

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CARRERA DE PETROQUÍMICA

TEMA:

"Caracterización físico-química del aceite de semillas de maracuyá, grosella, guayaba, zapote y piñuela: un potencial residuo agroindustrial como plataforma base para procesos industriales y biorrefinería"

Autora:

Castillo Jiménez, Ammy Nicole

Director:

Ing. Jonathan Javier, Sayavedra Delgado. Msc

Latacunga, 2023

CÓDIGO: GDI.3.1.004

INTRODUCCIÓN

Introducción

Los aceites vegetales han cobrado protagonismo en diversos campos debido a su naturaleza renovable y su amplia versatilidad

Producidos a partir de semillas y frutos de plantas, estos aceites se originan en una amplia variedad de fuentes vegetales

Con su origen en la naturaleza, estos aceites son recursos renovables que contribuyen a la reducción de la dependencia de fuentes no renovables

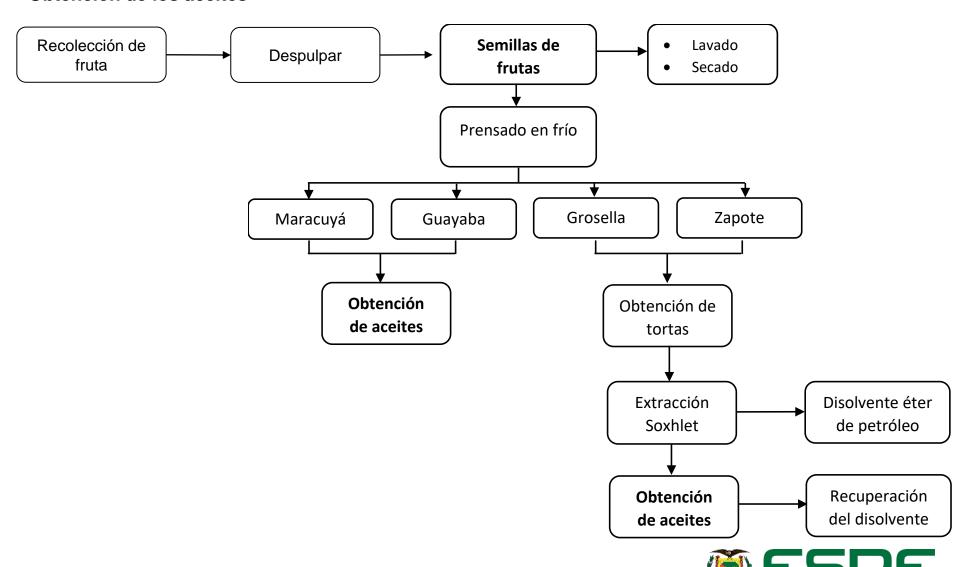
Objetivos

Caracterizar físicoquímicamente el aceite de
semillas de maracuyá,
grosella, guayaba y
zapote, un potencial
residuo agroindustrial
como plataforma base
para procesos industriales
y biorrefinería.

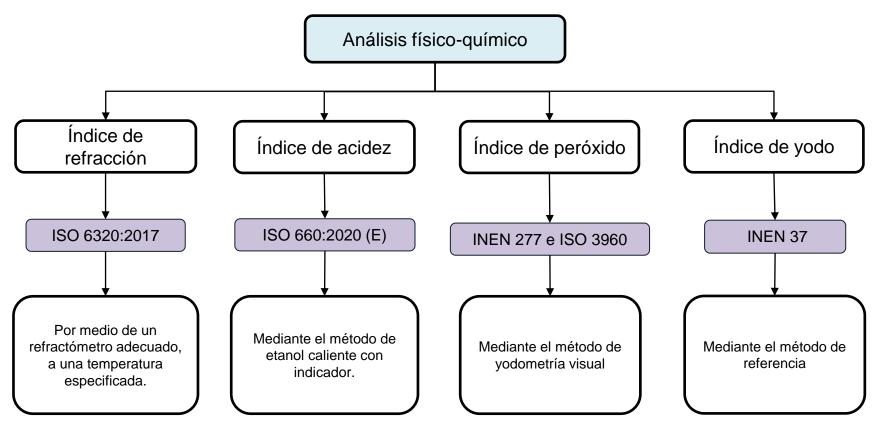
Obtener aceite de las semillas de Maracuyá, Grosella, Guayaba y Zapote mediante prensado en frío.

