

Departamento de Ciencias de la Vida y de la Agricultura Carrera de Ingeniería en Biotecnología

Trabajo de Titulación, Previo a la Obtención del título de Ingeniero en Biotecnología

"Caracterización molecular del gen mitocondrial citocromo b del nematodo del quiste *Globodera pallida*, asociado al cultivo de papa (*Solanum tuberosum* L.)"

> Elaborado por Cobo Cortez, Roberto Arturo

Director Dra. Proaño Tuma, Karina Isabel Ph.D Fecha 4 de septiembre del 2023

) Introducción

1

6

7

2) Objetivos e hipótesis

3) Materiales y Métodos

4) Resultados y Discusión

5) Conclusiones

) Recomendaciones

Agradecimientos

2) Objetivos e hipótesis

3) Materiales y Métodos

4) Resultados y Discusión

5) Conclusiones

) Recomendaciones

) Agradecimientos

6

7

Introducción-Solanum tuberosum L.

Familia	Solanaceae
Género	Solanum
Especie	S. tuberosum

América del Sur (6.000 y 10.000 años)

150 países - 4000 variedades

(Spooner & Hetterscheid, 2005; Çalışkan et al., 2023; Banco Central del Ecuador, 2021).

Introducción- Nematodo del Quiste de la Papa (Globodera spp.)

Familia	Heteroderidae							
Género	Globodera							

- G. mexicana
- G. tabacum

(Wainer & Dinh ,2021; Plantard et al., 2008)

Introducción- Nematodo del Quiste de la Papa (Globodera spp.)

- 2 Objetivos e hipótesis
 - 3) Materiales y Métodos
 - 4) Resultados y Discusión
 - 5) Conclusiones
 - Recomendaciones
-) Agradecimientos

6

7

Objetivo General

Caracterizar molecularmente el gen mitocondrial citocromo b del nematodo del quiste *Globodera pallida*, asociado al cultivo de papa (*Solanum tuberosum* L.)

Objetivos

Objetivos específicos

- Validar un protocolo de reacción en cadena de la polimerasa (PCR) para detectar Globodera pallida, utilizando un cebador específico basado en ADN mitocondrial.
- ✤ Caracterizar las secuencias de la región del gen Cyt b de Globodera pallida.
- Contrastar los resultados moleculares con parámetros morfométricos de Globodera pallida en muestras obtenidas de cultivos de papa.

Hipótesis

La caracterización molecular del gen mitocondrial citocromo b permitirá la identificación del nematodo del quiste *Globodera pallida*, asociado al cultivo de papa (*Solanum tuberosum* L.)

1

6

7

- 2) Objetivos e hipótesis
 - 3) Materiales y Métodos
 - 4) Resultados y Discusión
 - 5) Conclusiones
 - Recomendaciones
-) Agradecimientos

Fase de campo

ESMERALDAS Richincha MINGO DE RICHINGURAHUA COTOPAXI NAPO BOLIVAR CHIMBORAZO

Ubicación geográfica

Material vegetal

(Sistema de Información Pública Agropecuaria, 2022; Turner, 1993)

Fase de laboratorio

Identificación y análisis morfológico - morfométrico del quiste de *Globodera* spp.

Fase de laboratorio

Identificación y análisis morfológico - morfométrico del estadio juvenil j2 *Globodera* spp.

Elutriador de Oostenbrick Aislamiento de filiformes

Fijación del filiforme

Visualización: 40x

(Van Eck et al., 1984)

Fase de laboratorio

Identificación molecular de Globodera spp.

