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Abstract—This research presents the design and simulation 

of a neural network-based fault identification system for a 

photovoltaic panel. The system allows detecting mismatch and 

degradation faults caused by humidity, which are equivalent to 

the increase or decrease of the internal series resistance of the 

panel respectively, thus preventing damages that could limit its 

performance and lifetime. Mismatch failures are caused by the 

occurrence of hot spots, while panel exposure in humid 

environments causes failures due to moisture degradation. A 

photovoltaic panel is modeled using the parameters provided by 

its manufacturer. A series resistance estimator based on the 

recursive least square’s method with a forgetting factor and 

upper and lower confidence intervals is proposed. Fault 

identification is performed using a multilayer perceptron neural 

network with supervised training. Inputs to the network are 

irradiance and estimated series resistance value. Outputs are: 

normal operation, failure due to mismatch and failure due to 

moisture degradation. The estimator is evaluated for various 

scenarios, including normal and failures operation. In addition, 

it is subjected to different solar irradiance profiles based on real 

data. The estimator demonstrates good performance, correctly 

identifying all evaluated operating points. 

Keywords—Panel failures, neural networks, recursive least 

squares with forgetting factor, photovoltaic panel. 

I. INTRODUCTION 

Technological, economic development of countries and 
population growth are part of the main reasons for high energy 
consumption rates [1]. The   of annual   (carbon dioxide) 
emissions from fossil fuel combustion are significant factors 
contributing to global climate change [2]. In the quest for 
clean energy sources, solar energy is one of the best options 
for reducing pollution and environmental impact. The future 
competitiveness of solar energy is driven by countries that 
support the development of new technologies and research 
aimed at reducing manufacturing costs. However, factors such 
as the nature of solar energy, geographical location, and 
changes in weather conditions can limit the implementation of 
systems that harness large amounts of solar energy [3]. 

Despite the limitations, devices have been developed using 
photovoltaic technology, which converts sunlight irradiance 
into electricity through the photovoltaic effect [4]. However, 
this does not imply that PV photovoltaic panels are immune to 
failures; on the contrary, these commonly occur in their 
electrical components [5]. PV panels are susceptible to failure 
due to various common factors, such as humidity, 
deterioration of internal electrical components, connection 

breakages, and even human errors [6]. Additionally, PV can 
experience failures caused by natural conditions, such as 
shading. Shading prevents the proper delivery of power due to 
low irradiance levels reaching the panel. These losses can be 
reduced by using bypass diodes or changing the panel 
interconnection [7]. 

In the search for methods to detect and identify faults in 
photovoltaic energy, the implementation of Neural Networks 
(NN) is one of the most widely used methods today as it is 
based on information processing similar to the human brain 
[8]. This technique relies on numerical weights that adapt to 
the training type and the number of neurons defined in each 
layer. There are various types of artificial neural networks, 
such as Multilayer Perceptron (MLP), which uses non-linear 
activation functions, and Recursive Neural Networks (RNN), 
which leverage time series data for deep learning purposes [9].  

The identification of faults caused by increases in series 
resistance is analyzed through a method proposed in [10], 
which is based on measuring the slope of the current – voltage 
(I-V) curve at a fixed distance from the short-circuit current. 
In [11], a method is employed that detects PV degradation 
based on the increase in series resistance value by analyzing 
the error in predicting the position at the maximum power 
point. In [12], parameter estimation of the photovoltaic panel 
is performed based on a pattern search optimization algorithm 
as a tool to diagnose possible faults affecting its performance. 
However, the aforementioned works use artificial intelligence 
methods or estimation techniques to detect variations caused 
by a fault in the panel, but they do not define the specific fault 
and its effects on the panel. This is where the importance lies 
in identifying specific faults in internal components of the PV 
that can cause a decrease in its performance and reduce its 
lifespan. 