Determinar las características físicoquímicas de los aceites de las semillas de Maracuyá, Grosella, Guayaba y Zapote, utilizando las Normas Técnicas INEN.

Determinar el perfil lipídico de los aceites de las semillas de Maracuyá, Grosella, Guayaba y Zapote mediante el uso de la técnica de cromatografías de gases.

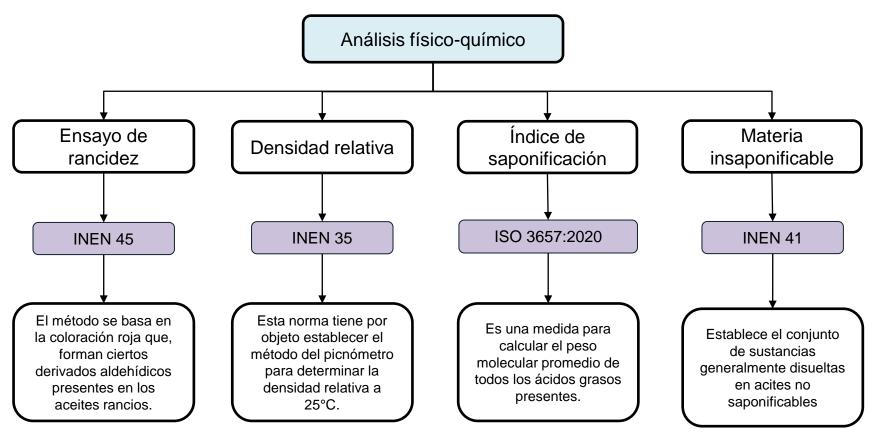


UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCEPENCIA


Metodología

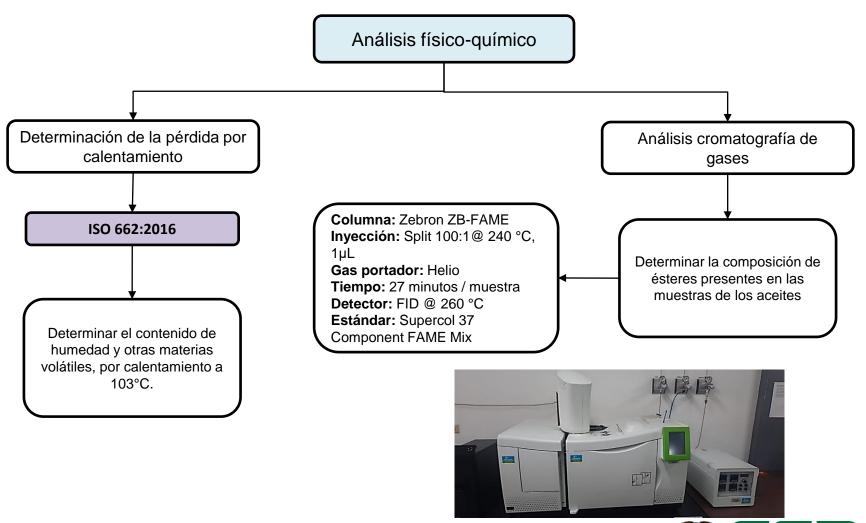
Obtención de los aceites

Metodología


Análisis físico-químico

Metodología

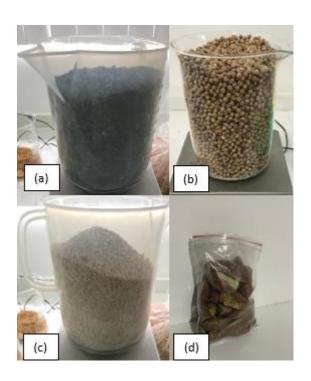
Análisis físico-químico



UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCEPENCIA

Metodología

Análisis físico-químico



Materia Prima

Tabla 1

Cantidad de semillas obtenidas de cada fruta

Fruta	Kg de fruta	Kg de semilla
Maracuyá	1	0.038
Grosella	1	0.0185
Guayaba	1	0.023
Zapote	1	0.053
Piñuela		