INNOVACIÓN PARA LA EXCELENCIA

(Hominick et al., 1997; Subbotin et al., 2019)

Identificación molecular: Amplificación de ADN

Componentes y concentraciones finales para amplificación del gen Cyt b Condiciones para amplificación de la región Cyt b

		Etapa	Ciclos	Temperatura	Tiempo
Componentes	Concentración Final	Desnaturalización			
DreamTaq Green PCR	1 X	inicial	1	94°C	4 min
Master Mix	1.5 uM	Despeturolización	40	94°C	1 min
Cebador Het-cythE2	1 5	Desnaturalización	40	47°C	1 min
		Hibridación	40	72°C	1 min 30 s
Cebador Het- cytbR3		Extensión	10	12 0	
 <i>Nota</i> . μM: micromolar		Extensión final	1	72°C	10 min

(Subbotin et al., 2019)

4

6

7

1

- 2) Objetivos e hipótesis
 - 3) Materiales y Métodos
 - Resultados y Discusión
 - 5) Conclusiones
 - Recomendaciones
-) Agradecimientos

Ubicación geográfica

Sitios de muestreo de cultivos de papa para identificación de Globodera spp.

(Franco & González, 2011)

Muestras colectadas en las provincias de Pichincha, Cotopaxi y Tungurahua con presencia de Globodera spp.

	_ .		nro. de quiste		
Muestra	Parroquia	Localidad	100 gr	Variedad	
MC2	Mejía	Aloasí	2	Super chola	
MC4	Mejía	Machachi	11	Super chola	
MC5	Mejía	Machachi	3	Super chola	
MC8	Mejía	Machachi	1	Super chola	
MC15	Mejía	Aloasi	17	Super chola	
MC16	Mejía	Aloasi	14	Super chola	
MC17	Mejía	El Chaupi	63	Super chola	
MC20	Mejía	Machachi	86	Super chola	
CT1	Latacunga	Tanicuchí	13	Super chola	
CT6	Latacunga	Pastocalle	3	Super chola	
СТ9	Latacunga	Tanicuchí	90	Super chola	
CT11	Latacunga	Toacaso	6	Super chola	
CT13	Latacunga	Toacaso	5	Super chola	
CT18	Salcedo	San Miguel	10	Super Chola	
CT24	Salcedo	Santa Ana	7	Cecilia/ super chola	
CT26	Salcedo	San Miguel	8	Cecilia/super chola	
TG1	Píllaro	Chagrapamba	31	Cecilia	
TG2	Píllaro	Chagrapamba	34	Cecilia	
TG4	Píllaro	Chagrapamba	29	Super chola	
TG12	Quero	Quero	10	Super chola	
TG15	Quero	Quero	27	Super chola	
TG16	Quero	Quero	85	Super chola	
TG17	Quero	Quero	39	Natividad	
TG18	Quero	Quero	47	Natividad	
TG19	Quero	Quero	14	Natividad	

Nota. MC: Pichincha, CT: Cotopaxi, TG: Tungurahua

(Been et al., 2006; Cuesta & Monteros, 2022; Franco & González, 2011; Phillips et al., 2015)

	_ .		nro. de quiste			
Muestra	Parroquia	Localidad	100 ar	Variedad		
MC2	Mojío	ΔΙοροί		Super cholo		
	Mejía	Aluasi	۲ ۲ 1	Super chola		
	Mejia	Machachi				
MC5	Mejla	Machachi	3	Super choia		
	Mejia	Machachi	1	Super choia		
MC15	Mejia	Aloasi	17	Super chola		
MC16	Mejía	Aloasi	14	Super chola		
MC17	Mejía	El Chaupi	63	Super chola		
MC20	Mejía	Machachi	86	Super chola		
CT1	Latacunga	Tanicuchí	13	Super chola		
CT6	Latacunga	Pastocalle	3	Super chola		
CT9	Latacunga	Tanicuchí	90	Super chola		
CT11	Latacunga	Toacaso	6	Super chola		
CT13	Latacunga	Toacaso	5	Super chola		
CT18	Salcedo	San Miguel	10	Super Chola		
CT24	Salcedo	Santa Ana	7	Cecilia/ super chola		
CT26	Salcedo	San Miguel	8	Cecilia/super chola		
TG1	Píllaro	Chagrapamba	31	Cecilia		
TG2	Píllaro	Chagrapamba	34	Cecilia		
TG4	Píllaro	Chagrapamba	29	Super chola		
TG12	Quero	Quero	10	Super chola		
TG15	Quero	Quero	27	Super chola		
TG16	Quero	Quero	85	Super chola		
TG17	Quero	Quero	39	Natividad		
TG18	G18 Quero Q		47	Natividad		
TG19	Quero	Quero	14	Natividad		
ota. MC: Pich	incha, CT: Cotopax	ki, TG: Tungurahua				

