

Modelación computacional del comportamiento mecánico del perfil alar de la aeronave A-29B Súper Tucano en operaciones de vuelo de la Fuerza Aérea Ecuatoriana

Muñoz Anda, Paúl Andrés

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Mecánica

Trabajo de titulación, previo a la obtención del título de Ingeniero Mecánico

Ing. Sánchez Sánchez, Xavier Rolando, PhD

04 de septiembre del 2023



# **INTRODUCCIÓN**

#### Alcance

- Modelar computacionalmente el comportamiento aerodinámico y mecánico del perfil alar del A-29B Súper Tucano en diferentes operaciones de vuelo, como despegue, aterrizaje y vuelo nivelado.
- La modelación aerodinámica se realizará en CFD en ANSYS Fluent, utilizando el modelo RANS k-omega SST.
- Modelación estructural-mecánica se llevará a cabo en Autodesk Inventor-Nastran aplicando análisis de tensión y resistencia.



Figura 1. Avión A-29B Súper Tucano



# **JUSTIFICACIÓN E IMPORTANCIA**

Estudiar el comportamiento aerodinámico y estructural del perfil alar del avión Super Tucano de la Fuerza Aérea Ecuatoriana, con el fin de comprender a profundidad su funcionamiento durante diferentes maniobras y operaciones de vuelo.

La modelación computacional aporta al análisis técnico a través de simulaciones confiables, permitiendo verificar variables clave sin necesidad de realizar pruebas físicas costosas.

Los resultados pueden servir para evaluar mejoras de diseño que optimicen el comportamiento del ala.



# **OBJETIVOS**

### **OBJETIVO GENERAL**

 Realizar la modelación computacional del comportamiento mecánico del perfil alar de la aeronave A-29B Super Tucano en operaciones de vuelo de la Fuerza Aérea Ecuatoriana.

# **OBJETIVOS ESPECÍFICOS**

- Analizar mediante simulación numérica CFD el comportamiento aerodinámico del perfil alar del A-29B Super Tucano en distintas condiciones de vuelo.
- Validar los resultados obtenidos de las simulaciones CFD mediante datos experimentales.
- Realizar un análisis estructural del perfil alar sometido a las cargas aerodinámicas calculadas para comprobar su resistencia mecánica.



# **DESARROLLO AERODINÁMICO**

### Perfil aerodinámico



Figura 3. Ángulo de ataque

Nota: Ángulo entre la dirección del viento relativo que incide en el perfil y la línea de la cuerda



# Perfil aerodinámico de 4 dígitos (NACA MPXX)

# NACA 2412

**M** es el punto de curvatura máxima, siendo el 0,02 o el 2 % de la cuerda aerodinámica.

**P** es la posición de la curvatura máxima, siendo el 0,04 o el 4 % de la cuerda aerodinámica.

**XX** es el grosor, siendo el 0,12 o el 12 % de la cuerda aerodinámica.



Figura 4. Perfil aerodinámico NACA 2412



### Fuerzas que actúan en el ala de un avión



**Figura 5.** *Principales fuerzas que actúan en el ala de un avión* 



7

### Modelo de turbulencia: Modelo k-omega SST: Shear-Stress-Transport





ω: tasa específica de disipación de energía cinética

# Modelo geométrico y dominio computacional



**Figura 6.** *Geometría en ANSYS Fluent del perfil alar NACA 2412* 

Figura 7. Volumen de control



### Malla computacional



Figura 8. Malla no estructurada y estructurada



#### Tabla 1. Convergencia de mallas

| Malla   | Número de<br>elementos | Coeficiente de sustentación $[C_L]$ | Coeficiente de resistencia $[C_D]$ |
|---------|------------------------|-------------------------------------|------------------------------------|
| Malla 1 | 100182                 | 0.22446576                          | 0.0078873634                       |
| Malla 2 | 151800                 | 0.22372849                          | 0.0078875711                       |
| Malla 3 | 182400                 | 0.22331452                          | 0.0078911537                       |
| Malla 4 | 200000                 | 0.22316514                          | 0.0078954376                       |



# Calidad de la malla





### Ortogonalidad

• Métrica que verifica la calidad ortogonal de las dos caras del volumen de control.