This research proposes a fault identification model for a 
PV, the analyzed faults include mismatch and moisture 
degradation, all of which can affect the performance of the 
PV. These faults directly cause internal damage to the series 
resistance sR  of the cells that make up the PV. When failures 

occur such as: mismatch produce an increase in sR , while if 

there is a reduction in the value of   it is usually caused by 
moisture degradation failure [13]. The fault identification 
model is implemented using a multi-layer perceptron neural 
network, it is trained based on the value of sR  and various 

irradiance levels to determine three operational modes at its 
output, the first mode represents normal operation (NOP), the 



second mode represents “Fault 1” due to mismatch, and the 
third mode represents “Fault 2” caused by moisture 
degradation, these faults occur when the value of the series 
resistance increases or decreases, respectively. The fault 

identification model relies on the value of sR , which is 

difficult to measure directly as it is an internal parameter, 

therefore, this research also proposes an sR  estimator model 

called sR , the sR  model is developed using the recursive least 

squares method in short time intervals, with a 95% confidence 

interval around the estimated value. This ensures that the 

estimated s
R̂ value falls within a confidence range, 

minimizing confusion regarding estimation errors and panel 
faults. The models are evaluated under various radiation 
scenarios in a simulator (Matlab/Simulink) for their reliability 
and extensive range of tools. 

The main contributions of this research are the following: 
i) To present a failure identifier in PV systems to prevent 
damage and extend their useful life, guaranteeing the safety of 
components susceptible to failure. ii) To provide an alternative 
to avoid the replacement of panels that present deficiency in 
their performance caused by misalignment failures and 
degradation due to humidity. iii) To reduce repair or 
replacement costs of panels through early detection of failures. 

II. PHOTOVOLTAIC PANEL DESCRIPTION AND MODELING 

In this research a PV operation fault identification model 
is proposed, the proposal is based on the training of a 
multilayer perceptron neural network. In order to obtain the 
data for the training of the PV fault identifier model, a 
simulated PV model is designed as shown in Fig. 1, which 
includes a PV with manufacturer's characteristics, a Boost 
topology DC/DC converter controlled by a MPPT algorithm 
based on the perturb and observe (P&O) method, a local load 
that can take different values. The PV inputs are the irradiance 

G , and temperature
oT , in addition, the PV has a series 

resistance sR given by the manufacturer, if sR changes to a 

high value, "Fault 1" of mismatch type occurs, while a 

minimum value of sR  causes "Fault 2", caused by humidity 

degradation. Where pvI and pvV  is the PV current and voltage, 

the elements that make up the Boost converter are: the 
pvL

coil, the
pvC capacitor, the mosfet that receives the PWM

1G

trigger signal and the DC capacitor ( )DCC . 

 

Fig. 1. Schematic of the process of identifying faults in a photovoltaic 
panel. 

 The PV model should be considered reliable and 
adaptable for predicting the power generated by series/parallel 
connected PV cells. The PV is based on a single diode PV cell 
model comprising a single current source with an antiparallel 

diode, a parallel shunt resistor and a series resistor sR , as 

shown shR  in Fig. 2. 

 

 

 

 

 

Fig. 2. Model of an equivalent PV cell. 

To obtain the current of the photovoltaic cell, it is 
necessary to apply Kirchhoff’s current law to the model of the 
single-diode photovoltaic cell. Applying this law yields the 
equation for the current of the photovoltaic panel as presented 
in (1). [6] 

pv ph p D shI I N I I= − −                       (1) 

Where the photocurrent is represented as phI ,  it occurs 

when the photovoltaic cell is exposed to incident sunlight. 
This current is linearly modified relative to a specific 
temperature and solar irradiance. Additionally, one must 

consider the number of cells in parallel pN , the current of the 

antiparallel diode DI , and the current of the shunt resistance 

shI . In Equation (2), the current of the shunt resistance shI is 

obtained using the method of Kirchhoff’s current laws. [6] 

pv pv s

sh

sh

V I R
I

R

+
=                            (2) 

In Equation (1), the equations (2) are substituted to obtain 
the value of the overall photovoltaic panel current, as 
expressed in Equation (3). 