Grado de infección

- Variedades susceptibles (Cuesta & Monteros, 2022)
- Práctica de monocultivo (Cuesta & Monteros, 2022)
- Capacidad de latencia (Been et al., 2006)
- Temperatura (Phillips et al., 2015)

(Been et al., 2006; Cuesta & Monteros, 2022; Franco & González, 2011; Phillips et al., 2015)

Identificación morfológica

Nota. (A), quiste; (B), región perineal del quiste; (C), Cola de J2 (D), cabeza con estilete del J2; (E), cuerpo completo del juvenil J2

(Djebroune et al., 2021; Stone, 1972; Wainer & Dinh 2021)

Identificación morfométrica

Valores medios y desviación estándar de los principales caracteres del quiste y la región perineal de Globodera spp.

Muestra	n	Longitud del cuerpo (µm)	Ancho del cuerpo (μm)	Crestas cuticulares	Diámetro fenestral (μm)	Longitud ano- vulva (<i>µm</i>)	Radio Granek	
MC2	20	575,20±94,22	549,79±92,66	11	21,35±2,53	50,18±15,48	2,35±0,62	=
MC4	20	584,22±78,81	570,45±82,85	10	20,74±2,59	44,07±14,09	2,11±0,55	
MC5	20	545,61±100,8	528,84±91,96	11	20,58±2,23	46,37±13,39	2,26±0,60	
MC8	20	574,08±79,10	551,40±73,59	10	21,11±2,89	49,03±16,22	2,30±0,60	
MC15	20	588,41±87,01	573,86±86,56	10	21,05±2,70	50,98±14,31	2,40±0,51	
MC16	20	579,35±80,95	545,71±84,75	10	19,85±2,40	45,98±12,59	2,30±0,47	
MC17	20	544,06±59,45	544,10±84,37	11	20,01±2,85	43,10±11,34	2,16±0,51	
MC20	20	644,99±68,58	624,15±58,47	11	22,77±2,28	61,48±11,81	2,70±0,42	[]
CT1	20	546,62±59,46	46,62±59,46 533,70±67,32 11 18,75±1,07 47,10±9,300 2,52±0,50		2,52±0,50	Encuentran dentro de los		
CT6	20	555,59±93,05	531,80±89,23	11	20,54±2,50	44,20±12,10	2,14±0,46	rangos descritos por
CT9	20	602,67±71,57	588,27±81,42	11	20,76±2,62	53,07±18,10	2,51±0,64	Porry of al (2018)
CT11	20	617,31±83,49	575,98±76,50	11	21,24±2,40	52,68±14,58	2,47±0,57	Felly et al., (2010)
CT13	20	629,21±77,72	612,12±70,66	11	21,88±2,46	55,67±15,93	2,52±0,52	
CT18	20	574,56±92,57	537,94±88,20	11	21,93±2,38	47,01±15,38	2,11±0,52	
CT24	20	570,59±79,80	547,64±80,20	11	19,72±2,12	38,44±7,870	1,96±0,37	
CT26	20	526,94±85,60	515,70±98,91	11	19,68±2,35	41,34±11,01	2,10±0,49	
TG1	20	605,85±87,14	592,98±84,88	11	20,73±3,23	48,29±12,05	2,35±0,60	
TG2	20	597,11±81,59	606,14±72,54	11	20,76±3,53	55,81±10,96	2,76±0,68	
TG4	20	642,97±114,6	645,17±111,5	10	21,34±3,07	49,42±16,40	2,37±0,85	
TG12	20	578,56±100,2	567,02±116,9	11	19,29±3,82	50,35±18,05	2,63±0,82	
TG15	20	530,91±90,81	515,15±106,4	10	18,79±3,49	39,13±10,08	2,11±0,51	
TG16	20	609,38±82,88	609,66±98,66	11	20,13±2,06	49,77±13,03	2,48±0,64	
TG17	20	572,54±94,89	568,53±91,09	11	21,69±3,30	48,82±15,20	2,25±0,63	
TG18	20	511,96±88,70	504,66±103,9	11	19,35±2,81	47,24±22,23 2,41±0,91		
TG19	20	575,37±92,40	584,08±90,26	11	21,14±3,79	46,35±10,70	2, 22+0,5 3	

(Djebroune et al., 2021; Llumiquinga et al., 2015; Perry et al., 2018)

Identificación morfométrica

Valores medios y desviación estándar de los principales caracteres del quiste y la región perineal de Globodera spp.

