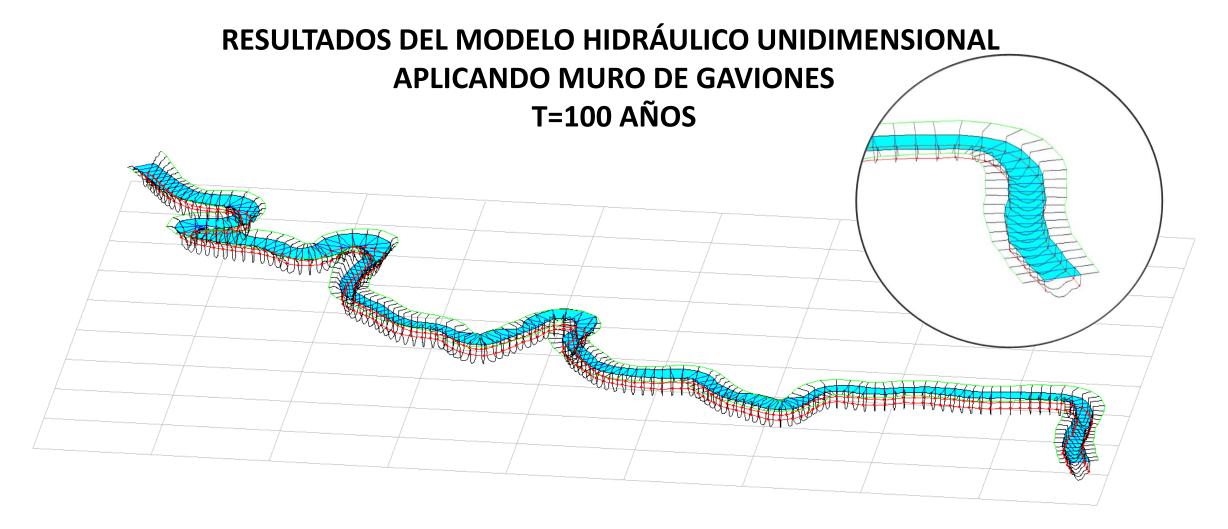
- Verificación por volteo (FSV = 2,00):

$$\frac{M_r}{M_A} \ge FSD$$

$$8.90 \ge 2.00$$
 OK

- Verificación de presiones sobre el terreno:

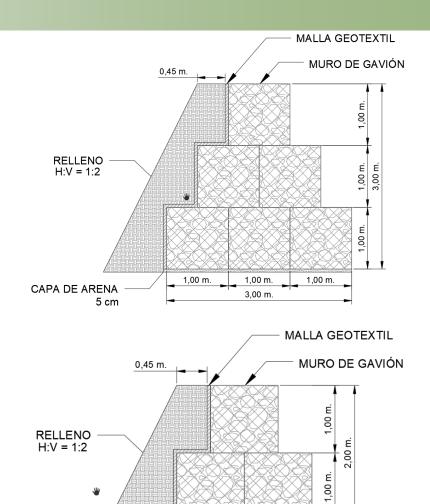
Se debe cumplir que:


$$e < \frac{B}{6}$$
 0,11 < 0,33 **OK**

- Verificar las presiones de contacto entre el suelo y el muro:

$$\sigma_1 = 0.54 \frac{kg}{cm^2} < 0.85 \frac{kg}{cm^2}$$
 OK

$$\sigma_2 = 0.27 \frac{kg}{cm^2} < 0.85 \frac{kg}{cm^2}$$
 OK



PRESUPUESTO

DISEÑO DE OBRAS DE PROTECCIÓN PARA INUNDACIONES DE LA PARROQUIA ABDÓN CALDERÓN DEL CANTÓN PORTOVIEJO PROVINCIA DE MANABÍ

	RUBRO	UNIDAD	CANTIDAD	COSTO UNITARIO		COSTO TOTAL	
	PRELIMINARES						
1	REPLANTEO Y						
	NIVELACIÓN CON EQUI.	m2					
	TOPOG. (SUPERFICIES)		11977,00	\$	1,27	\$	15.186,30
2	DESBROCE Y LIMPIEZA						
	DE TERRENO INC.	m2					
	DESALOJO		11977,00	\$	1,42	\$	17.057,44
	MOVIMIENTO DE						
	TIERRAS ,						
3	EXCAVACIÓN A						
	MÁQUINA H=0,00-2,00M	m3	6688,00	\$	2,50	\$	16.689,13
4	DESALOJO CON						
	VOLQUETE HASTA 20						
	KM CON MATERIAL	_				_	
	CARGADO A MÁQUINA	m3	8025,60	\$	2,41	\$	19.312,72
_	SOBRESTRUCTURA	_		_		_	
	MURO DE GAVIONES	m3	23406,00	\$	68,70	\$	1.607.906,59
6	MALLA GEOTEXTIL	_				_	
_	PARA GAVIONES	m2	19779,00	\$	2,79	\$	55.244,95
7	RELLENO PARA						
	PROTECCIÓN DE MALLA	_		•		•	
	GEOTEXTIL	m3	8358,59	\$	3,63	\$	30.348,92
				T	DTAL	\$	1.761.746,06

1,00 m.

CAPA DE ARENA

5 cm

2.00 m.

1,00 m.

CONCLUSIONES

Subcuenca río Chico

Caudales máximos

Desbordamiento

Muro de gavión

Presupuesto

RECOMENDACIONES

Precisión

Calibración modelo hidráulico

Sistema de alcantarillado

Desarrollo territorial

MUCHAS GRACIAS POR SU ATENCIÓN