pv pv s

pv ph p D

sh

V I R
I I N I

R

+ 
= − −  

 
               (3) 

III. PHOTOVOLTAIC PANEL FAILURES 

A failure is interpreted as an event that reduces the 
efficiency of the system, and they are not eliminated without 
a study of the problem. One of the main causes of PV 
underperformance is construction defects. Any instability in 
the magnitude of the component causes power drop 
degradation [14]. PV e systems are prone to experience 
physical faults caused by the insulation of the wires in the 
various component strings, resulting in open circuit faults in 
the PV generators. Line faults are caused by low impedance 
current shifting in a PV array. There is a close resemblance 
between line faults and ground faults, but the low impedance 
path is from the current inducing conductor to ground. A 
summary of the faults that PV systems can experience, along 
with their causes and the effects to which they are typically 
exposed, is presented in [15].  

A. Mismatch Failure 

Mismatch faults are produced when there is a variation in 
the electrical values of the photovoltaic module compared to 



its original state. This occurs when the cells are exposed to 
shade, causing hot spots and a decrease in dissipated power 
affecting the internal components, such as changes in the 

value of sR  [16]. 

B. Potting Failures and Moisture Degradation 

Encapsulation failure and degradation occur when solar 

panels are exposed to hot and humid environments, as well as 

when they are subjected to increased salts, contaminants, or 

external agents. Encapsulation failure, specifically 

delamination, causes power loss, and therefore, degradation 

leads to wear, simulating a reduction in sR  [17]. 

IV. PROPOSED PV FAULT IDENTIFICATION SYSTEM 

Once the types of faults have been studied and the faults 
to be identified in this case have been selected: mismatch 
faults and degradation due to moisture. The research work 
proposes a fault identification system in a PV based on neural 
networks. The implementation of the proposal is shown in Fig 
3, where the top part (gray color) presents the photovoltaic 
system, models the panel, and designs the MPPT controller for 
the Boost DC/DC converter as described in section II. It is 
important to highlight that as a technical data of the PV, the 

value of sR  is available, which increases or decreases 

depending on the type of fault it presents. This resistance is 
inherent in the real-life system and is not measurable. For this 
reason, an estimator of the series resistance is proposed as 
shown in Fig 3 (green color), the estimator is based on the 
recursive least squares method with a forgetting factor 
described in section IV- (A). The inputs of the estimator are 

pvV and pvI , and the manufacturer’s value of sR , and the 

output obtained is sR̂  within confidence intervals, to ensure 

that there is no confusion between estimation error and a fault. 
The fault identification system shown in Fig 3 (blue color) 
uses an MLP neural network with two inputs: the radiation G  

measured inline and sR̂ , to obtain as output: NOP, Fault 1 

(mismatch), or Fault 2 (degradation due to humidity). This 
allows the neural network to learn and identify when a fault 
occurs, resulting in a power change at the PV output, without 
confusing this change with irradiance variations. The design 
of the neural network is presented in section IV- (D). 

 

Fig 3. Stages of the failure detection process in a PV. 

A. Proposed  Series Resistance Estimator ( )sR̂  

This section presents the design of the sR̂  estimator 

that corresponds to the input of the fault identification model, 

because sR is an internal resistance of the panel without access 

to measurement, under normal conditions its value is 
maintained at the value specified by the manufacturer. To 
estimate the value, two stages are considered: the first 
estimation is by means of the recursive least squares method 
with forgetting factor (FFRLS), and the second, the 
application of confidence intervals that guarantees that the 
estimated values are in a reliability range of 95% . 

B. Technique-Based Estimator (FFRLS) 

The real-time recursive least squares (RLS) technique 
takes care of the reduction of modeling errors. In addition, the 
RLS method ensures that the estimated variables resemble the 
actual values. The PV variables are constantly modified, 

when the value of
0T and G changes. The advantage of this 

technique is shorter measurement times. It is necessary to 
obtain several parameters for this estimation such as the value 

of the estimated current ( )pvÎ x which is obtained by applying 

OHM's Law described in (4), where: ( )pvV x is the vector of 

the PV voltage values, ( )sR̂ x is the vector of the initial 

estimation data of ( )sR x to this value is added 0.01to prevent 

noise in the data[18]. 