Obtención de aceite

Tabla 2Rendimiento de cada aceite de semilla obtenido por prensado en frío

Fruta	Kg de semillas procesados	Volumen (ml) de aceite	Forma de recuperación	Rendimiento (%)
Maracuyá	3.6	268	Aceite	7.444
Grosella	3.5	0	Torta	0
Guayaba	6.9	98	Aceite	1.420
Zapote	2.464	0	Torta	0

Obtención de aceite

Tabla 3

Rendimiento del aceite de semilla de grosella y zapote obtenido por extracción por solvente

Fruta	Semilla triturada (g)	Disolvente éter de petróleo (ml)	Aceite (ml)	Rendimiento (%)
Grosella	152.529	500	5	0.033
Zapote	127.813	500	4	0.031

Tabla 4Resultados de las pruebas de caracterización

Análisis	Maracuyá	Guayaba	Bibliografía (características de calidad)
Densidad	0.907±5.5 ×10 ⁻³	0.928±3 ×10 ⁻³	0.90 , 0.92 (Rodrigues et al., 2021; Narváez et al., 2020).
Pérdida por calentamiento [%]	0.210±0.01	0.177±0.023	0.2%, 0.1-1% (Udoh et al., 2017; Vijayakumar & Raja, 2022).
Índice de refracción	1.4743±4.7140 ×10 ⁻⁴	1.4753±4.7140 ×10 ⁻⁴	1.47, 1.46 (Rodrigues et al., 2021; Kapoor et al., 2020).
Índice de acidez [mg KOH / g]	1.119±0.014	0.424±0.027	< 4 mg KOH / g , 1.17 mg KOH / g, 0.40 mg KOH / g (Comisión del Codex Alimentarius, 2008; Tahsin, 2023; Kapoor et al., 2020)
Índice de peróxido [meq O ₂ / kg]	10.655±0.185	6.115±0.205	$<$ 15 meq O_2 / kg (Comisión del Codex Alimentarius, 2008)

Tabla 5Resultados de las pruebas de caracterización

Análisis	Maracuyá	Guayaba	Bibliografía (características de calidad)
Índice de yodo [cg I ₂ /g]	132.92±0.00	139.67±0.00	108, 127.56 (Pantoja, 2017; Menacho & Saavedra, 2020).
Índice de saponificación [mg KOH / g]	192.632±0.00	191.323±0.00	179.06, 188 mg KOH / g (Rodrigues et al., 2021; Narváez et al., 2020)
Materia insaponificable [%]	1.236±0.171	0.559±0.063	1.51, 0.5% (Cassia & Neuza, 2012; Villa & Benalcázar, 2015).
Ensayo de rancidez	Negativo	Negativo	(Pantoja, Hurtado, & Martínez (2017)).

Figura 1

Cromatograma del estándar (a) y del aceite de semilla de maracuyá (b)