#### Tabla 2. Valores de oblicuidad

| Valor de oblicuidad | Calidad de la celda |
|---------------------|---------------------|
| 0.95 - 1            | Inaceptable         |
| 0.95 - 0.97         | Mala                |
| 0.80 - 0.94         | Aceptable           |
| 0.50 - 0.80         | Buena               |
| 0.25 - 0.5          | Muy buena           |
| 0 - 0.25            | Excelente           |
| 0                   | Ideal               |

#### Tabla 3. Valores de ortogonalidad

| Valor de ortogonalidad | Calidad de la celda |
|------------------------|---------------------|
| 0 - 0.001              | Inaceptable         |
| 0.001 - 0.14           | Mala                |
| 0.15 - 0.20            | Aceptable           |
| 0.20 - 0.69            | Buena               |
| 0.70 - 0.95            | Muy buena           |
| 0.95 - 1               | Excelente           |
| 1                      | Ideal               |



### Calidad de la malla



Figura 8. Valores de oblicuidad



Figura 9. Valores de ortogonalidad



### **Condiciones de frontera**



Figura 10. Condiciones de frontera

# Entrada o Inlet

• Velocidad de entrada

# Salida u Outlet

• Presión de salida 0

# Superficie de ala o Wall

 Velocidad en toda esa superficie es cero



### Convergencia en la solución

| Equations  |           |                 |                       |
|------------|-----------|-----------------|-----------------------|
| Residual   | Monitor ( | Check Converger | nce Absolute Criteria |
| continuity | ✓         | ✓               | 1e-06                 |
| x-velocity | ✓         | ✓               | 1e-06                 |
| y-velocity | ✓         | $\checkmark$    | 1e-06                 |
| k          | ✓         | ✓               | 1e-06                 |
| omega      | ✓         | ✓               | 1e-06                 |

Figura 11. Criterios de convergencia

```
continuity x-velocity y-velocity
                                                                                        time/iter
                                                        omega sustentaci
iter
                                                k
                                                                          arrastre c
     7.8465e-11 6.7903e-13 4.1003e-14 1.1204e-07
                                                   1.0154e-06 2.2340e-01
 386
                                                                          7.8456e-03
                                                                                              614
                                                                                     0:09:07
     7.7987e-11 6.7724e-13 4.0872e-14 1.1207e-07
                                                   1.0035e-06 2.2340e-01
                                                                          7.8456e-03
                                                                                     0:09:19
                                                                                              613
 387
 388
     7.7473e-11 6.7549e-13 4.0699e-14 1.1210e-07 9.9180e-07 2.2340e-01
                                                                          7.8456e-03 0:07:27
                                                                                              612
 388 solution is converged
```

Figura 12. Convergencia de la simulación



# **RESULTADOS AERODINÁMICOS**



**Figura 13.** *Distribución de presión estática alrededor de un perfil aerodinámico en varios ángulos de ataque.* 



#### Simulaciones del comportamiento aerodinámico del perfil alar en operaciones de despegue

| Parámetros            | Valor    | Unidad     |
|-----------------------|----------|------------|
| Velocidad             | 82,31    | [m/s]      |
| Ángulo de ataque      | 7,5      | [o]        |
| Temperatura           | 288,15   | [K]        |
| Densidad              | 1,225    | $[kg/m^3]$ |
| Presión               | 101325   | [Pa]       |
| Viscosidad cinemática | 1,470e-5 | $[m^2/s]$  |
| Viscosidad dinámica   | 1,802e-5 | [kg/m * s] |
| Número de reynolds    | 5.5954e9 | -          |
| Rugosidad             | 5.94e-7  | [m]        |

 Tabla 4. Parámetros de vuelo en condiciones de despegue

Nota: "Los parámetros de ingreso para la simulación CFD en condiciones de despegue fueron tomados del Manual de Fase para el avión A-29B, entregada por el CICTE, en su capítulo 6, literal E, 'Operaciones en vuelo - ascenso'."