( )
( )

( )
pv

pv

s

V x
Î x

R̂ x 0.01
=

+
                        (4) 

In order to achieve accurate estimation, predictions are 
made in real-time. The Kalman filter is deduced as an RLS 
estimation to modify and improve the estimated value. To 

obtain the Kalman gain ( )K x , in (5) is used, where 0P  

represents the initial parameter of the covariance matrix that 
encompasses the problem data in the estimation process. 

 ( ) 0

0

P
K x

P 1
=

+
                              (5) 

To improve the estimated value obtained with RLS, a 

forgetting factor called ( )λ  is applied, which updates the 

estimated data over time and whose value must be between 

( )0 λ 1  . If λ 1 , in other words, the correct value for λ  

is obtained through trial and error [13]. The current parameter 

of the covariance matrix P  is calculated using in (6), where 
a value of 0.98  is considered for λ . 

 ( )( )( )0 0

1
P P K x P

λ

 
=  −  
 

                    (6) 

The data of the estimator sR̂  are contained within a 

vector of variables obtained in (7), where ( )sR̂ x 1−  

represents the previous value of the estimation of sR , ( )K x  

is the Kalman gain, ( )e x  is the residual error, and x  

represents the number of samples [19]. 

 ( ) ( ) ( ) ( )s s
ˆ ˆR x R x 1 K x e x= − +                        (7) 

 ( ) ( ) ( )pv pv
ˆe x I x I x= −                             (8) 

In equation (8), the residual error produced by the 
recursive least square’s method is shown. It represents the 



difference between the current ( )pvI x  and the estimated 

current ( )pvÎ x . 

C. Confidence Interval 

This section describes the method used for calculating 
confidence intervals of the estimated resistance. This allows 

determining if sR̂ is within normal operating ranges. When 

the sample values are small, it is necessary to use the 
student’s t-distribution to obtain correct confidence intervals 
and hypothesis testing. For the application of the t-
distribution, the calculation of the standard deviation S  

presented in (9) is used [20]. 

 
( )

2

h
s s

s 1

ˆR R
S

h 1=

−
=

−
                                  (9) 

The determination of the unilateral confidence limits, 
both upper and lower, is determined by (10) and (11) 
respectively. Where g  is the critical value of the “t” 

distribution with a significance level of 5% . This 

significance level determines whether the result is considered 
statistically significant [21]. 

 s
ˆupper unilateral limit = R g S+                  (10) 

 s
ˆlower unilateral limit = R g S−                  (11) 

D. Fault Identification Using Neural Networks 

The technique for identifying faults in the PV through 

variation of sR is performed using neural networks. The 

training of the neural network requires multiple data points at 
different operating conditions, corresponding to the inputs   

G and sR̂ . The neural network used is a MLP trained by 

supervised learning, considering its outputs as: normal 
operation  1 0 0 , failure 1 due to mismatch  0 1 0 and 

failure 2 due to humidity degradation  0 0 1 . The database 

was obtained from the page of the Tungurahua 
hydrometeorological network [22], where there are different 
sections of weather stations, including the Ambato Family 
Park, located in Ecuador, province of Tungurahua, with 
coordinates latitude 1.2439− and longitude 78.6611− , which 

has the parameters of ambient temperature [ ]C and solar 

radiation 2[W m ] , which were used for the inputs of the 

estimation and identification models by neural networks.  
For the preprocessing of the obtained database, six 

months of data were used (from October 10 , 2022 to April 10 ,  

2023 ), which were processed to take data every 5  minutes for 

a total of 52,704.00 data. During the time of data collection, we 

collected information of failures which were generated by 
different types of random failures caused by changes in the 
internal resistance. After data acquisition, a total of 52,704.00