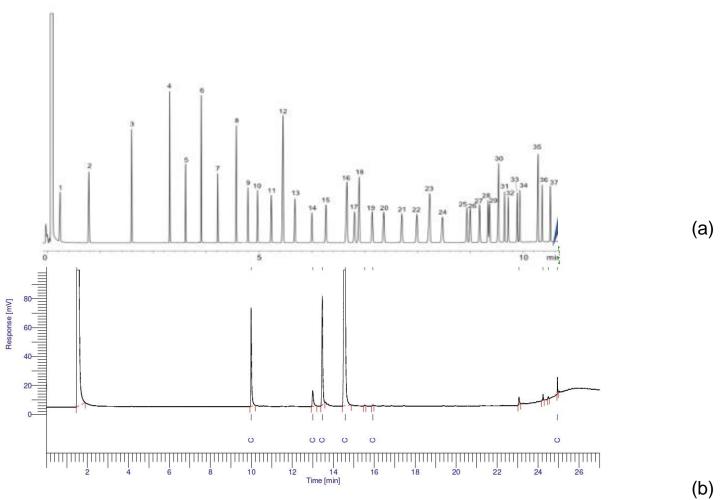


Tabla 6

Resultados de la cromatografía de gases del aceite de maracuyá

Pico	Tiempo de retención	Componente identificado	Ácido graso	% área
1	9.99	H ₃ C OH	Ácido palmítico C16-0	10.85
2	13	СH ₃	Ácido esteárico C18-0	2.64
3	13.47	CH3 OH	Ácido oleico C18-1-CIS-9	14.28
4	14.58	CH ₃	Ácido linoleico C18-2-CIS-9-12	71.26
5	15.93	CH ₃	Ácido araquídico C20-0	0.11
6	24.94	СН3	Ácido cis- 4,7,10,13,16,19- docosahexaenoico C22-6-CIS-4-7-10-13	0.86

Figura 2

Cromatograma del estándar (a) y del aceite de semilla de guayaba (b)



Tabla 6

Resultados de la cromatografía de gases del aceite de guayaba

Pico	Tiempo de retención	Componente identificado	Ácido graso	% área
1	9.99	H ₃ C OH	Ácido palmítico C16-0	7.20
2	13	CH ₃	Ácido esteárico C18-0	3.17
3	13.46	CH3 OH	Ácido oleico C18-1-CIS-9	7.88
4	14.59	CH ₃	Ácido linoleico C18-2-CIS-9-12	79.43
5	23.28	CH ₃	Ácido lignocérico C24-0	1.78
6	24.61	CH ₃	Ácido ricinoleico C18-1-CIS- 9-OH-12	0.11
7	24.88	CH ₃	Ácido cis-4,7,10,13,16,19- docosahexaenoico C22-6-CIS-4-7-10-13	0.45

Figura 3
Espectro infrarrojo con transformada de Fourier del aceite de maracuyá

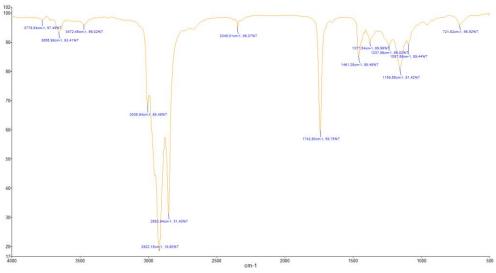
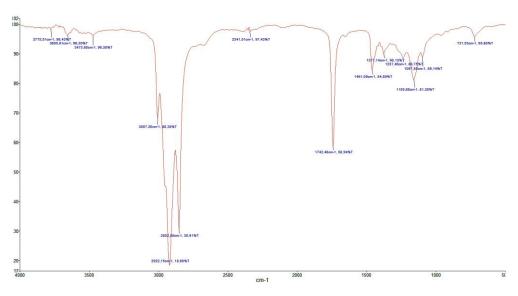