Muestra	n	Longitud	Ancho	Crestas	Diámetro fenestral	Longitud ano-	Radio Granek	
				culiculates	(µm)	νιίνα (μπ.)		
MC2	20	575,20±94,22	549,79±92,66	11	21,35±2,53	50,18±15,48	2,35±0,62	
MC4	20	584,22±78,81	570,45±82,85	10	20,74±2,59	44,07±14,09	2,11±0,55	
MC5	20	545,61±100,8	528,84±91,96	11	20,58±2,23	46,37±13,39	2,26±0,60	
MC8	20	574,08±79,10	551,40±73,59	10	21,11±2,89	49,03±16,22	2,30±0,60	
MC15	20	588,41±87,01	573,86±86,56	10	21,05±2,70	50,98±14,31	2,40±0,51	Difiere de Llumiquinga et al., (2015)
MC16	20	579,35±80,95	545,71±84,75	10	19,85±2,40	45,98±12,59	2,30±0,47	
MC17	20	544,06±59,45	544,10±84,37	11	20,01±2,85	43,10±11,34	2,16±0,51	Differe de Diebroune et al. (2021)
MC20	20	644,99±68,58	624,15±58,47	11	22,77±2,28	61,48±11,81	2,70±0,42	Differe de Djebrourie et di., (2021)
CT1	20	546,62±59,46	533,70±67,32	11	18,75±1,07	47,10±9,300	2,52±0,50	
CT6	20	555,59±93,05	531,80±89,23	11	20,54±2,50	44,20±12,10	2,14±0,46	Difiere de ambos estudios
CT9	20	602,67±71,57	588,27±81,42	11	20,76±2,62	53,07±18,10	2,51±0,64	
CT11	20	617,31±83,49	575,98±76,50	11	21,24±2,40	52,68±14,58	2,47±0,57	
CT13	20	629,21±77,72	612,12±70,66	11	21,88±2,46	55,67±15,93	2,52±0,52	
CT18	20	574,56±92,57	537,94±88,20	11	21,93±2,38	47,01±15,38	2,11±0,52	
CT24	20	570,59±79,80	547,64±80,20	11	19,72±2,12	38,44±7,870	1,96±0,37	
CT26	20	526,94±85,60	515,70±98,91	11	19,68±2,35	41,34±11,01	2,10±0,49	
TG1	20	605,85±87,14	592,98±84,88	11	20,73±3,23	48,29±12,05	2,35±0,60	
TG2	20	597,11±81,59	606,14±72,54	11	20,76±3,53	55,81±10,96	2,76±0,68	
TG4	20	642,97±114,6	645,17±111,5	10	21,34±3,07	49,42±16,40	2,37±0,85	
TG12	20	578,56±100,2	567,02±116,9	11	19,29±3,82	50,35±18,05	2,63±0,82	
TG15	20	530,91±90,81	515,15±106,4	10	18,79±3,49	39,13±10,08	2,11±0,51	
TG16	20	609,38±82,88	609,66±98,66	11	20,13±2,06	49,77±13,03	2,48±0,64	
TG17	20	572,54±94,89	568,53±91,09	11	21,69±3,30	48,82±15,20	2,25±0,63	
TG18	20	511,96±88,70	504,66±103,9	11	19,35±2,81	47,24±22,23	2,41±0,91	
TG19	20	575,37±92,40	584,08±90,26	11	21,14±3,79	46,35±10,70	2,22±0,53	

Nota. n= número de aislamientos analizados

(Djebroune et al., 2021; Llumiquinga et al., 2015; Perry et al., 2018)

Identificación morfométrica

Valores medios y desviación estándar de los principales caracteres del estadio juvenil J2 de Globodera spp.