#### Presión y velocidad a 7.5 grados



**Figura 14.** *Campo de presiones a 7.5 grados* 

**Figura 15.** *Campo de velocidades a* 7.5 grados



#### Coeficiente de resistencia y sustentación a 7.5 grados



#### Validación de la simulación con el Coeficiente de sustentación a 7.5 grados



 Tabla 5. Validación de la simulación en operaciones de despegue

| Operación    | Resultado experimental [ $C_L$ ] | Resultado de simulación [ $C_L$ ] | Error [%] |                                    |
|--------------|----------------------------------|-----------------------------------|-----------|------------------------------------|
| <br>Despegue | 1                                | 1.0120112                         | 1.19      | ESPE                               |
|              |                                  |                                   | ECONOM    | UNIVERSIDAD DE LAS FUERZAS ARMADAS |

#### Simulaciones del comportamiento aerodinámico del perfil alar en operaciones de aterrizaje

| Parámetros            | Valor    | Unidad     |
|-----------------------|----------|------------|
| Velocidad             | 56.59    | [m/s]      |
| Ángulo de ataque      | -3       | [o]        |
| Temperatura           | 288,15   | [K]        |
| Densidad              | 1,225    | $[kg/m^3]$ |
| Presión               | 101325   | [Pa]       |
| Viscosidad cinemática | 1,470e-5 | $[m^2/s]$  |
| Viscosidad dinámica   | 1,802e-5 | [kg/m * s] |
| Número de reynolds    | 3.847e9  | - / -      |
| Rugosidad             | 5.94e-7  | [m]        |

 Tabla 6. Parámetros de vuelo en condiciones de aterrizaje

Nota: "Los parámetros de ingreso para la simulación CFD en condiciones de despegue fueron tomados del Manual de Fase para el avión A-29B, entregada por el CICTE, en su capítulo 6, literal K, 'Operaciones en vuelo - aterrizaje'."



#### Presión y velocidad a -3 grados



m/s]

Figura 17. Campo de presiones a -3 grados

Figura 18. Campo de velocidades a -3 grados



#### Coeficiente de resistencia y sustentación a -3 grados



#### Validación de la simulación con el Coeficiente de sustentación a -3 grados

24



 Tabla 7. Validación de la simulación en operaciones de aterrizaje

| Operación  | Resultado experimental [ $C_L$ ] | Resultado de simulación [ $C_L$ ] | Error [%] |                               |
|------------|----------------------------------|-----------------------------------|-----------|-------------------------------|
| Aterrizaje | -0.10                            | -0.10412964                       | 3.97      | -SPE                          |
|            |                                  |                                   | ECHADOR . | RSIDAD DE LAS FUERZAS ARMADAS |

#### Simulaciones del comportamiento aerodinámico del perfil alar en operaciones de vuelo recto-nivelado

| Parámetros          | Valor      | Unidad     |
|---------------------|------------|------------|
| Velocidad           | 144        | [m/s]      |
| Ángulo de ataque    | 0          | [o]        |
| Temperatura         | 278,25     | [K]        |
| Densidad            | 1,05598    | $[kg/m^3]$ |
| Presión             | 84307      | [Pa]       |
| Viscosidad dinámica | 1,74128e-5 | [kg/m * s] |
| Número de reynolds  | 8.733e11   | -          |
| Rugosidad           | 5.94e-7    | [m]        |