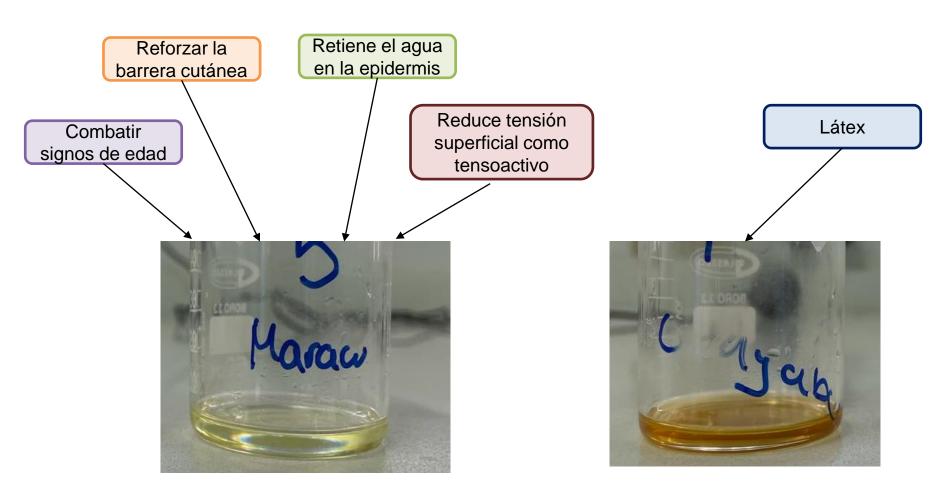
Tabla 7

Grupos identificados en el FTIR

Picos cm-1	Grupos
2852,58-2953,98	alifáticos
3655,54-3473	hidroxilo (O-H) y fenoles.
742,66	carboxilo (C=O)
1461,04-721,64	alifáticos de cadena larga

Figura 4
Espectro infrarrojo con transformada de Fourier del aceite de guayaba




Tabla 7

Grupos identificados en el FTIR

Picos cm-1	Grupos
2852,58-2953,98	alifáticos
3655,54-3473	hidroxilo (O-H) y fenoles.
742,66	carboxilo (C=O)
1461,04-721,64	alifáticos de cadena larga

Aplicaciones

CONCLUSIONES

- La obtención de aceite en **prensado en frío** solo fue posible de las semillas de **maracuyá y guayaba**, a través de este proceso se logró obtener un rendimiento de 7.44% y 1.420% respectivamente, por lo que se procedió a realizar sus respectivos análisis físicos químicos, como el **índice de acidez** que indicó un buen estado y sin indicativos de degradación.
- El **análisis de rancidez** cualitativo reflejó que ambos aceites tanto el aceite de maracuyá como el de guayaba no presentan signos de rancidez, de igual manera, el **índice de peróxido** reflejó valores que se encuentran por debajo de los 15 miliequivalentes de oxígeno activo/ kg de aceite.
- El índice de yodo, índice de saponificación y el análisis por cromatografía presenta una información valiosa sobre una detallada visión de la composición de ácidos grasos presentes en las distintas muestras, siendo el ácido linoleico el componente mayoritario en ambos tipos de aceite, lo que respalda la viabilidad para su uso en aplicaciones cosméticas y culinarias teniendo beneficios para la salud humana.

CONCLUSIONES

- Gracias a los espectrómetros infrarrojos del aceite de maracuyá y del aceite de guayaba se confirmaron la presencia de varios grupos funcionales importantes para combatir signos de edad.
- La fruta piñuela, presentó varios desafíos para su obtención, debido a que la escasez de esta fruta y su naturaleza no estacional dificultan su acceso y disponibilidad, por lo cual no se encontró y no pudo ser posible la extracción de aceite de dicha fruta.

RECOMENDACIONES

- Una vez recolectada las frutas tratarlas en el menor tiempo posible, ya que si se deja pasar bastante tiempo se puede llegar a dañar y de esa manera se pierde la materia prima para la extracción de los aceites.
- Tomar en cuenta que para cada prueba analítica se deben lavar correctamente con jabón neutro, agua destilada y etanol los materiales a utilizar, debido a que si hay presencia de impurezas las pruebas analíticas pueden salir erróneas.
- Durante la extracción en Soxhlet de los aceites no obtenidos por prensado en frío realizarlo en un ambiente ventilado debido a que el solvente a utilizar es éter de petróleo y es un reactivo inflamable y tóxico.
- Estudiar y caracterizar las tortas obtenidas en la extracción por prensado en frío para saber sus posibles aplicaciones en las diferentes industrias.

i Gracias!