Muestra	N	Largo dol cuorpo (um)	Ancho del	Largo	Longitud de la	Ancho de la	Cola hialina	
Muestia	IN		cuerpo (μm)	estilete (μm)	cola (µm)	cola (µm)	(µm)	
MC2	20	494,88±34,86	21,38±0,99	23,40±0,55	49,14±5,75	12,39±0,80	28,04±2,86	
MC4	20	508,14±12,91	21,46±0,90	24,08±0,62	44,61±2,67	11,05±0,50	27,99±2,00	
MC5	20	495,77±23,11	21,24±0,85	23,84±0,60	48,41±5,12	12,11±2,68	28,81±1,28	
MC8	20	490,77±25,72	21,57±0,79	23,64±0,51	45,26±4,74	11,32±0,77	28,01±2,02	
MC15	20	491,79±17,95	21,32±0,76	23,65±0,49	48,68±5,26	11,86±0,99	28,16±2,81	
MC16	20	427,29±25,93	21,43±0,72	23,70±0,80	50,40±4,16	12,40±0,67	27,50,2,93	
MC17	20	490,72±35,75	21,29±1,33	23,74±0,59	50,95±5,80	12,12±1,11	28,53±2,44	
MC20	20	515,15±30,32	21,90±1,14	23,94±0,72	47,73±5,06	11,94±0,77	28,09±3,76	
CT1	20	506,16±20,95	21,98±0,79	23,61±0,55	50,35±4,60	12,32±0,99	28,64±1,97	
CT6	20	471,56±32,94	20,65±1,01	23,52±0,62	47,61±3,83	11,67±1,14	28,09±1,76	
СТ9	20	505,68±21,33	21,71±1,09	23,66±0,36	48,18±3,36	11,52±0,78	29,45±0,98	Encuentran dentro de los
CT11	20	498,06±29,77	20,77±0,92	23,49±0,63	48,19±3,20	11,99±0,87	26,60±2,27	rangos descritos por
CT13	20	503,93±21,08	21,31±0,52	23,66±0,59	51,42±4,02	12,01±0,86	28,73±2,21	Perry et al (2018)
CT18	20	484,95±19,57	21,26±0,98	23,80±0,37	49,49±3,94	12,07±0,93	28,05±1,97	
CT24	10	495,58±60,74	20,91±0,86	24,05±0,65	50,41±4,65	12,20±0,70	28,22±2,40	
CT26	20	474,92±26,87	20,41±0,90	23,64±0,69	47,21±5,15	11,71±0,95	26.37±2,36	
TG1	20	480,13±21,39	20,66±0,72	23,63±0,78	48,01±5,53	11,52±1,22	28,64±3,16	
TG2	20	487,46±18,58	20,60±0,86	23,68±0,88	50,55±5,59	11,90±1,06	28,90±2,64	
TG4	20	467,59±31,14	20,46±1,24	23,38±0,96	49,94±5,75	11,78±0,98	27,86±2,54	
TG12	20	493,14±28,31	20,58±0,72	23,83±0,73	52,23±4,31	11,82±0,82	29,42±2,99	
TG15	20	486,88±30,10	20,69±0,70	23,79±0,86	51,99±5,45	12,25±0,80	29,28±3,33	
TG16	20	495,59±28,79	20,87±1,17	23,56±0,77	50,69±8,83	12,13±1,22	29,93±3,17	
TG17	20	493,14±28,31	20,58±0,72	23,83±0,73	52,23±4,31	11,82±0,82	29,42±2,99	
TG18	20	481,11±19,50	20,64±0,60	23,64±0,44	49,15±4,81	11,57±0,97	28,22±2,30	
TG19	20	507,84±34,59	21,45±0,69	23,54±0,66	52,22±4,68	12,22±0,99	29,50±2,12	

Nota. n= número de aislamientos analizados

(Djebroune et al., 2021; Llumiquinga et al., 2015; Perry et al., 2018; Salalia et al., 2017 Vallejo et al., 2020)

Identificación morfométrica

Valores medios y desviación estándar de los principales caracteres del estadio juvenil J2 de Globodera spp.