data were obtained, where: 64% of the database ( 33,730.56 data) 

are used for training, 18% ( 9,486.72 data) for testing and 18%  (

9,486.72 data) for model validation, the same that were 

randomly distributed. 
Several NN architectures are trained and sensitivity 

analysis is used, obtaining the MLP shown in Fig. 4 as the 
most optimal NN. This NN consists of three layers. The input 
layer comprises two neurons corresponding to irradiation G    

and estimated series resistance 
sR̂ . The hidden layer consists 

of 10 neurons, which are connected to the input layer through 

synaptic weights ijW . Each neuron has a bias ' with a value 

of zero. The selected activation function '

jf is hyperbolic 

tangent (tanh) due to its non-linearity and convergence 
towards better learning. Finally, the output layer consists of 
three neurons representing normal operation NOP, Fault 1 
(F1), and Fault 2 (F2). The output neurons are connected to 
the hidden layer through synaptic weights 

jz
W' , and the 

chosen activation function '

zf is sigmoid, which allows for 

binary classification. Each output neuron has its respective 
bias  . The outputs of the neural network are described in 

Table I, including the causes, effects, and power behavior at 
the PV 

 

 
Fig 4. MLP neural network structure for fault identification. 

 
TABLE I. SERIES RESISTANCE FAULTS AND NEURAL NETWORK 

OUTPUT. 

 

Faults Cause 

(↑)Increase  

(↓) Decrease 

of 𝑹𝒔 value 

Effect 

Neural 

network 

output 

Normal 

Operation 
None None None  1 0 0  

Fault 1 
Mismatch 
Failures sR     

Power 
Loss 

 0 1 0  

Fault 2 
Moisture 

Degradation sR     
Power 

Increase 
 0 0 1  

V. RESULTS 

This section presents and analyzes the results 

obtained from evaluating the series resistance estimator 
sR̂

and the performance of the fault identification system. The 
case study focuses on the PV model Du Pont Apollo DA130-

C2 implemented in Matlab/Simulink software, with the 
characteristics described in Table II.  

 
TABLE II. PANEL PROPERTIES DU PONT APOLLO DA130-C2 
 

Description Parameters Value 

Nominal power output pvP  130 [W]  

Environment Temperature oT  25 [C]  

Short circuit current scI  1.28 [A]  

Open circuit voltage ocV  154.96 [V]  

Series resistor sR  15.1879 [ ]  

Shunt resistor shR  807.101 [ ]  

 
An irradiance profile is used which is described in 

section 4.2. The irradiance profile corresponds to the 
validation set, to February 5 , 2023 , see Figure 5(a), where the 



maximum irradiance point is 850 2[W m ] at 12 o'clock on the 

same day. For the analysis, 24 operating points are used, 
which are average values representing one hour, see Figure 
5(b). 

 

a) 

 

b) 

Fig. 5. Irradiance profile, a) Daily irradiance and b) Irradiance 
representation in hours. 

A. Evaluation of the Resistance Estimator 

The series resistance is internally located in the PV 
panel and cannot be directly measured. However, through 
simulation, this change can be implemented within the PV 
model by emulating different values of 

s
R , with this 

information, the performance of the proposed estimator can 
be validated. The estimated value should fall within a 5%  

confidence Interval, as presented in section IV-(A). First, the 
evaluation is conducted under NOP conditions (see Fig. 6.), 
where the estimated resistance values (black circles) are 
found around the actual operating resistance value (green 
line) provided by the manufacturer, which is 15.1879  [ ] . It 

can be verified that the estimation at all operating points, 
under different irradiance profiles, adheres to the confidence 
band. In other words, the estimated resistance does not 
exceed the upper confidence interval of 15.45 [ ]  (red line) or 

the lower confidence interval of 15.19 [ ] (dashed red line). 

 

Fig. 6. Estimated resistance in normal operation. 