Tabla 8. Parámetros de vuelo en condiciones de vuelo recto-nivelado

Nota: "Para el análisis aerodinámico en el régimen de vuelo recto y nivelado se ha considerado como parámetros de ingreso para la simulación CFD al Manual de Vuelo de la aeronave A-29B TO 1A-29B(STD)-1, en su capítulo 5.2, "Speed limitations". Cuya velocidad máxima estructural con almacenamiento externo está establecida en 280 KCAS (Knots Indicated Air Speed)"



#### Presión y velocidad a 0 grados



**Figura 20.** *Campo de presiones a 0 grados* 

**Figura 21.** *Campo de velocidades a 0 grados* 



Coeficiente de resistencia y sustentación a 0 grados



#### Validación de la simulación con el Coeficiente de sustentación a 0 grados



 Tabla 9. Validación de la simulación en operaciones de vuelo recto-nivelado

| Operación      | Resultado experimental [ $C_L$ ] | Resultado de simulación [ $C_L$ ] | Error [%]        |                            |
|----------------|----------------------------------|-----------------------------------|------------------|----------------------------|
| Recto-nivelado | 0.22                             | 0.22316514                        | 1.42             | SPE                        |
|                |                                  |                                   | COMPARING STREET | DAD DE LAS FUERZAS ARMADAS |

# **ANÁLISIS TENSIONAL**

#### Tabla 10. Propiedades mecánicas del material compuesto del componente reparado



## Diseño alar

A-29B La cuerda conectada al fuselaje es de 2696,8 mm.

La cuerda en la punta del ala es de 1062,22 mm.

El grosor en la punta del ala es de 132,67 mm.

La longitud total del ala es de 4750 mm.

La superficie alar de 19,4 m^2.



**Figura 24.** *Modelo CAD del ala del A-29B Super Tucano* 

$$\% = \frac{132,67mm}{1062,22mm}$$

Perfil NACA 2412

$$\% = 0, 12$$



### Fuerzas del A-29B

Fuerza de sustentación

UNIVERSIDAD DE LAS FUERZAS ARMADAS

Fuerza de resistencia
 
$$F_D = \frac{1}{2} \rho v_\infty^2 SC_D$$
 $F_L = \frac{1}{2} \rho v_\infty^2 SC_L$ 
 $F_D = \frac{1}{2} * 1,05598 \frac{kg}{m^3} * 144^2 \frac{m^2}{s^2} * 19,4m^2 * 0,0078954247$ 
 $F_L = \frac{1}{2} * 1,05598 \frac{kg}{m^3} * 144^2 \frac{m^2}{s^2} * 19,4m^2 * 0,22316514$ 
 $F_D = \frac{1}{2} * 1,05598 \frac{kg}{m^3} * 144^2 \frac{m^2}{s^2} * 19,4m^2 * 0,0078954247$ 
 $F_L = \frac{1}{2} * 1,05598 \frac{kg}{m^3} * 144^2 \frac{m^2}{s^2} * 19,4m^2 * 0,22316514$ 
 $F_D = 1676,98N$ 
 $F_L = 12 * 1,05598 \frac{kg}{m^3} * 144^2 \frac{m^2}{s^2} * 19,4m^2 * 0,22316514$ 
 $F_D = 2515,47N$ 
 $F_L = 71100,08N$ 
 $M ximo peso de despegue$ 
 $T = \frac{P}{V}$ 
 $MTOW = \frac{1}{2} * 3020kg * 9,81m/s^2$ 
 $T = \frac{1193000kg.m^2/s^2}{144m/s}$ 
 $MTOW = 14813,1N$ 
 $T = 8284,72N$ 

31 Factor de seguridad de 1.5, indicado en la normativa FAR 25.303. (Federal Aviation Regulations)

# Configuración del modelo

| Fuerza                 | Eje de aplicación | Valor (N) |
|------------------------|-------------------|-----------|
| Fuerza de sustentación | $F_y$             | 71100.08  |
| Fuerza de resistencia  | $F_x$             | 2515.47   |
| Peso                   | $-F_y$            | 14813.1   |
| Empuje                 | $-F_x$            | 14813.1   |

Tabla 11. Cargas a las que se somete el ala



Figura 25. Configuración del modelo



## **Deformación total**



#### Figura 26. Deformación total

El resultado es una deformación máxima de 9.324 mm en el extremo de la punta del ala.