Muestra N		Largo del cuerpo	Ancho del	Largo	Longitud de la	Ancho de la	Cola hialina	
widestra	IN	(μm)	cuerpo (<i>µm</i>)	estilete (µm)	cola (µm)	cola (μm)	(µm)	
MC2	20	494,88±34,86	21,38±0,99	23,40±0,55	49,14±5,75	12,39±0,80	28,04±2,86	
MC4	20	508,14±12,91	21,46±0,90	24,08±0,62	44,61±2,67	11,05±0,50	27,99±2,00	Differende Ukarsiania en et el. (2045)
MC5	20	495,77±23,11	21,24±0,85	23,84±0,60	48,41±5,12	12,11±2,68	28,81±1,28	Difiere de Liumiquinga et al., (2015)
MC8	20	490,77±25,72	21,57±0,79	23,64±0,51	45,26±4,74	11,32±0,77	28,01±2,02	
MC15	20	491,79±17,95	21,32±0,76	23,65±0,49	48,68±5,26	11,86±0,99	28,16±2,81	Difiere de Diebroupe et al. (2021)
MC16	20	427,29±25,93	21,43±0,72	23,70±0,80	50,40±4,16	12,40±0,67	27,50,2,93	Differe de Djebrodrie et di., (2021)
MC17	20	490,72±35,75	21,29±1,33	23,74±0,59	50,95±5,80	12,12±1,11	28,53±2,44	
MC20	20	515,15±30,32	21,90±1,14	23,94±0,72	47,73±5,06	11,94±0,77	28,09±3,76	Difiere de ambos estudios
CT1	20	506,16±20,95	21,98±0,79	23,61±0,55	50,35±4,60	12,32±0,99	28,64±1,97	
CT6	20	471,56±32,94	20,65±1,01	23,52±0,62	47,61±3,83	11,67±1,14	28,09±1,76	
СТ9	20	505,68±21,33	21,71±1,09	23,66±0,36	48,18±3,36	11,52±0,78	29,45±0,98	
CT11	20	498,06±29,77	20,77±0,92	23,49±0,63	48,19±3,20	11,99±0,87	26,60±2,27	
CT13	20	503,93±21,08	21,31±0,52	23,66±0,59	51,42±4,02	12,01±0,86	28,73±2,21	Variaciones de las medias
CT18	20	484,95±19,57	21,26±0,98	23,80±0,37	49,49±3,94	12,07±0,93	28,05±1,97	morfométricas
CT24	10	495,58±60,74	20,91±0,86	24,05±0,65	50,41±4,65	12,20±0,70	28,22±2,40	
CT26	20	474,92±26,87	20,41±0,90	23,64±0,69	47,21±5,15	11,71±0,95	26.37±2,36	 Variabilidad intraespecífica
TG1	20	480,13±21,39	20,66±0,72	23,63±0,78	48,01±5,53	11,52±1,22	28,64±3,16	
TG2	20	487,46±18,58	20,60±0,86	23,68±0,88	50,55±5,59	11,90±1,06	28,90±2,64	geografica
TG4	20	467,59±31,14	20,46±1,24	23,38±0,96	49,94±5,75	11,78±0,98	27,86±2,54	Superposición de datos
TG12	20	493,14±28,31	20,58±0,72	23,83±0,73	52,23±4,31	11,82±0,82	29,42±2,99	
TG15	20	486,88±30,10	20,69±0,70	23,79±0,86	51,99±5,45	12,25±0,80	29,28±3,33	 Plasticidad fenotípica
TG16	20	495,59±28,79	20,87±1,17	23,56±0,77	50,69±8,83	12,13±1,22	29,93±3,17	
TG17	20	493,14±28,31	20,58±0,72	23,83±0,73	52,23±4,31	11,82±0,82	29,42±2,99	
TG18	20	481,11±19,50	20,64±0,60	23,64±0,44	49,15±4,81	11,57±0,97	28,22±2,30	
TG19	20	507,84±34,59	21,45±0,69	23,54±0,66	52,22±4,68	12,22±0,99	29,50±2,12	