 
In the Fig. 7. shows the validation of the estimator at 

different values of 
s

R . In the interval ( )0 6h− , the 
s

R  value 

remains constant at the one defined by the manufacturer, 
which corresponds to the NOP condition. The estimated 
value falls within the confidence band. Then, in the time 
interval ( )7 12h− , the series resistance value is increased 

s
R 20= [ ] , and once again, the estimated value remains 

within the confidence intervals. Finally, in the interval 

( )20 24 h−  , the series resistance value is decreased 
s

R 10= [ ]

, and it is observed that the estimated value still falls within 
the confidence band. 

 

Fig. 7. Validation of the estimator at different values of 
s

R . 

B. Failure Identification System Evaluation 

In Fig. 8, the response obtained at the output of the 
identifier is shown when applying two inputs. The first input 
corresponds to the radiation profile Fig. 5(b), and the second 
input is the estimated resistance shown in Fig. 6. As deduced 
earlier, the estimator provides the estimated series resistance 

sR̂ for the normal operating mode, respecting the confidence 

intervals. Therefore, the good performance of the estimator is 
validated because the output of the identifier shows the 
normal operating mode, indicated by the reading of 

 0.95 0.025 0.025 , which are interpreted as follows: If Out 0.5

it is equivalent to 0, while if Out 0.5 it is 1, therefore the 

output of the neural network is   1 0 0 . 

 
Fig. 8. Output response of the identifier in normal operation (NOP). 

C. Evaluation of the Identification System in Different Fault 

Scenarios 

Next, the identifier is evaluated against the radiation 
operating points shown in Fig. 5(b), with the input of 
estimated resistance from Fig. 6. As can be shown in Fig 9, 
in the interval (0 6h)− and (12 18h)− , as expected, the estimated 

resistance corresponds to the normal operating condition, and 
the estimator correctly outputs  1 0 0 , which represents 

NOP. In the interval (6 12h)− , the network output is   0 0 1 , 

indicating Fault 2. Finally, in the interval (19 24h)− , the 

resistance decreases significantly due to Fault 1, and the 
output is  0 1 0 , validating the correct identification of 

faults at different operating points. 

 
Fig. 9. Identification of failures at different values of

s
R . 

 
In Fig. 10 shows the effects of the faults caused by the 

variation of the resistance on the output power of the panel 



(red color) with respect to the power obtained in normal 
operation (blue color). In the range (0 6h)− and (12 18h)− the 

power is the expected in normal operation, therefore the 
graphs are superimposed, in the range (6 12h)− it is observed 

the fault 2 caused by the degradation due to humidity which 
causes an increase of the power and in range (19 24h)− it can 

be observed that the power decreases due to fault 1 which is 
caused by mismatch. 

 
Fig. 10. Effects of Failures on PV power. 

 
In Fig. 11, the impact of faults on PV power is depicted. 

The curve (blue color) represents normal operating 
conditions, while the curve (red color) represents the effects 
of shading faults, which result in power loss. On the other 
hand, the curve (green color) represents the effects of Fault 2, 
specifically moisture degradation, where power is increased. 
This indicates the occurrence of hotspots on the panel, 
leading to damage. 

 
Fig. 11. Effects of faults on photovoltaic panel power. 

VI. CONCLUSIONS 

The system proves to be efficient in identifying faults, 
as it correctly identifies all faults in 9,486.72  operating points 

tested under different irradiance profiles. Tests are conducted 
using PV from various manufacturers, demonstrating its 
compatibility and ability to integrate with any system. The 
fault identification system is capable of distinguishing 
between power changes in the PV caused by variations in 
irradiance and those caused by faults, thanks to the training 
of the MLP. This prevents confusion when identifying the 
type of fault. Additionally, the recursive least squares 
technique with a forgetting factor, including confidence 
intervals, ensures efficient fault identification. The estimator 
has shown high reliability, guaranteeing a 95% confidence 
level in the estimation. It also demonstrates adaptability to 
changes in the PV and continuous updating of the estimation. 
Future work will expand the number of failures to be 
detected. 
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