### Esfuerzo equivalente en el ala



Figura 27. Esfuerzos equivalentes en la superficie del ala

El resultado de una distribución de esfuerzos equivalentes dio un valor máximo de 7.351 Mpa.



### Factor de carga (seguridad)



Figura 27. Factor de seguridad del ala de 7,55.

Nota: La Agencia Europea de Seguridad Aérea (EASA) establece que este tipo de aeronaves debe tener un factor mínimo de 6 para garantizar la seguridad y la capacidad de soportar las condiciones requeridas.



# **CONCLUSIONES**

- Se logró modelar con éxito el perfil aerodinámico NACA 2412 que tiene el ala del Super Tucano y realizar simulaciones aerodinámicas estacionarias en ANSYS Fluent para condiciones de despegue, aterrizaje y vuelo recto-nivelado.
- En las simulaciones de despegue, el coeficiente de sustentación aumentó a 1.012 y el coeficiente de resistencia disminuyó a 0.012 con el incremento del ángulo de ataque, tal como era de esperarse. Se observaron mayores presiones en la superficie inferior del ala y una mayor velocidad en la superficie superior del ala.
- Durante el aterrizaje, se notaron tendencias inversas para los coeficientes y presiones, ya que con una disminución de presión también disminuirá la sustentación a -0.1041 y un coeficiente de resistencia a 0.009.



# **CONCLUSIONES**

- Para vuelo recto-nivelado, los coeficientes de sustentación de 0.223 y resistencia de 0.007. Los patrones de flujo como líneas de corriente y contornos de presión son simétricos y concordaron con la teoría aerodinámica.
- Los coeficientes de sustentación en todas las condiciones de vuelo coincidieron con los datos de referencia del túnel de viento para un perfil NACA 2412, validando el análisis.
- Los coeficientes de resistencia son relativamente pequeños, esto nos indica que al ser una aeronave pequeña y también su envergadura, no genera mayor resistencia aerodinámica.
- El análisis de tensiones del ala bajo las cargas operacionales mostró máximos esfuerzos de Von Mises de 7.351 MPa dentro del límite de fluencia del material compuesto.



# **CONCLUSIONES**

- Las pruebas mecánicas arrojaron que el material compuesto escogido cumple con los requerimientos estructurales para soportar las cargas máximas de vuelo.
- El factor de seguridad de la simulación fue de 7.55, lo cual fue ampliamente superior al valor mínimo requerido de 6 según la Agencia Europea de Seguridad Aérea (EASA), indicando la adecuación estructural del diseño.



# RECOMENDACIONES

- El modelo computacional desarrollado permitió visualizar fenómenos complejos de mecánica de fluidos y de sólidos tridimensionales en el ala. Puede ser afinado aún más para futuros análisis de optimización, trabajos de mejoramiento aerodinámico y estructural.
- Realizar simulaciones transitorias para analizar el comportamiento aerodinámico del ala durante maniobras dinámicas de vuelo como giros, picados, etc. Esto permitirá caracterizar mejor las cargas.
- Contrastar los resultados con pruebas experimentales en túnel de viento para validar las predicciones numéricas.



# **TRABAJOS FUTUROS**

- Mejorar el modelamiento computacional implementando otros modelos matemáticos como LES o DNS para capturar con mayor detalle los efectos de la turbulencia. Esto permitiría comprar los resultados obtenidos.
- Realizar estudios de optimización del diseño del perfil alar del Super Tucano. Esto implicaría la búsqueda de configuraciones que mejoren el rendimiento aerodinámico y la resistencia estructural del ala, con el objetivo de mejorar la eficiencia y desempeño de la aeronave.



# GRACIAS POR SU ATENCIÓN