Nota. n= número de aislamientos analizados

(Djebroune et al., 2021; Llumiquinga et al., 2015; Perry et al., 2018; Salalia et al., 2017 Vallejo et al., 2020)

Amplificación de ADN

Gen citocromo b

Nota. M: Marcador molecular de 2 kb Low DNA Mass Ladder, C-: Control negativo, C+: Control positivo, Gel agarosa 1,5%

(Subbotin et al., 2019)

Secuenciación

			Región Cy	/t b						
Mucctro	Wastra Especia identificado. Cabartura (%) Identidad (%) Número de Longitud d								C	
muestra		Copertura (%)	identidad (%)	accesión	secuencia	%GC	A	C	G	•
MC2	Globodera pallida	99	99.18	<u>MT872310.1</u>	490	29.18	87	62	81	260
MC4	Globodera pallida	99	99.80	<u>MT872310.1</u>	490	29.59	87	63	82	258
MC5	Globodera pallida	100	99.76	<u>MT872310.1</u>	416	31.49	71	56	75	214
MC8	Globodera pallida	100	99.40	<u>MT872310.1</u>	498	30.12	88	66	84	260
MC15	Globodera pallida	100	98.58	<u>MT872310.1</u>	492	29.67	90	66	80	256
MC16	Globodera pallida	100	100	<u>MT872310.1</u>	473	29.53	86	60	80	248
MC17	Globodera pallida	100	98.97	<u>MT872310.1</u>	486	29.62	90	61	83	252
MC20	Globodera pallida	100	98.78	<u>MT872310.1</u>	492	29.88	90	65	82	255
CT1	Globodera pallida	100	99.54	<u>MT872310.1</u>	431	30.63	74	57	75	225
CT6	Globodera pallida	100	99.58	<u>MT872310.1</u>	476	29.41	85	58	82	251
CT9	Globodera pallida	99	99.77	<u>MT872310.1</u>	433	30.55	78	55	77	222
CT11	Globodera pallida	100	99.77	<u>MT872310.1</u>	433	30.48	77	55	77	224
CT13	Globodera pallida	99	99.80	<u>MT872310.1</u>	492	29.67	88	63	83	258
CT18	Globodera pallida	100	99.81	<u>MT872310.1</u>	496	29.84	89	65	83	259
CT24	Globodera pallida	100	99.41	<u>MT872310.1</u>	508	29.99	87	64	88	269
CT26	Globodera pallida	100	99.80	<u>MT872310.1</u>	492	29.67	88	64	82	258
TG1	Globodera pallida	100	99.80	<u>MT872310.1</u>	494	29.75	88	64	83	259
TG2	Globodera pallida	100	100	<u>MT872310.1</u>	488	29.91	87	63	82	255
TG4	Globodera pallida	99	99.76	<u>MT872310.1</u>	416	31.01	71	55	74	216
TG12	Globodera pallida	99	99.38	<u>MT872310.1</u>	480	29.16	86	58	82	254
TG15	Globodera pallida	100	99.15	<u>MT872310.1</u>	472	29.23	85	56	82	249
TG16	Globodera pallida	100	99.36	<u>MT872310.1</u>	469	29.64	84	58	81	246
TG17	Globodera pallida	99	99.60	<u>MT872310.1</u>	496	29.83	88	66	82	260
TG18	Globodera pallida	100	99.08	<u>MT872310.1</u>	434	30.64	80	54	79	221
TG19	Globodera pallida	100	99.58	<u>MT872310.1</u>	477	29.14	86	558	81	258

Poblaciones de nematodos eran similares no eran idénticas Pylypenko et al., (2014)

AT=70,2%

Contenido promedio de A+T superior al 70%.

Timina mayor al 50% (Pylypenko et al., 2014)

Desaminación de las bases nitrogenadas de adenina y citocina

(Formaggioni et al., 2021; Pylypenko et al., 2014)

Polimorfismos de un solo nucleótido

SNPs													-						
	1(T)	5(A)	17(T)	72(A)	128(T)	344(T)	346(T)	351(T)	364(T) 369(C)) 398(G) 406(G)	432(A)) 445(T)	453(T)) 456(T)	472(T)	% SNPs	
MC2	A	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,7	-
MC4	А	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,3	
MC5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	
MC8	А	-	-	-	-	-	-	-	-	-	-	А	-	-	-	-	G	13,0	
MC15	А	Т	-	-	-	-	-	-	А	-	Т	А	-	-	А	С	-	30,4	% de SNPs
MC16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	70 40 011 3
MC17	-	-	-	-	-	-	-	-	-	-	-	-	-	А	-	-	-	4,3	-
MC20	-	-	-	-	-	А	-	-	-	-	-	-	-	-	А	-	-	8,7	Mecanismos de adaptación
CT1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	А	-	-	4,3	
CT6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	А	-	-	4,3	 Presión de selección
СТ9	-	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,3	Condicionos
CT11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	• Condiciones
CT13	-	-	-	-	-	-	С	-	-	-	-	-	-	-	-	-	-	4,3	ambientales
CT18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	
CT24	А	Т	-	-	-	-	С	-	-	-	-	-	G	-	-	-	-	17,4	
CT26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	
TG1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	
TG2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	
TG4	-	-	-	Т	-	-	-	-	-	-	-	-	-	-	-	С	-	8,7	
TG12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	С	-	4,3	
TG15	-	-	-	-	-	-	-	-	-	Т	-	А	-	-	-	-	-	8,7	
TG16	-	-	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,3	
TG17	А	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,7	_
TG18	-	-	-	-	Т	-	-	С	А	-	-	А	-	-	-	-	-	17,4	
TG19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,0	

(Wu et al. 2015; Varypatakis et al., 2020)

1

6

7

- 2) Objetivos e hipótesis
 - 3) Materiales y Métodos
 - 4) Resultados y Discusión
 - 5 Conclusiones
 - Recomendaciones
-) Agradecimientos

Conclusiones

- Las técnicas moleculares basadas en la amplificación del gen citocromo b, lograron caracterizar las secuencias analizadas, lo cual permitió identificar a *Globodera pallida* en todas las muestras recolectadas de los cultivos de papas en las provincias Pichincha, Cotopaxi y Tungurahua.
- El protocolo estandarizado en este estudio, permitió identificar a *Globodera pallida* en todas las localidades muestreadas, a través de la amplificación del ADN mitocondrial del gen citocromo b utilizando los primers Het-cytbF2 y Het-cytbR3.
- La caracterización de las secuencias del gen mitocondrial citocromo b, mostraron un contenido promedio de GC de 29,8% y de AT de 70,2%, una longitud promedio de secuencia de 472 pb y un porcentaje de identidad superior al 98% en relación con la secuencia perteneciente al número de acceso MT872310.1.
- La identificación de Globodera pallida a través de la amplificación del ADN mitocondrial del gen citocromo b y la caracterización morfológica permiten tener un enfoque integral, resultados confiables y precisos en la distinción entre las especies de Globodera.

) Introducción

1

6

7

- 2) Objetivos e hipótesis
 - 3) Materiales y Métodos
 - 4) Resultados y Discusión
 - 5) Conclusiones
 - Recomendaciones
- Agradecimientos

Recomendaciones

- Con el fin de distinguir entre especies del mismo género, se sugiere evaluar la mayor cantidad de individuos y parámetros morfológicos del cuerpo de la hembra (quiste y región perineal), del estadio juvenil j2 y machos, para garantizar una mayor robustez y validez de los resultados.
- En futuros análisis, se debe realizar tanto pruebas moleculares como morfológicas para evitar errores en la identificación de especies de nematodos pertenecientes al género Globodera y así obtener resultados confiables y precisos.
- Para obtener una visión completa de la diversidad genética de este nematodo, es fundamental llevar a cabo estudios filogenéticos, que permitan tener mayor información sobre las relaciones e historias evolutivas del nematodo, así como información precisa acerca de su clasificación taxonómica.

Agradecimientos

Dra. Karina Proaño. Directora del proyecto

Ing. Pablo Llumiquinga Codirector del proyecto

FAMILIA Y AMIGOS

